Hydrostatic Extrusion of Glass Reinforced and Unreinforced Celcon® POM

  • J. Kastelic
  • A. Buckley
  • P. Hope
  • I. Ward
Part of the Polymer Science and Technology book series


Several of the solid state shaping methods developed for metals have been found applicable to polymers. When applied to plastics such methods as rolling, drawing and hydrostatic extrusion can impart substantial molecular orientation, consequently enhancing physical properties. Of these techniques, hydrostatic extrusion may have advantages in that glass filled resins may be employed and more complex profiles may be produced, including hollow sections. Here, we investigate the processing speeds and physical properties attainable by hydrostatic extrusion of glass reinforced and unreinforced Celcon® polyoxymethylene. Large size scale and modest 2–10 area reductions are explored so that commercially feasible production rates can be approached. Both resins can be successfully processed by hydrostatic extrusion. Furthermore, at these modest reductions, significant gains in physical properties are achieved. The strongest beneficial effects are found in tensile and impact strengths. Surprisingly, the elongation of the glass filled resin is also improved.


Reduction Ratio Draw Ratio Tensile Modulus Flexural Modulus Extrusion Temperature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Buckley and H.A. Long, Polym. Eng. & Sci., 9:115, 1969.CrossRefGoogle Scholar
  2. 2.
    J. M. Alexander and P. J. H. Wormell, Annals of the C.I.R.P., 19:21, 1971.Google Scholar
  3. 3.
    K. Imada, T. Yamamoto, K. Shigematsu and M. Takayanagi, J. Mat. Sci., 6:537, 1971.ADSCrossRefGoogle Scholar
  4. 4.
    T. Williams, J. Mat. Sci., 8:59, 1973.ADSCrossRefGoogle Scholar
  5. 5.
    H. W. Starkweather Jr., T. F. Jordan and G. B. Dunnington, Polym. Eng. & Sci., 14:678, 1974.CrossRefGoogle Scholar
  6. 6.
    E.S. Clark and L. S. Scott, Polym. Eng. & Sci., 14:682, 1974.CrossRefGoogle Scholar
  7. 7.
    “Ultra-high Modulus Polymers”, ed. by A. Ciferri and I. M. Ward. Applied Science Pub., London, 1977, Chapts. 1 & 2.Google Scholar
  8. 8.
    K. Nakayama and H. Kanetsuma, J. Appl. Polym. Sci., 23:2543, 1979.CrossRefGoogle Scholar
  9. 9.
    H. N. Yoon, K. D. Pae and J. A. Sauer, Polym. Eng. & Sci., 16:567, 1976.CrossRefGoogle Scholar
  10. 10.
    S. M. Aharoni and J. P. Sibilia, J. Appl. Polym. Sci., 23:133, 1979.CrossRefGoogle Scholar
  11. 11.
    W. T. Mead, C. R. Desper and R. S. Porter, J. Polym. Sci. Phys., 17:859, 1979.CrossRefGoogle Scholar
  12. 12.
    A. Buckley and C. Cassin, U.S. Patent 3, 642, 976, 1972.Google Scholar
  13. 13.
    D. M. Bigg, E. G. Smith, M. M. Epstein and R. J. Fiorentino, Polym. Eng. & Sci., 18:908, 1978.CrossRefGoogle Scholar
  14. 14.
    P. S. Hope, A. G. Gibson, B. Parsons and I. M. Ward, Polym. Eng. & Sci., 20:540, 1980.CrossRefGoogle Scholar
  15. 15.
    A. G. Gibson and I. M. Ward, J. Polym. Sci., Phys., 16:2015, 1978.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • J. Kastelic
    • 1
  • A. Buckley
    • 1
  • P. Hope
    • 2
  • I. Ward
    • 2
  1. 1.Celanese Research CompanySummitUSA
  2. 2.The University of LeedsLeedsUK

Personalised recommendations