Advertisement

Cytochrome b5 and Cytochrome b5 Reductase from a Chemical and X-Ray Diffraction Viewpoint

  • F. Scott Mathews
  • Edmund W. Czerwinski

Abstract

The endoplasmic reticulum of mammalian liver cells contains two major electron-transport enzyme systems. One of these is the NADH-linked cytochrome b 5 system which catalyzes the desaturation of fatty acids. The other is the NADPH-linked cytochrome P-450 system which catalyzes the hydroxylation of steroids, drugs, carcinogens, and other lipid-soluble substances. Although there is some interaction between these two systems (Lu et al., 1974), the following discussion will limit itself to the cytochrome b 5 system.

Keywords

Heme Group Phospholipid Vesicle Sulfite Oxidase Catalytic Fragment Heme Orientation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, R. D., Apgar, P. A., Burnett, R. M., Darling, G. D., Lequesne, M. E., Mayhew, S. G., and Ludwig, M. L., 1972, Structure of the radical form of clostridial flavodoxin: A new molecular model, Proc. Natl. Acad. Sci. USA 69:3189–3191.CrossRefGoogle Scholar
  2. Argos, P., and Mathews, F. S., 1975, The structure of ferrocytochrome b 5 at 2.8 Å resolution, J. Biol. Chem. 250:747–751.PubMedGoogle Scholar
  3. Bendzko, P., and Pfeil, W., 1983, Thermodynamic investigations of cytochrome b 5 unfolding, Biochim Biophys. Acta 742:669–676.PubMedCrossRefGoogle Scholar
  4. Bernardi, P., and Azzone, G. F., 1981, Cytochrome c as an electron shuttle between the outer and inner mitochondrial membranes, J. Biol. Chem. 256:7187–7192.PubMedGoogle Scholar
  5. Bois-Poltoratsky, R., and Ehrenberg, A., 1967, Magnetic and spectrophotometric investigations of cytochrome b 5, Eur. J. Biochem. 2:361–365.PubMedCrossRefGoogle Scholar
  6. Chou, P. Y., and Fasman, G. D., 1974, Prediction of protein conformation, Biochemistry 13:222–245.PubMedCrossRefGoogle Scholar
  7. Chou, P. Y., and Fasman, G. D., 1977, β-Turns in proteins, J. Mol. Biol. 115:135–175.PubMedCrossRefGoogle Scholar
  8. Cohen, H. J., and Fridovich, I., 1971, Hepatic sulfite oxidase; purification and properties, J. Biol. Chem. 246:359–366.PubMedGoogle Scholar
  9. Collins, D. M., Countryman, R., and Hoard, J. L., 1972, Stereochemistry of low-spin iron porphyrins. I. Bis(imidazole)-α,β,-γ,δ-tetraphenylporphinatoiron(III) chloride, J. Am. Chem. Soc. 94:2066–2072.PubMedCrossRefGoogle Scholar
  10. Crawford, J. L., Lipscomb, W. N., and Schellman, C. G., 1973, The reverse turn as a polypeptide conformation in globular proteins, Proc. Nad. Acad. Sci. USA 70:538–542.CrossRefGoogle Scholar
  11. Dailey, H. A., and Strittmatter, P., 1978, Structural and functional properties of the membrane binding segment of cytochrome b 5, J. Biol. Chem. 253:8203–8209.PubMedGoogle Scholar
  12. Dailey, H. A., and Strittmatter, P., 1979, Modification and identification of cytochrome b 5 carboxyl groups involved in protein-protein interaction with cytochrome b 5 reductase, J. Biol. Chem. 254:5388–5396.PubMedGoogle Scholar
  13. Dailey, H. A., and Strittmatter, P., 1980, Characterization of the interaction of amphipathic cytochrome b 5 with stearyl coenzyme A desaturase and NADPHxytochrome P-450 reductase, J. Biol. Chem. 255:5184–5189.PubMedGoogle Scholar
  14. Dailey, H. A., and Strittmatter, P., 1981a, The role of COOH-terminal anionic residues in binding cytochrome b 5 to phospholipid vesicles and biological membranes, J. Biol. Chem. 256:1677–1680.PubMedGoogle Scholar
  15. Dailey, H. A., and Strittmatter, P., 1981b, Orientation of the carboxyl and NH2 termini of the membrane-binding segment of cytochrome b 5 on the same side of phospholipid bilayers, J. Biol. Chem. 256:3951–3955.PubMedGoogle Scholar
  16. Diamond, R., 1966, A mathematical model-building procedure for proteins, Acta Crystallogr. 21:253–266.CrossRefGoogle Scholar
  17. Diamond, R., 1971, A real-space refinement procedure for proteins, Acta Crystallogr. A27:436–452.Google Scholar
  18. Dickerson, R. E., Takano, T., Eisenberg, D., Kallai, O. B., Samson, L., Cooper, A., and Margoliash, E., 1971, Ferricytochrome c. I. General features of the horse and bonito proteins at 2.8 Å resolution, J. Biol. Chem. 246:1511–1535.PubMedGoogle Scholar
  19. Drysdale, G. R., Spiegel, M. J., and Strittmatter, P., 1961, Flavoprotein-catalyzed direct hydrogen transfer between pyridine nucleotides, J. Biol. Chem. 236:2323–2328.PubMedGoogle Scholar
  20. Enoch, H. G., and Strittmatter, P., 1979a, Formation and properties of 1000-Å-diameter, single-bilayer phospholipid vesicles, Proc. Natl. Acad. Sci. USA 76:145–149.PubMedCrossRefGoogle Scholar
  21. Enoch, H. G., and Strittmatter, P., 1979b, Cytochrome b 5 reduction by NADPH-cytochrome P-450 reductase, J. Biol. Chem. 254:8976–8981.PubMedGoogle Scholar
  22. Enoch, H. G., Catala, A., and Strittmatter, P., 1976, Mechanism of rat liver microsomal stearyl-CoA desaturase, J. Biol. Chem. 251:5095–5103.PubMedGoogle Scholar
  23. Enoch, H. G., Fleming, P. J., and Strittmatter, P., 1977, Cytochrome b 5 and cytochrome b 5 reductase-phospholipid vesicles, J. Biol. Chem. 252:5656–5660.PubMedGoogle Scholar
  24. Enoch, H. G., Fleming, P. J., and Strittmatter, P., 1979, The binding of cytochrome b 5 to phospholipid vesicles and biological membranes, J. Biol. Chem. 254:6483–6488.PubMedGoogle Scholar
  25. Fleming, P. J., and Strittmatter, P., 1978, The nonpolar peptide segment of cytochrome b 5, J. Biol. Chem. 253:8198–8202.PubMedGoogle Scholar
  26. Fleming, P. J., Dailey, H. A., Corcoran, D., and Strittmatter, P., 1978, The primary structure of the nonpolar segment of bovine cytochrome b 5. J. Biol. Chem. 253:5369–5372.PubMedGoogle Scholar
  27. Fleming, P. J., Koppel, D. E., Lau, A. L. Y., and Strittmatter, P., 1979, Intramembrane position of the fluorescent tryptophanyl residue in membrane-bound cytochrome b 5, Biochemistry 18:5458–5464.PubMedCrossRefGoogle Scholar
  28. Guiard, B., and Lederer, F., 1979a, Amino acid sequence of the “b 5-like” heme-binding domain from chicken sulfite oxidase, Eur. J. Biochem. 100:441–453.PubMedCrossRefGoogle Scholar
  29. Guiard, B., and Lederer, F., 1979b, The “cytochrome b 5 fold”: Structure of a novel protein superfamily, J. Mol. Biol. 135:639–650.PubMedCrossRefGoogle Scholar
  30. Guiard, B., Groudinsky, O., and Lederer, F., 1974, Homology between bakers’ yeast cytochrome b 2 and liver microsomal cytochrome b 5, Proc. Natl. Acad. Sci. USA 71:2539–2543.PubMedCrossRefGoogle Scholar
  31. Holloway, P. W., and Katz, J. T., 1972, A requirement for cytochrome b 5 in microsomal stearyl coenzyme A desaturation, Biochemistry 11:3689–3696.PubMedCrossRefGoogle Scholar
  32. Huntley, T. E., and Strittmatter, P., 1972a, The effect of heme binding on the tryptophan residue and the protein conformation of cytochrome b 5, J. Biol. Chem. 247:4641–4647.PubMedGoogle Scholar
  33. Huntley, T. E., and Strittmatter, P., 1972b, The reactivity of the tyrosyl residues and cytochrome b 5, J. Biol. Chem. 247:4648–4653.PubMedGoogle Scholar
  34. Ikeda, M., Iizuka, T., Takao, H., and Hagihara, B., 1974, Studies on the heme environment of oxidized cytochrome b 5, Biochim. Biophys. Acta 336:15–24.CrossRefGoogle Scholar
  35. Ito, A., and Sato, R., 1968, Purification by means of detergents and properties of cytochrome b 5 from liver microsomes, J. Biol. Chem. 243:4922–4923.PubMedGoogle Scholar
  36. Iyanagi, T., 1977, Redox properties of microsomal reduced nicotinamide adenine dinucleotide-cytochrome b 5 reductase and cytochrome b 5, Biochemistry 16:2725–2730.PubMedCrossRefGoogle Scholar
  37. Jacobi, T. H., Ellis, R. A., and Fritsch, J. M., 1972, Molecular modeling system, Appendix in: Polypeptide conformation of cytoplasmic malate dehydrogenase from an electron density map at 3.0 Å resolution (E. Hill, D. Tsernoglou, L. Webb, and L. J. Banaszak), J. Mol. Biol. 72:577–591.CrossRefGoogle Scholar
  38. Jacq, C., and Lederer, F., 1974, Cytochrome b 2 from bakers’ yeast (L-lactate dehydrogenase), a double-headed enzyme, Eur. J. Biochem. 41:311–320.PubMedCrossRefGoogle Scholar
  39. Keller, R. M., and Wüthrich, K., 1972, The electronic g-tensor in cytochrome b 5: High resolution proton magnetic resonance studies, Biochim. Biophys. Acta 285:326–336.PubMedCrossRefGoogle Scholar
  40. Keller, R. M., and Wüthrich, K., 1980, Structural study of the heme crevice in cytochrome b 5 based on individual assignments of the’ 1H-NMR lines of the heme group and selected amino acid residues, Biochim. Biophys. Acta 621:204–217.PubMedCrossRefGoogle Scholar
  41. Keller, R. M., Groudinsky, O., and Wüthrich, K., 1973, Proton magnetic resonances in cytochrome b 2 core: Structural similarities with cytochrome b 5, Biochim. Biophys. Acta 328:233–238.PubMedCrossRefGoogle Scholar
  42. Keller, R. M., Groudinsky, O., and Wthrich, K., 1976, Contact-shifted resonances in the 1H-NMR spectra of cytochrome b 5, Biochim. Biophys. Acta 427:497–511.PubMedCrossRefGoogle Scholar
  43. Kondo, K., Tajima, S., Sato, R., and Narita, K., 1979, Primary structure of the membrane binding segment of cytochrome b 5, J. Biochem. (Tokyo) 86:1119–1128.Google Scholar
  44. Labeyrie, F., diFranco, A., Iwatsubo, M., and Baudras, A., 1967, Fluorometric and spectrophotometric study of heme binding on the apoprotein from a cytochrome b 2 derivative, Biochemistry 6:1791–1797.PubMedCrossRefGoogle Scholar
  45. LaMar, G. N., Burns, P. D., Jackson, J. T., Smith, K. M., and Srittmatter, P., 1981, Proton magnetic resonance determination of the relative heme orientations in disordered native and reconstituted fer-ricytochrome b 5, J. Biol. Chem. 256:6075–6079.Google Scholar
  46. Lederer, F., Shrir, R., Guiard, B., Cortial, S., and Ito, A., 1983, Two homologous cytochromes b 5 in a single cell, Eur. J. Biochem., 132:95–102.PubMedCrossRefGoogle Scholar
  47. Leto, T. L., and Holloway, P. W., 1979, Mechanism of cytochrome b 5 binding to phosphatidyl choline vesicles, J. Biol. Chem. 254:5015–5019.PubMedGoogle Scholar
  48. Leto, T. L., Roseman, M. A., and Holloway, P. W., 1980, Mechanism of exchange of cytochrome b 5 between phosphatidyl choline vesicles, Biochemistry 19:1911–1916.PubMedCrossRefGoogle Scholar
  49. Lewis, P. N., Momany, F. A., and Scheraga, H. A., 1973, Chain reversals in proteins, Biochim. Biophys. Acta 303:211–229.PubMedCrossRefGoogle Scholar
  50. Liljas, A., and Rossmann, M. G., 1974, X-ray studies of protein interactions, Annu. Rev. Biochem. 43:475–507.CrossRefGoogle Scholar
  51. Loverde, A., and Strittmatter, P., 1968, The role of lysyl residues in the structure and reactivity of cytochrome b 5 reductase, J. Biol. Chem. 243:5779–5787.PubMedGoogle Scholar
  52. Lu, A. Y. H., West, S. B., Vore, M., Ryan, D., and Levin, W., 1974, Role of cytochrome b 5 in hydroxylation by a reconstituted cytochrome P-450-containing system, J. Biol. Chem. 249:6701–6709.PubMedGoogle Scholar
  53. Mathews, F. S., 1980, The orientation of the heme group of cytochrome b5, Biochim. Biophys. Acta 622:375–379.PubMedCrossRefGoogle Scholar
  54. Mathews, F. S., and Strittmatter, P., 1969, Crystallographic study of calf liver cytochrome b 5, J. Mol. Biol. 41:295–297.PubMedCrossRefGoogle Scholar
  55. Mathews, F. S., Levine, M., and Argos, P., 1971a, The structure of calf liver cytochrome b 5 at 2.8 Å resolution, Nature New Biol. (London) 233:15–16.CrossRefGoogle Scholar
  56. Mathews, F. S., Argos, P., and Levine, M., 1971b, The structure of cytochrome b 5 at 2.0 Å resolution, Cold Spring Harbor Symp. Quant. Biol. 36:387–395.CrossRefGoogle Scholar
  57. Mathews, F. S., Levine, M., and Argos, P., 1972, Three-dimensional Fourier synthesis of calf liver cytochrome b 5 at 2.8 Å resolution, J. Mol. Biol. 64:449–464.PubMedCrossRefGoogle Scholar
  58. Mathews, F. S., Czerwinski, E. W., and Argos, P., 1979, The x-ray crystallographic structure of calf liver cytochrome b 5, in: The Porphyrins, Vol VII (D. Dolphin, ed.), Academic Press, New York, pp. 107–147.CrossRefGoogle Scholar
  59. Matthew, J. B., Weber, P. C., Salemme, F. R., and Richards, F. M., 1983, Electrostatic orientation during electron transfer between flavodoxin and cytochrome c, Nature 301:169–171.PubMedCrossRefGoogle Scholar
  60. Mauk, M. R., Reid, L. S., and Mauk, G. A., 1982, Spectrophotometric analysis of the interaction between cytochrome b 5 and cytochrome c, Biochemistry 21:1843–1846.PubMedCrossRefGoogle Scholar
  61. Ng, S., Smith, M. B., Smith, H. T., and Millett, F., 1977, Effect of modification of individual cytochrome c lysines on the reaction with cytochrome b 5, Biochemistry 16:4975–4978.PubMedCrossRefGoogle Scholar
  62. Nobrega, F. G., and Ozols, J., 1971, Amino acid sequences of tryptic peptides of cytochrome b 5 from microsomes of human, monkey, porcine, and chicken liver, J. Biol. Chem. 246:1706–1717.PubMedGoogle Scholar
  63. Oshino, N., Imai, Y., and Sato, R., 1971, A function of cytochrome b 5 in fatty acid desaturation by rat liver microsomes, J. Biochem. (Tokyo) 69:155–167.Google Scholar
  64. Ozols, J., 1974, Cytochrome b 5 from microsomal membranes of equine, bovine, and porcine livers. Isolation and properties of preparations containing the membranous segment, Biochemistry 13:426–434.PubMedCrossRefGoogle Scholar
  65. Ozols, J., 1979, Proteolytic cleavage and automatic sequence analysis of cytochrome b 5 bound to lipid vesicles, Fed. Proc. 38:472.Google Scholar
  66. Ozols, J., and Gerard, C., 1977a, Covalent structure of the membranous segment of horse cytochrome b 5, J. Biol. Chem. 252:8549–8553.PubMedGoogle Scholar
  67. Ozols, J., and Gerard, C., 1977b, Primary structure of the membranous segment of cytochrome b 5, Proc. Natl. Acad. Sci. USA 74:3725–3729.PubMedCrossRefGoogle Scholar
  68. Ozols, J., and Heinemann, F. S., 1982, Chemical structure of rat liver cytochrome b5: Isolation of peptides by high-pressure liquid chromatography, Biochim. Biophys. Acta 704:163–173.PubMedCrossRefGoogle Scholar
  69. Ozols, J., and Strittmatter, P., 1964, The interaction of porphyrins and metalloporphyrins with apocytochrome b 5, J. Biol. Chem. 239:1018–1023.PubMedGoogle Scholar
  70. Ozols, J., and Strittmatter, P., 1966, The reactivity of the lysyl residues of cytochrome b 5, J. Biol. Chem. 241:4793–4797.PubMedGoogle Scholar
  71. Ozols, J., and Strittmatter, P., 1969, Correction of the amino acid sequence of calf liver microsomal cytochrome b 5, J. Biol. Chem. 244:6617–6618.PubMedGoogle Scholar
  72. Ozols, J., Gerard, C., and Nobrega, F. S., 1976, Proteolytic cleavage of horse liver cytochrome b 5: Primary structure of the heme-containing moiety, J. Biol. Chem. 251:6767–6774.PubMedGoogle Scholar
  73. Poulos, T. C., and Kraut, J., 1980, A hypothetical model of the cytochrome c peroxidase-cytochrome c electron transfer complex, J. Biol. Chem. 255:10322–10330.PubMedGoogle Scholar
  74. Raw, I., and Mahler, H. R., 1959, Studies of electron transport enzymes. III. Cytochrome b 5 of pig liver mitochondria, J. Biol. Chem. 234:1867–1873.PubMedGoogle Scholar
  75. Richardson, J. S., Getzoff, E. D., and Richardson, D. C., 1978, The β-bulge: A common small unit of nonrepetitive protein structure, Proc. Natl. Acad. Sci. USA 75:2574–2578.PubMedCrossRefGoogle Scholar
  76. Robinson, N. C., and Tanford, C., 1975, The binding of deoxycholate, Triton X-100, sodium dodecyl sulfate, and phosphatidylcholine vesicles to cytochrome b 5, Biochemistry 14:369–378.PubMedCrossRefGoogle Scholar
  77. Rogers, M. J., and Strittmatter, P., 1974a, Evidence for random distribution and translational movement of cytochrome b 5 in endoplasmic reticulum, J. Biol. Chem. 249:895–900.PubMedGoogle Scholar
  78. Rogers, M. J., and Strittmatter, P., 1974b, The binding of reduced nicotinamide adenine dinucleotidecytochrome b 5 reductase to hepatic microsomes, J. Biol. Chem. 249:5565–5569.PubMedGoogle Scholar
  79. Rogers, M. J., and Strittmatter, P., 1975, The interaction of NADH-cytochrome b 5 reductase and cytochrome b 5 bound to egg lecithin liposomes, J. Biol. Chem. 250:5713–5718.PubMedGoogle Scholar
  80. Rossmann, M. G., Moras, D., and Olson, K. W., 1974, Chemical and biological evolution of a nucleotidebinding protein, Nature 250:194–199.PubMedCrossRefGoogle Scholar
  81. Salemme, F. R., 1976, An hypothetical structure for an intermolecular electron transfer complex of cytochromes c and b 5, J. Mol. Biol. 102:563–568.PubMedCrossRefGoogle Scholar
  82. Shrake, A., and Rupley, J. A., 1973, Environment and exposure to solvent of protein atoms. Lysozyme and insulin, J. Mol. Biol. 79:351–371.PubMedCrossRefGoogle Scholar
  83. Spatz, L., and Strittmatter, P., 1971, A form of cytochrome b 5 that contains an additional hydrophobic sequence of 40 amino acid residues, Proc. Natl. Acad. Sci. USA 68:1042–1046.PubMedCrossRefGoogle Scholar
  84. Spatz, L., and Strittmatter, P., 1973, A form of reduced nicotinamide adenine dinucleotide-cytochrome b 5 reductase containing both the catalytic site and an additional hydrophobic membrane-binding segment, J. Biol. Chem. 248:793–799.PubMedGoogle Scholar
  85. Stonehuerner, J., Williams, J. B., and Mitlett, F., 1979, Interaction between cytochrome c and cytochrome b 5, Biochemistry 18:5422–5427.PubMedCrossRefGoogle Scholar
  86. Strittmatter, P., 1958, The interaction of nucleotides with microsomal cytochrome reductase, J. Biol. Chem. 233:748–753.PubMedGoogle Scholar
  87. Strittmatter, P., 1959a, The reactive sulfhydryl groups of microsomal cytochrome reductase, J. Biol. Chem. 234:2661–2664.PubMedGoogle Scholar
  88. Strittmatter, P., 1959b, The properties of nucleotide complexes with microsomal cytochrome reductase, J. Biol. Chem. 234:2665–2669.PubMedGoogle Scholar
  89. Strittmatter, P., 1960, The nature of the heme binding in microsomal cytochrome b 5, J. Biol. Chem. 235:2492–2497.PubMedGoogle Scholar
  90. Strittmatter, P., 1961a, The nature of the flavin binding in microsomal cytochrome b 5 reductase, J. Biol. Chem. 236:2329–2335.Google Scholar
  91. Strittmatter, P., 1961b, The binding of pyridine nucleotides to cytochrome b 5 aporeductase, J. Biol. Chem. 236:2336–2341.Google Scholar
  92. Strittmatter, P., 1962, Direct hydrogen transfer from reduced pyridine nucleotides to microsomal cytochrome b 5 reductase, J. Biol. Chem. 237:3250–3254.PubMedGoogle Scholar
  93. Strittmatter, P., 1963, The interaction of reduced pyridinealdehyde adenine dinucleotide with cytochrome b 5 reductase, J. Biol. Chem. 238:2213–2219.PubMedGoogle Scholar
  94. Strittmatter, P., 1964, Reversible direct hydrogen transfer from reduced pyridine nucleotides to cytochrome b 5 reductase, J. Biol. Chem. 239:3043–3050.PubMedGoogle Scholar
  95. Strittmatter, P., 1965, The reaction sequence in electron transfer in the reduced nicotinamide adenine dinucleotide-cytochrome b 5 reductase system, J. Biol. Chem. 240:4481–4487.PubMedGoogle Scholar
  96. Strittmatter, P., 1967, The direction and characterization of several conformational states of cytochrome b 5 aporeductase during reversible denaturation, J. Biol. Chem. 242:4630–4636.PubMedGoogle Scholar
  97. Strittmatter, P., 1971, The characterization and interconversions of two conformational states of cytochrome b 5 reductase, J. Biol. Chem. 246:1017–1024.PubMedGoogle Scholar
  98. Strittmatter, P., and Enoch, H. G., 1978, Purification of stearyl-CoA desaturase from liver, Meth. Enzymol. 52:188–193.PubMedCrossRefGoogle Scholar
  99. Strittmatter, P., and Rogers, M. J., 1975, Apparent dependence of interactions between cytochrome b 5 and cytochrome b 5 reductase upon translational diffusion in dimyristoyl lecithin liposomes, Proc. Natl. Acad. Sci. USA 72:2658–2661.PubMedCrossRefGoogle Scholar
  100. Strittmatter, P., and Velick, S. F., 1956, The isolation and properties of microsomal cytochrome, J. Biol. Chem. 221:253–264.PubMedGoogle Scholar
  101. Strittmatter, P., and Velick, S. F., 1957, The purification and properties of microsomal cytochrome reductase, J. Biol. Chem. 228:785–799.PubMedGoogle Scholar
  102. Strittmatter, P., Barry, R. E., and Corcoran, D., 1972a, Tryptic conversion of cytochrome b 5 reductase to an active derivative containing two peptide chains, J. Biol. Chem. 247:2768–2775.PubMedGoogle Scholar
  103. Strittmatter, P., Rogers, M. J., and Spatz, L., 1972b, The binding of cytochrome b 5 to liver microsomes, J. Biol. Chem. 247:7188–7194.PubMedGoogle Scholar
  104. Strittmatter, P., Spatz, L., Corcoran, D., Rogers, M. J., Setlow, B, and Redline, R., 1974, Purification and properties of rat liver microsomal stearyl coenzyme A desaturase, Proc. Natl. Acad. Sci. USA 71:4565–4569.PubMedCrossRefGoogle Scholar
  105. Strittmatter, P., Fleming, P., Connors, M., and Corcoran, D., 1978, Purification of cytochrome b 5, Meth. Enzymol. 52:97–101.PubMedCrossRefGoogle Scholar
  106. Sullivan, M. R., and Holloway, P. W., 1973, The binding of cytochrome b 5 to phosphatidylcholine vesicles, Biochem. Biophys. Res. Commun. 54:808–815.PubMedCrossRefGoogle Scholar
  107. Tajima, S., and Sato, R., 1980, Topological studies of the membrane-binding segment of cytochrome b 5 embedded in phosphatidyl vesicles, J. Biochem. (Tokyo) 87:123–134.Google Scholar
  108. Takagaki, Y., Gerber, G. E., Nihei, K., and Khorana, H. G., 1980, Amino acid sequence of the membranous segment of rabbit liver cytochrome b 5, J. Biol. Chem. 255:1536–1541.PubMedGoogle Scholar
  109. Takano, T., and Dickerson, R. E., 1980, Redox conformation changes in refined tuna cytochrome c, Proc. Natl. Acad. Sci. USA 77:6371–6375.PubMedCrossRefGoogle Scholar
  110. Takesue, S., and Omura, T., 1970, Solubilization of NADH-cytochrome b 5 reductase from liver microsomes by lysosomal digestion, J. Biochem. (Tokyo) 67:259–266.Google Scholar
  111. Tanford, C., 1980, The Hydrophobic Effect, John Wiley and Sons, New York, pp. 205–211.Google Scholar
  112. Tsugita, A., Kobayashi, M., Tani, S., Kyo, S., Rashid, M. A., Yoshida, Y., Kajihara, T., and Hagihara, B., 1970, Comparative study of the primary structures of cytochrome b 5 from four species, Proc. Natl. Acad. Sci. USA 67:442–447.PubMedCrossRefGoogle Scholar
  113. Velick, S. F., and Strittmatter, P., 1956, The oxidation-reduction stoichiometry and potential of microsomal cytochrome, J. Biol. Chem. 221:265–275.PubMedGoogle Scholar
  114. Watenpaugh, K. D., Sieker, L. C., Jensen, L. H., Legall, J., and Dubourdieu, M., 1972, Structure of the oxidized form of a flavodoxin at 2.5 Å resolution: Resolution of the phase ambiguity by anomalous scattering, Proc. Natl. Acad. Sci. USA 69:3185–3188.PubMedCrossRefGoogle Scholar
  115. Weber, H., Weis, W., and Staudinger, H., 1971, Bestimmung des standard Redox-Potentials (pH 7.0) von Cytochrom b 5(Fe2+ )/Cytochrom b 5(Fe3+ ) in mikrosomalen Membranen verschiedener Zustände, Hoppe-Seyler’s Z. Physiol. Chem. 352:109–110.PubMedCrossRefGoogle Scholar
  116. Wyckoff, H. W., Doscher, M., Tsemoglou, D., Inagami, T., Johnson, L. N., Hardman, K. D., Allewell, N. M., Kelly, D. M., and Richards, F. M., 1967, Design of a diffractometer and flow cell system for X-ray analysis of crystalline proteins with applications to the crystal chemistry of ribonuclease-S, J. Mol. Biol. 27:563–578.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1985

Authors and Affiliations

  • F. Scott Mathews
    • 1
  • Edmund W. Czerwinski
    • 2
  1. 1.Departments of Physiology and Biophysics and Biological ChemistryWashington University School of MedicineSt. LouisUSA
  2. 2.Division of Biochemistry, Department of Human Biological Chemistry and GeneticsThe University of Texas Medical BranchGalvestonUSA

Personalised recommendations