In Vivo and in Vitro Comparisons of Age-Related Fine Structural Changes in Cell Components

  • John E. JohnsonJr.


Although the study of aging cells and tissues dates back many decades, the majority of data gathered are biochemical, pharmacological, and physiological. Histological studies, particularly by electron microscopy, in comparison, have only begun to accumulate. In vivo and in vitro studies of aging cells have proceeded in parallel over the years with an ever increasingly important issue developing concerning the applicability of data gathered in vitro toin vivo situations. Very little information exists to support or not support this concept, partially because few have attempted to compare the two disciplines, but also because experimental gerontology is in its early stages of development as a research field, and scientists are still gathering base-line data.


Dense Body Solid Arrow Nuclear Inclusion Population Doubling Level Granular Endoplasmic Reticulum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andrew, W., 1941, Cytological changes in senility in the trigemial ganglion, spinal cord and brain of the mouse, J. Anat. 75: 406.PubMedGoogle Scholar
  2. Andrew, W., 1955, Amitotic division in senile tissues as a probable means of self-preservation of cells, J. Gerontol 10: 1.PubMedGoogle Scholar
  3. Andrew, W., 1956, Structural alterations with aging in the nervous system, J. Chronic Diseases 3: 575.CrossRefGoogle Scholar
  4. Andrew, W., 1959, The reality of age differences in nervous tissue, J. Gerontol. 14: 259.PubMedGoogle Scholar
  5. Andrew, W., 1961, An electron microscope study on types of age change in nerve cells, with particular reference to chromophilia and to accumulation of pigment in man and laboratory animals, J. Gerontol. 16: 388.Google Scholar
  6. Andrew, W., 1962, An electron microscope study of age changes in the liver of the mouse, Am. J. Anat. 110: 1.PubMedCrossRefGoogle Scholar
  7. Andrew, W., 1964, Changes in the nucleus with advancing age of the organism, Adv. Gerontol. Res. 1: 87.Google Scholar
  8. Andrew, W., 1971, The Anatomy of Aging in Man and Animals, pp. 222 - 237, Grune and Stratton, New York.Google Scholar
  9. Andrews, P. M., and Porter, K. R., 1973, The ultrastructural morphology and possible functional significance of mesothelial microvilli, Anat. Ree. 177: 409.CrossRefGoogle Scholar
  10. Aschenbrenner, J. E., 1979, Ultrastructure of the adenohypophysis, in: Aging in Nonhuman Primates ( D. Bowden, ed.) Van Nostrand Reinhold, New York.Google Scholar
  11. Bakerman, S., 1969, Aging Life Process, Charles C. Thomas, Springfield.Google Scholar
  12. Barr-Nea, L., and Wolman, M., 1977, Lipid pigment formation in cultures of chick hepatocytes. Effects of aging and of oxidizable agents, Virchows Arch Cell. Pathol. 23: 79.Google Scholar
  13. Barrows, C. H., Jr., Roeder, L. M., and Falzone, J. A., 1962, Effect of age on the activities of enzymes and the concentration of nucleic acids in the tissues of female wild rats, J. Gerontol. 14: 144.Google Scholar
  14. Bell, E., Marek, L. F. Levinstone, D. S., Merrill, C., Sher, S., Young, I., and Eden, M., 1978, Loss of division potential in vitro: Aging or differentiation? Science 202: 1158.PubMedGoogle Scholar
  15. Bemiller, P. M., and Lee, L. H., 1976, Nucleolar changes in senescing WI-38 cells, Mech. Ageing Dev. 8: 417.CrossRefGoogle Scholar
  16. Bemiller, P. M., and Miller, J. E., 1979, Cytological changes in senescing WI-38 cells: A statistical analysis, Mech. Ageing Dev. 10: 1.PubMedCrossRefGoogle Scholar
  17. Bilder, G., and Denckla, W. D., 1977, Restoration of ability to reject xenograph and clear carbon after hypophysectomy of adult rats, Mech. Ageing Dev. 6: 153.PubMedCrossRefGoogle Scholar
  18. Bogart, B. I., 1970, The effect of aging on the rat submandibular gland: An ultrastructural, cytochemical and biochemical study, J. Morph. 130: 337.PubMedCrossRefGoogle Scholar
  19. Bondareff, W., 1957, Genesis of intracellular pigment in spinal ganglia of senile rats. An electron microscope study, J. Gerontol. 12: 364.PubMedGoogle Scholar
  20. Bondareff, W., 1959, Morphology of the aging nervous system, in: Handbook of Aging and the Individual ( J. E. Birren, ed.), pp. 136 - 173, University of Chicago Press, Chicago.Google Scholar
  21. Bowman, P. D., Meek, R. L., and Daniel, C. W., 1976, Decreased synthesis of nucleolar RNA in aging human cells in vitro, Exp. Cell Res. 101: 434.PubMedCrossRefGoogle Scholar
  22. Brizzee, K. R., and Johnson, F. A., 1970, Depth distribution of lipofuscin pigment in cerebral cortex of rat, Acta Neuropathol. 16: 205.PubMedCrossRefGoogle Scholar
  23. Brizzee, K. R., and Ordy, J. M., 1981, Cellular features, regional accumulation, and prospects of modification of age pigment in mammals, in: Age Pigments ( R. S. Sohal, ed.), pp. 101 - 154, Elsevier, New York.Google Scholar
  24. Brock, M. A., and Hay, R. J., 1971, Comparative ultrastructure of chick fibroblasts in vitro at early and late stages during their growth span, J. Ultrastruct. Res. 36: 291.PubMedCrossRefGoogle Scholar
  25. Cammermeyer, J., 1963, Cytological manifestations of aging in rabbit and chinchilla brains, J. Gerontol. 18: 41.PubMedGoogle Scholar
  26. Chaconas, E., and Finch, C. E., 1973, The effect of aging on RNA/DNA ratios in brain regions of the C57BL/6J male mouse, J. Neurochem. 21: 1469.PubMedCrossRefGoogle Scholar
  27. Collier, R., 1943, Über den Feinbau der Epiphysis von Nagetreran und die Frage seiner funktionellen Veränderungen, Z. Zelforsch. 33: 51.CrossRefGoogle Scholar
  28. Collins, V. P., and Brunk, U., 1976, Characterization of residual bodies formed in phase II cultivated human glial cells, Mech. Ageing Dev. 5: 193.PubMedCrossRefGoogle Scholar
  29. Cristofalo, V. J., and Kritchevsky, D., 1966, Respiration and glycolysis in the human diploid cell strain WI- 38, J. Cell. Comp. Physiol. 67: 125.Google Scholar
  30. Denckla, W. D., 1974, Role of pituitary and thyroid glands in the decline of minimal 02 consumption with age, J. Clin. Invest. 53: 572.PubMedCrossRefGoogle Scholar
  31. De Robertis, E., and Pellegrino de Iraldi, A., 1961, Plurivesicular secretory processes and nerve endings in the pineal gland of the rat, J. Biophys. Biochem. Cytol. 10: 361.CrossRefGoogle Scholar
  32. De Robertis, E. D., Saez, F. A., and De Robertis, M. F., 1975, Cell Biology, W. B. Saunders, Philadelphia.Google Scholar
  33. Dimitrova, Z., 1901, Recherches sur la structure de la glande pineale chez auelques mammiferes, Nevraxe 2: 259.Google Scholar
  34. Dolley, D. H., 1917, The recovery from depression in the Purkinje cell and the decline to senility of depression with the histogenesis of abnormal pigmentation, J. Comp. Neurol. 28: 465.CrossRefGoogle Scholar
  35. Everitt, A. V., and Burgess, J. A., 1976, Hypothalamus, Pituitary and Aging, Charles C. Thomas, Springfield.Google Scholar
  36. Everitt, A. V., Seedsman, N. J., and Jones, F., 1980, The effects of hypophysectomy and continuous food restriction, begun at ages 70 and 400 days, on collagen aging, proteinurea, incidence of pathology and longevity in the male rat, Mech. Age. Devi. 12: 161.CrossRefGoogle Scholar
  37. Erickson, C. A., and Trinkaus, J. P., 1976, Microvilli and blebs as sources of reserve surface membrane during cell spreading, Exp. Cell Res. 99: 375.PubMedCrossRefGoogle Scholar
  38. Fahim, M. A., and Robbins, N., 1982, Ultrastructural studies of young and old mouse neuromuscular junctions, J. Neurocytol. 11: 641.PubMedCrossRefGoogle Scholar
  39. Feldman, M. L., and Peters, A., 1972, Intracellular rods and sheets in rat cochlear nucleus, Neurocytol. 1: 109.CrossRefGoogle Scholar
  40. Field, E. J., and Peat, A., 1971, Intranuclear inclusions in neurons and glia: a study in the aging mouse, Gerontologia 17: 129.PubMedCrossRefGoogle Scholar
  41. Garg, B. D., Kourounakis, P., and Tuchweber, B., 1979, Fine structural changes in the liver of young and old rats as influenced by microsomal enzyme inducers, Gerontology 25: 314.PubMedCrossRefGoogle Scholar
  42. Gatenby, J. B., and Moussa, T. A., 1950, The sympathetic ganglion cell, with Sudan black and the Zernicke microscope, J. R. Microsc. Soc. 70: 342.CrossRefGoogle Scholar
  43. Goldstein, S., and Trieman, G., 1974, Glucose consumption by early and late passage human fibroblasts during growth and stationary phase, Experientia 31: 177.CrossRefGoogle Scholar
  44. Greski, E. W., Brennan, M., and Azmitia, E., 1982, Age-related changes in EGF and protease in submandibular glands of C57BL/6J mice, Exp. Aging Res. 8: 87.CrossRefGoogle Scholar
  45. Hasan, M., and Glees, P., 1973, Ultrastructural age changes in hippocampal neurons, synapses and neuroglia, Exp. Gerontol. 8: 75.PubMedCrossRefGoogle Scholar
  46. Hayflick, L., 1977, The cellular basis for biological aging, in: Handbook of the Biology of Aging ( C. E. Finch and L. Hayflick, eds.), pp. 159–186, Van Nostrand Reinhold, New York.Google Scholar
  47. Herbener, G. H., 1976, A morphometric study of age-dependent changes in mitochondrial populations in mouse liver and heart, J. Gerontol. 31: 8.PubMedGoogle Scholar
  48. Herrlinger, H., Anzil, A. P., and Blinzinger, K., 1974, Intramitochondrial crystalloid inclusions in neuronal processes of human cerebral cortex, J. Neurocytol. 3: 719.PubMedCrossRefGoogle Scholar
  49. Hodge, C. F., 1894, Changes in ganglion cells from birth to senile death. Observations on man and honey bee, Physiol. 17: 129.Google Scholar
  50. Hyden, H., 1967, RNA in brain cells, in: The Neurosciences, A Study Program ( G. C. Quarton, T. Melnechuk, and F. O. Schmitt, eds.), pp. 248–266, The Rockefeller Press, New York.Google Scholar
  51. Johnson, J. E., Jr., 1979, Fine structure of IMR-90 cells in culture as examined by scanning and transmission electron microscopy, Mech. Ageing Dev. 10: 405.PubMedCrossRefGoogle Scholar
  52. Johnson, J. E., Jr., 1980a, Fine structural studies in the aging neuroendrocrine axis: Observations on the pituitary and adrenal, Soc. Neuroscience Abstr. 280.Google Scholar
  53. Johnson, J. E., Jr., 1980b, Fine structural alterations in the aging rat pineal gland, Exp. Aging Res. 6: 189.PubMedCrossRefGoogle Scholar
  54. Johnson, J. E., Jr., 1980c, Fine structural effects of hypophysectomy on the aging rat pineal gland, Gerontology 26: 206.PubMedCrossRefGoogle Scholar
  55. Johnson, J. E., Jr., and Barrows, C. H., 1980, Effects of age and dietary restriction on the kidney glomeruli of mice: Observations by scanning electron microscopy, Anat. Rec. 196: 145.PubMedCrossRefGoogle Scholar
  56. Johnson, J. E., Jr., and Cutler, R. G., 1980, Effects of hypophysectomy on age-related changes in the rat kidney glomerulus: Observations by scanning and transmission electron microscopy, Mech. Age. Devel. 13: 63.CrossRefGoogle Scholar
  57. Johnson, J. E., Jr., and Miquel, J., 1974, Fine structural changes in the lateral vestibular nucleus of aging rats, Mech. Aging Dev. 3: 203.PubMedCrossRefGoogle Scholar
  58. Johnson, J. E., Jr. and Miquel, J., 1978, Comparative electron microscopic studies of various cell types in the aging mammal, Age 1: 78.CrossRefGoogle Scholar
  59. Johnson, J. E., Jr., Mehler, W. R., and Miquel, J., 1975, A fine structural study of degenerative changes in the dorsal column nuclei of aging mice. Lack of protection by vitamin E, J. Gerontol. 30: 395.PubMedGoogle Scholar
  60. Johnson, J. E., Jr., Mehler, W. R., and Oyama, J., 1976, The effects of centrifugation on the morphology of the lateral vestibular nucleus in the rat. A light and electron microscopic study, Brain Res. 106: 205.PubMedCrossRefGoogle Scholar
  61. Johnson, J. E., Jr., Miquel, J., Binnard, R., and Economos, A. C., 1978, Effects of antioxidants on the liver of aging mice, Age 1: 162.CrossRefGoogle Scholar
  62. Kadenbach, E., 1968, Transfer of proteins from microsomes into mitochondria. Biosynthesis of cytochrome C, in: Biochemical Aspects of the Biogenesis of Mitochondria ( E. C. Slater, J. J. Tager, S. Papa, and E. Quagliarello, eds.), pp. 415–429, Bari, Adriatica Editrice.Google Scholar
  63. Kelley, R. O., Vogel, K. G., Crissman, H. A., Lujan, C. J., and Skipper, B. E., 1979, Development of the aging cell surface. Reduction of gap junction-mediated metabolic cooperation with progressive sub- cultivation of human embryo fibroblasts, Exp. Cell Res. 119: 127.PubMedCrossRefGoogle Scholar
  64. Kevorkian, J., and Wessel, W., 1959, So-called “nuclear pellets” (Kernkugeln) of pinealocytes, Arch. Pathol. 68: 513.PubMedGoogle Scholar
  65. Kim, S. U., 1975, Brain hypoxia studies in mouse central nervous system cultures, I. Sequential cellular changes, Lab. Invest. 33: 658.PubMedGoogle Scholar
  66. Knox, C. A., Yates, R. D., and Chen, I., 1980, Brain aging in normotensive and hypertensive strains of rats. II. Ultrastructural changes in neurons and glia, Acta Neuropathol. 52: 7.PubMedCrossRefGoogle Scholar
  67. Kontermann, K., and Bayreuther, K., 1979, The cellular aging of rat fibroblasts in vitro is a differentiation process, Gerontology 25: 261.PubMedCrossRefGoogle Scholar
  68. Kuhlenbeck, H., 1954, Some histologic age changes in the rat’s brain and their relationship to comparable changes in the human brain, Confin. Neurol. 14: 329.PubMedCrossRefGoogle Scholar
  69. Lehniger, A. L., 1962, Water uptake and extrusion by mitochondria in relation to oxidative phosphorylation, Physiol. Rev. 42: 467.Google Scholar
  70. Leto, S., Kokkonen, G. C., and Barrows, C. H., 1976, Dietary protein, life span, and biochemical variables in female mice, J. Gerontol. 31: 144.PubMedGoogle Scholar
  71. Lipetz, J., and Cristofalo, V. J., 1972, Ultrastructural changes accompanying the aging of human diploid cells in culture, J. Ultrastr. Res. 39: 43.CrossRefGoogle Scholar
  72. London, E. D., Nespor, S., Moore, L., Mahone, P., and Rapoport, S. I., 1979, Age-dependent changes in local cerebral glucose utilization, Age 2: 131.Google Scholar
  73. Madison, L. D., Porter, B. B., Torres, A. R., and Shelton, E., 1979, Regulation of surface topography of mouse peritoneal cells, Formation of microvilli and vesiculated pits on omental mesothelial cells by serum and other proteins, J. Cell Biol. 82: 783.PubMedCrossRefGoogle Scholar
  74. Massie, H. R., Colacicco, J. R., and Williams, T. R., 1981, Loss of mitochondrial DNA with aging in the swedish C strain of Drosophila melanogaster, Age 4: 42.CrossRefGoogle Scholar
  75. McCay, C. M., Maynard, L. A., Sperling, G., and Barnes, L. L., 1939, Retarded growth, life span, ultimate body size, and age changes in the albino rat after feeding diets restricted in calories, J. Nutr. 18: 1.Google Scholar
  76. McMartin, D. N., and Schedlbauer, L. M., 1975, Incorporation of (14C)-Leucine into protein and tubulin by brain slices from young and old mice, J. Gerontol. 30: 132.PubMedGoogle Scholar
  77. Medvedev, Zh. A., 1964, The nucleic acids in development and aging, Adv. Geront. Res. 1: 181.Google Scholar
  78. Meier, C., 1974, Ultrastructural study of the diminution of lipofuscin in nervous tissue-favourable influence of meclofenoxate, Ann. Anesthesiol. Française 15: 579.Google Scholar
  79. Menzies, R. A., Mishra, R. K., and Gold, P. H., 1972, The turnover of ribosomes and soluble RNA variety of tissues of young adult and aged rats, Mech. Aging Dev. 1: 117.CrossRefGoogle Scholar
  80. Miquel, J., 1971, Aging of male Drosophila melanogaster: Histological, histochemical and ultrastructural observations, Adv. Gerontol. Res. 3: 39.PubMedGoogle Scholar
  81. Miquel, J., Oro, J., Bensch, K., and Johnson, J. E., Jr., 1977, Lipofuscin: Fine structural and biochemical studies, in: Free Radicals in Biology ( W. A. Pryor, ed.), Academic Press, New York.Google Scholar
  82. Miquel, J., Ludgren, P. R., and Johnson, J. E., Jr., 1978, Spectrophotofluorometric and electron microscopic study of lipofuscin accumulation in the testis of aging mice, J. Gerontol. 33: 5.Google Scholar
  83. Miquel, J., Johnson, J. E., Jr., and Cervos-Navarro, J., 1983, Comparison of CNS aging in humans and experimental animals, in: Brain Aging: Neuropathology and Neuropharmacology ( J. Cervos-Navarro and H. I. Sarkander, eds.), pp. 231 - 258, Raven Press, New York.Google Scholar
  84. Munnell, J. F., and Getty, R., 1968, Nuclear lobulation and amitotic division associated with increasing cell size in the aging canine myocardium, J. Gerontol. 23: 363.PubMedGoogle Scholar
  85. Nandy, K., 1968, Further studies on the effects of centrophenoxine on the lipofuscin pigment in the neurons of senile guinea pigs, J. Gerontol. 23: 83.Google Scholar
  86. Nandy, K., and Bourne, G. H., 1966, Effect of centrophenoxine on the lipofuscin pigment in the neurones of senile guinea pigs, Nature 210: 313.PubMedCrossRefGoogle Scholar
  87. Nandy, K., Baste, C., and Schneider, F. H., 1978, Further studies on the effects of centrophenoxine on lipofuscin pigment in neuroblastoma cells in culture: An electron microscope study, Exp. Gerontol. 13: 311.PubMedCrossRefGoogle Scholar
  88. Nosal, G., 1979, Neuronal involution during ageing. Ultrastructural study in the rat cerebellum, Mech. Ageing Dev. 10: 295.PubMedCrossRefGoogle Scholar
  89. Novikoff, A. B., 1967, Lysosomes in nerve cells, in: The Neuron ( H. Hyden, ed.), pp. 319–377, Elsevier, Amsterdam.Google Scholar
  90. Oder, D. L., 1954, Observations of the rat mesothelium with the electron and phase microscopes, Am. J. Anat. 95: 433.CrossRefGoogle Scholar
  91. Ogrodnik, J. P., Wulff, J. H., and Cutler, R. G., 1975, Altered protein hypothesis of mammalian aging processes. II. Discrimination ratio of methionine vs ethionine in the synthesis of ribosomal protein and RNA of C57BL/6J mouse liver, Exp. Gerontol. 10: 119.PubMedCrossRefGoogle Scholar
  92. Orgel, L., 1963, The maintenance of the accuracy of protein synthesis and its relevancy to aging, Proc. Natl. Acad. Sci. USA 49: 517.PubMedCrossRefGoogle Scholar
  93. Palay, S. L., and Palade, G. E., 1955, The fine structure of neurons, J. Biophys. Biochem. Cytol. 1: 69.PubMedCrossRefGoogle Scholar
  94. Quay, W. B., 1965, Histological structure and cytology of the pineal organ in birds and mammals, Prog. Brain Res. 10: 49.PubMedCrossRefGoogle Scholar
  95. Rees, S., and Cragg, B., 1983, Is silica involved in neuritic (senile) plaque formation? Acta Neuropathol. 59: 31.PubMedCrossRefGoogle Scholar
  96. Ringborg, U., 1966, Composition and content of RNA in neurons of rat hippocampus at different ages, Brain Res. 2: 296.PubMedCrossRefGoogle Scholar
  97. Sahgal, V., Subramani, V., Hughes, R., Shah, A., and Singh, H., 1979, On the pathogenesis of mitochondrial myopathies. An experimental study, Acta Neuropathol. 46: 177.PubMedCrossRefGoogle Scholar
  98. Samis, H. V., Erk, F. C., and Baird, M. B., 1971, Senescence in Drosophila. I. Sex differences in nucleic acid, protein and glycogen levels as a function of age, Exp. Gerontol. 6: 9.PubMedCrossRefGoogle Scholar
  99. Samorajski, T., and Ordy, J. M., 1967, The histochemistry and ultrastructure of lipid pigment in the adrenal glands of aging mice, J. Gerontol. 22: 253.PubMedGoogle Scholar
  100. Samorajski, T., and Rolsten, C., 1973, Age and regional differences in the chemical composition of brains of mice, monkeys and humans, Progr. Brain Res. 40: 253.CrossRefGoogle Scholar
  101. Samorajski, T., Frieda, R. L., and Ordy, J. M., 1971, Age differences in the ultrastructure of axons in the pyramidal tract of the mouse, J. Gerontol. 26: 542.PubMedGoogle Scholar
  102. Schmucker, D. L., Mooney, J. S., and Jones, A. L., 1978, Stereological analysis of hepatic fine structure in the Fischer-344 rat. Influence of sublobular location and age, J. Cell Biol. 78: 319.PubMedCrossRefGoogle Scholar
  103. Schneider, E. L., and Shorr, S., 1975, Alteration in cellular RNA’s during the in vitro life span of cultured human diploid fibroblasts. I. Increased mRNA, rRNA and tRNA content in late passage WI-38 cells, Cell 6: 179.PubMedCrossRefGoogle Scholar
  104. Seite, R., Mei, N., and Vuillet-Luciani, J., 1973, Effect of electrical stimulation on nuclear microfilaments and microtubules of sympathetic neurons submitted to cycloheximide, Brain Res. 50: 419.PubMedCrossRefGoogle Scholar
  105. Shamoto, M., 1968, Age differences in the ultrastructure of hepatic cells of thyroxine-treated rats, J. Gerontol. 23: 1.PubMedGoogle Scholar
  106. Shirey, T. L., and Sobel, H., 1972, Compositional and transcriptional properties of chromatins isolated from cardiac muscle of young mature and old dogs, Exp. Gerontol. 7: 15.PubMedCrossRefGoogle Scholar
  107. Sohal, R. S., and Allison, V. F., 1971, Age related changes in the fine structure of the flight muscle of the house fly, Exp. Gerontol. 6: 167.PubMedCrossRefGoogle Scholar
  108. Sosa, J. M., 1952, Aging of neurofibrils, J. Gerontol. 7: 191.PubMedGoogle Scholar
  109. Spoerri, P. E., and Glees, P., 1973, Neuronal aging in cultures: An electron microscopic study, Exp. Gerontol. 8: 259.PubMedCrossRefGoogle Scholar
  110. Spoerri, P. E., and Glees, P., 1974, The effects of dimethylaminoethyl-p-chlorophenoxyacetate on spinal ganglia neurons and satellite cells in culture. Mitochondrial changes in the aging neurons. An electron microscope study, Mech. Ageing Dev. 3: 131.PubMedCrossRefGoogle Scholar
  111. Spoerri, P. E., Glees, P., and El Ghazzawi, E., 1974, Accumulation of lipofuscin in the myocardium of senile guinea pigs: Dissolution and removal of lipofuscin following dimethylaminoethyl-p-chlorophen- oxyacetate administration. An electron microscope study, Mech. Ageing Dev. 3: 311.PubMedCrossRefGoogle Scholar
  112. Steiness, I. B., 1957, Vibratory perception in normal subjects; a biothesiometric study, Acta Med. Scand. 158: 315.PubMedCrossRefGoogle Scholar
  113. Strehler, B. L., 1964, On the histochemistry and ultrastructure of age pigment, Adv. Gerontol. Res. 1: 343.Google Scholar
  114. Strehler, B. L., 1966, Code degeneracy and the ageing process: A molecular genetic theory of aging, Proc. 7th Congr. Gerontol. Vienna, 111.Google Scholar
  115. Strehler, B. L., Hirsch, G., Gussek, D., Johnson, R., and Bick, M., 1971, The codon restriction theory of aging and development, J. Theoret. Biol. 33: 429.CrossRefGoogle Scholar
  116. Sundararaman, V., and Cummings, D. J., 1976, Morphological changes in aging cell lines of Paramecium aurelia. II. Macronuclear alterations, Mech. Ageing Dev. 5: 325.PubMedCrossRefGoogle Scholar
  117. Tandler, B., and Hoppel, C. L., 1972, Mitochondria, Academic Press, New York.Google Scholar
  118. Thompson, J. M., London, E. D., and Johnson, J. E., Jr. 1982, Ultrastructural, functional and biochemical characteristics of mouse and human neuroblastoma cell lines, Neuroscience 7: 1807.PubMedCrossRefGoogle Scholar
  119. Timiras, P. S., and Vernadakis, A., 1972, Structural, biochemical and functional aging of the nervous system, in Developmental Physiology and Aging ( P. S. Timiras, ed.), The Macmillan Co., New York.Google Scholar
  120. Vanneste, J., and vandenbosch de Aguilar, Ph., 1981, Mitochondrial alterations in the spinal ganglion neurons in ageing rats, Acta Neuropathol. 54: 83.PubMedCrossRefGoogle Scholar
  121. Vaughan, W. J., and Calvin, M., 1977, Electrophoretic analysis of brain proteins from young adult and aged mice, Gerontology 23: 110.PubMedCrossRefGoogle Scholar
  122. Vaughan, D. W., and Vincent, J. M., 1979, Ultrastructure of neurons in the auditory cortex of ageing rats: A morphometric study, Neurocytol. 8: 215.CrossRefGoogle Scholar
  123. Walton, J., 1982, The role of limited cell replicative capacity in pathological age change. A review, Mech. Age. Devel. 19: 217.CrossRefGoogle Scholar
  124. Wayner, M. J., Wulff, V. J., and Piekielniak, M., 1962, Ribonucleic acid content of tissues of rats of various ages, J. Gerontol. 17: 455.Google Scholar
  125. Weibel, E. R., 1969, Stereological principles for morphometry in electron microscope cytology, Int. Rev. Cytol. 26: 235.PubMedCrossRefGoogle Scholar
  126. Weiss, J., and Lansing, A. I., 1953, Age changes in the fine structure of anterior pituitary of the mouse, Proc. Soc. Exp. Biol. Med. 82: 460.PubMedGoogle Scholar
  127. Wilcox, H. H., 1959, Structural changes in the nervous system related to the process of aging, in The Process of Aging in the Nervous System ( J. E. Birren, H. A. Imus, and W. F. Windle, eds.), pp. 16–23, Charles C. Thomas Springfield.Google Scholar
  128. Wilson, P. D., and Franks, L. M., 1975, The effect of age on mitochondrial ultrastructure, Gerontologia 21: 81.PubMedCrossRefGoogle Scholar
  129. Wolfe, D. E., 1965, The epiphyseal cell: An electron microscopic study of its intercellular relationships and intracellular morphology in the pineal body of the albino rat, Prog. Brain Res. 10: 332.PubMedCrossRefGoogle Scholar
  130. Zs.-Nagy, V., Bertoni-Freddari, C., Zs.-Nagy, I., Pieri, C., and Giuli, C., 1977, Alterations in the numerical density of perichromatin granules in different tissues during ageing and cell differentiation, Gerontology 23: 267.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • John E. JohnsonJr.
    • 1
    • 2
  1. 1.Department of NeurologyJohns Hopkins University School of MedicineBaltimoreUSA
  2. 2.National Institute on AgingNIH, Baltimore City HospitalBaltimoreUSA

Personalised recommendations