Lysosomal Storage Diseases

  • Edwin H. Kolodny


In recent years, the lysosomal storage diseases have received considerable attention from geneticists, biochemists, and molecular biologists. Their efforts have led to the recognition of more than 40 varieties of lysosomal storage disease, many with signs of nervous system degeneration and mental retardation. The combined incidence of these diseases is probably on the order of one per each 5000 births. They are similar in their general clinical characteristics to other forms of inherited metabolic disease; therefore, their accurate diagnosis depends ultimately upon the performance of specific laboratory tests. No definitive treatment is available for any of these diseases, but early diagnosis greatly facilitates their management and provides the parents and relatives of patients with the opportunity to receive informed genetic counseling. This chapter outlines a stepwise approach to the diagnosis of these diseases, discusses the author’s experience with their management, and anticipates the direction of future developments. For more information on specific topics, the reader may consult several excellent books.1–3


High Performance Liquid Chromatography Enzyme Replacement Therapy Lysosomal Enzyme Fabry Disease Storage Disease 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hers, H. G., and Van Hoof, F. (eds.): Lysosomes and Storage Diseases. New York, Academic Press, 1973.Google Scholar
  2. 2.
    Callahan, J. W., and Lowden, J. A. (eds.): Lysosomes and Lysosomal Storage Diseases. New York, Raven Press, 1981.Google Scholar
  3. 3.
    Stanbury, J. B., Wyngaarden, J. B., Fredrickson, D. S., Brown, M., and Goldstein, J. (eds.): The Metabolic Basis of Inherited Disease, ed. 5. New York, McGraw-Hill, 1983.Google Scholar
  4. 4.
    Hers, H. G.: Inborn lysosomal diseases. Gastroenterology 48:625–633, 1965.PubMedGoogle Scholar
  5. 5.
    Kolodny, E. H.: Storage diseases of the reticuloendothelial system, in Nathan, D., and Oski, F. (eds.): Hematology of Infancy and Childhood. Philadelphia, W. B. Saunders, 1981, pp. 1104–1144.Google Scholar
  6. 6.
    Martin, J. J., and Ceuterick, C.: Morphological study of skin biopsy specimens: A contribution to the diagnosis of metabolic disorders with involvement of the nervous system. J. Neurol. Neurosurg. Psychiatry 41:232–248, 1978.PubMedCrossRefGoogle Scholar
  7. 7.
    Sipe, J. C., and O’Brien, J. S.: Ultrastructure of skin biopsy specimens in lysosomal storage diseases: Common sources of error in diagnosis. Clin. Genet. 15:118–125, 1979.PubMedCrossRefGoogle Scholar
  8. 8.
    Dolman, C. L., MacLeod, P. M., and Chang, E.: Fine structure of cutaneous nerves in ganglioside storage disease. J. Neurol. Neurosurg. Psychiatry. 40:588–594, 1977.PubMedCrossRefGoogle Scholar
  9. 9.
    Miley, C. E., Gilbert, E. F., France, T. D., O’Brien, J. F., and Chun, R. W. M.: Clinical and extraneural histologic diagnosis of neuronal ceroid-lipofuscinosis. Neurology 28:1008–1012, 1978.PubMedGoogle Scholar
  10. 10.
    Sugita, M., Iwamori, M., Evans, J., McCluer, R. H., Dulaney, J. T., and Moser, H. W.: High performance liquid chromatography of ceramides: Application to analysis in human tissues and demonstration of ceramide excess in Farber’s disease. J. Lipid Res. 15:223–226, 1974.PubMedGoogle Scholar
  11. 11.
    Ullman, M. D., and McCluer, R. H.: Quantitative analysis of plasma neutral glycosphingo-lipids by high performance liquid chromatography of their perbenzoyl derivatives. J. Lipid Res. 18:371–378, 1977.PubMedGoogle Scholar
  12. 12.
    Cable, W. J. L., McCluer, R. H., Kolodny, E. H., and Ullman, M. D.: Fabry disease: Detection of heterozygotes by examination of glycolipids in urinary sediment. Neurology 32:1139–1145, 1982.PubMedGoogle Scholar
  13. 13.
    Jungalwala, F. B., and Milunsky, A.: High performance liquid chromatography for the detection of homozygotes and heterozygotes of Niemann-Pick disease. Pediatr. Res. 12:655–659, 1978.PubMedCrossRefGoogle Scholar
  14. 14.
    Kolodny, E. H., and Raghavan, S. S.: GM2-gangliosidosis: Hexosaminidase mutations not of the Tay-Sachs type produce unusual clinical variants. Trends Neurosci. 6:16–20, 1983.CrossRefGoogle Scholar
  15. 15.
    Lorincz, A. E., Hurst, R. E., and Kolodny, E. H.: The early laboratory diagnosis of mucopolysaccharidoses. Ann. Clin. Lab. Sci. 12:258–266, 1982.PubMedGoogle Scholar
  16. 16.
    Kolodny, E. H., and Cable, W. J. L.: Inborn errors of metabolism. Ann. Neurol. 11:221–232, 1982.PubMedCrossRefGoogle Scholar
  17. 17.
    Ng Ying Kin, N. M. K., and Wolfe, L. S.: Presence of abnormal amounts of dolichols in the urinary sediment of Batten disease patients. Pediatr. Res. 16:530–532, 1982.CrossRefGoogle Scholar
  18. 18.
    Glew, R. H., and Peters, S. P. (eds.): Practical Enzymology of the Sphingolipidoses. New York, Alan R. Liss, 1977.Google Scholar
  19. 19.
    Conzelmann, E., and Sandhoff, K.: AB variant of infantile GM2-gangliosidosis: Deficiency of a factor necessary for stimulation of hexosaminidase A-catalyzed degradation of ganglioside GM2 and glycolipid GA2. Proc. Natl. Acad. Sci. USA 75:3979–3983, 1978.PubMedCrossRefGoogle Scholar
  20. 20.
    Hahn, A. F., Gordon, B. A., Feleki, V., Hinton, G. G., and Gilbert, J. J.: A variant form of metachromatic leukodystrophy without arylsulfatase deficiency. Ann. Neurol. 12:33–36, 1982.PubMedCrossRefGoogle Scholar
  21. 21.
    Christomanou, H.: Niemann-Pick disease, type C.: Evidence for the deficiency of an activating factor stimulating sphingomyelin and glucocerebroside degradation. Hoppe Seylers Z. Physiol. Chem. 361: 1489–1502, 1980.CrossRefGoogle Scholar
  22. 22.
    Kolodny, E. H., and Mumford, R. A.: Human leukocyte acid hydrolases: Characterization of eleven lysosomal enzymes and study of reaction conditions for their automated analysis. Clin. Chim. Acta 70:247–257, 1976.PubMedCrossRefGoogle Scholar
  23. 23.
    Porter, M. T., Fluharty, A., Trammell, J., and Kihara, H.: A correlation of intracellular cerebroside sulfatase activity in fibroblasts with latency in metachromatic leukodystrophy. Biochem. Biophys. Res. Commun. 44:660–666, 1971.PubMedCrossRefGoogle Scholar
  24. 24.
    Kolodny, E. H.: Diagnostic experience of a lysosomal storage diseases laboratory in 500 cases with mental retardation and nervous system degeneration, in Mittler, P. (ed): Frontiers of Knowledge in Mental Retardation. Vol. II, Biomedical Aspects. Baltimore, University Park Press, 1981, pp. 225–238.Google Scholar
  25. 25.
    Greebe, H., Krims, M., Schmidberger, H., Von Figura, K., Harrer, K., Kresse, H., Paschke, E., Sewell, A., and Ullrich, K.: Morquio syndrome (mucopolysaccharidosis IV B) associated with β-galactosidase deficiency. Report of two cases. Am. J. Hum. Genet. 32:258–272, 1980.Google Scholar
  26. 26.
    Klein, U., Kresse, H., Van Figura, K.: Sanfilippo syndrome type C.: Deficiency of acetyl-CoA: α-glucosaminide N-acetyltransferase in skin fibroblasts. Proc. Natl. Acad. Sci USA 75:5185–5189, 1978.PubMedCrossRefGoogle Scholar
  27. 27.
    Philippart, M., Franklin, S. S., and Gordon A.: Reversal of an inborn sphingolipidosis (Fabry’s disease) by kidney transplantation. Ann. Intern. Med. 77:195–200, 1972.PubMedGoogle Scholar
  28. 28.
    Spense, M. W., Mackinnon, K. E., Burgess, J. K., D’Entremont, D. M., Belitsky, P., Lannon, S. G., and MacDonald, A. S.: Failure to correct the metabolic defect by renal allotransplantation in Fabry’s disease. Ann. Intern. Med. 84:13–16, 1976.Google Scholar
  29. 29.
    Groth, C. G., Blomstrand, R., Hagenfeldt, L., Ockermann, P-A., Samuelsson, K., and Svennerholm, L.: Metabolic changes following splenic transplantation in a case of Gaucher’s disease, in Volk, B. W., and Aronson, S. M. (eds.): Sphingolipids, Sphingolipidoses and Allied Disorders. New York, Plenum Press, 1972, pp. 633–639.Google Scholar
  30. 30.
    Groth, S. C., Collste, H., Dreborg, S., Hakansson, G., Lundgren, G., and Svennerholm, L.: Attempt at enzyme replacement in Gaucher disease by renal transplantation. Acta Paediatr. Scand. 68:475–479, 1979.Google Scholar
  31. 31.
    Daloze, P., Delvin, E. E., Glorieux, F. H., Corman, J. L., Bettez, P., and Toussi, T.: Replacement therapy for inherited enzyme deficiency: Liver orthotopic transplantation in Niemann-Pick disease type A. Am. J. Med. Genet. 1:229–239, 1977.PubMedCrossRefGoogle Scholar
  32. 32.
    Dean, M. F., Stevens, R. L., Muir, H., Benson, P. F., Button, L. R., Anderson, R. L., Boylston, A., and Mowbray, J.: Enzyme replacement therapy by fibroblast transplantation. J. Clin. Invest. 63:138–146, 1979.PubMedCrossRefGoogle Scholar
  33. 33.
    Ginnis, E. I., Rappoport, J. M., Brady, R. O., Rosen, F. S., Nathan, D. G., Parkman, R., and Barranger, J. A.: Correction of glucocerebrosidase deficiency in Gaucher’s disease by bone marrow transplantation. Blood 60:168A, 1982.Google Scholar
  34. 34.
    Brown, F., Neufeld, E. F., Hall, C. W., Munoz, L. L., Braine, H. G., and Moser, H. W.: Enzyme replacement by plasma exchange in Hunter syndrome. Pediat. Res. 14:519, 1980.Google Scholar
  35. 35.
    Brady, R. O., Pentchev, P. G., Gal, A. E., Hibbert, S. R., and Dekaban, A. S.: Replacement therapy for inherited enzyme deficiency: Use of purified glucocerebrosidase in Gaucher’s disease. N. Engl. J. Med. 291:989–993, 1974.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Edwin H. Kolodny
    • 1
  1. 1.Eunice Kennedy Shriver Center for Mental RetardationWalthamUSA

Personalised recommendations