The Proton-Translocating Membrane ATPase (F1F0) in Streptococcus faecalis (faecium)

  • Adolph Abrams


It is generally believed that a proton-translocating ATPase, referred to as the F1F0 ATPase, is present universally in bacterial cell membranes. It is also apparent that, at the level of quaternary structure, the bacterial enzyme is essentially identical to the F1F0 ATPase localized in membranes of mitochondria, photosynthesizing organelles, and certain secretory vesicles within eukaryotic cells. Theoretically, all F1F0 ATPases are considered to be reversible, but physiologically the enzyme may operate mainly or only in one direction. In mitochondria or respiring bacteria, for example, the enzyme mediates oxidative phosphorylation energized by a transmembrane electrochemical potential of H+ ions, the proton-motive force (PMF), generated by a respiratory chain. On the other hand, in an organism like S. faecalis (faecium), which lacks a respiratory chain, or in secretory vesicles, the F1F0 ATPase functions only as a hydrolase and ATP hydrolysis is coupled to the generation of a PMF. The PMF is then harnessed to drive active transport. Finally, in a facultative organism like E. coli, the enzyme may function either as an ATP synthetase or hydrolase depending on whether the organism derives its energy from respiration or from anaerobic glycolysis as dictated by environmental circumstances.


Adenosine Triphosphatase Bacterial Cell Membrane Osmotic Stabilizer Streptococcus Faecalis Chemiosmotic Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abrams, A., 1958, O-Acetyl groups in the cell wall of Streptococcus faecalis, J. Biol. Chem. 230:949–959.PubMedGoogle Scholar
  2. Abrams, A., 1959, Reversible metabolic swelling of bacterial protoplasts, J. Biol. Chem. 234:383–388.PubMedGoogle Scholar
  3. Abrams, A., 1960, Metabolically dependent penetration of oligosaccharides into bacterial cells and protoplasts, J. Biol. Chem. 235:1281–1285.PubMedGoogle Scholar
  4. Abrams, A., 1962, Discussion. State of the intracellular amino acids, in: Amino Acid Pools; Distribution, Formation and Function of Free Amino Acids (J. Holden, ed.), Elsevier, Amsterdam, pp. 762–777.Google Scholar
  5. Abrams, A., 1965, The release of bound adenosine triphosphatase from isolated bacterial membranes and the properties of the solubilized enzyme, J. Biol. Chem. 240:3675.PubMedGoogle Scholar
  6. Abrams, A., 1976, Structure and function of membrane-bound ATPase in bacteria, in: The Enzymes of Biological Membranes, Vol. 3 (A. Martonosi, ed.), Plenum, New York, pp. 57–73.CrossRefGoogle Scholar
  7. Abrams, A., and Baron, C., 1967, The isolation and subunit structure of streptococcal membrane adenosine triphosphatase, Biochemistry 6:225–229.PubMedCrossRefGoogle Scholar
  8. Abrams, A., and Baron, C., 1968a, Purification and characterization of protoplast membrane ATPase, in: Microbial Protoplasts, Spheroplasts and L-forms (L. B. Guze, ed.), Williams and Wilkins Co., Baltimore, pp. 163–173.Google Scholar
  9. Abrams, A., and Baron, C., 1968b, Reversible attachment of adenosine triphosphatase to streptococcal membranes and the effect of magnesium ions, Biochemistry 7:501–507.PubMedCrossRefGoogle Scholar
  10. Abrams, A., and Baron, C., 1970, Inhibitory action of carbodiimides on bacterial membrane ATPase, Biochem. Biophys. Res. Commun. 41:858.PubMedCrossRefGoogle Scholar
  11. Abrams, A., and Leimgruber, R. M., 1982, The N,N’-dicyclohexylcarbodiimide-sensitive ATPase in Streptococcus faecalis membranes, in: Membranes and Transport, Vol. 1 (A. N. Martonosi, ed.), Plenum, New York, pp. 465–471.CrossRefGoogle Scholar
  12. Abrams, A., and McNamara, P., 1962, Polynucleotide phosphorylase in isolated bacterial cell membrane, J. Biol. Chem. 237:170.PubMedGoogle Scholar
  13. Abrams, A., and Nolan, E. A., 1972, Cellular incorporation of 32P-orthophosphate into the membrane ATPase of Streptococcus faecalis, Biochem. Biophys. Res. Commun. 48:982–989.PubMedCrossRefGoogle Scholar
  14. Abrams, A., and Smith, J. B., 1971, Increased membrane ATPase and K+ transport rates in Streptococcus faecalis induced by K+ restriction during growth, Biochem. Biophys. Res. Commun. 44:1488–1495.PubMedCrossRefGoogle Scholar
  15. Abrams, A., and Smith, J. B., 1974, Bacterial membrane ATPase, in: The Enzymes, Vol. X (P. Boyer, ed.), Academic Press, New York, pp. 395–429.Google Scholar
  16. Abrams, A., McNamara, P., and Johnson, F. B., 1960, Adenosine triphosphatase in isolated bacterial cell membranes, J. Biol. Chem. 235:3659–3662.Google Scholar
  17. Abrams, A., Smith, J. B., and Baron, C., 1972, Carbodiimide-resistant membrane adenosine triphosphatase in mutants of Streptococcus faecalis. Studies of the mechanism of resistance, J. Biol. Chem. 247:1484–1488.PubMedGoogle Scholar
  18. Abrams, A., Nolan, E. A., Jensen, C., and Smith, J. B., 1973, Tightly bound adenine nucleotide in bacterial membrane ATPase, Biochem. Biophys. Res. Commun. 55:22–29.PubMedCrossRefGoogle Scholar
  19. Abrams, A., Baron, C., and Schnebli, H., 1974, The isolation of bacterial membrane ATPase and nectin, in: Methods in Enzymology, Vol. 32, Part b (S. Fleischer and L. Packer, eds.), Academic Press, New York, pp. 428–439.Google Scholar
  20. Abrams, A., Jensen, C., and Morris, D., 1975, Studies of supramolecular structure and tightly bound nucleotide in bacterial membrane ATPase, J. Supramol. Struct. 3:261–274.PubMedCrossRefGoogle Scholar
  21. Abrams, A., Jensen, C., and Morris, D., 1976a, Role of Mg2+ ions in the subunit structure and membrane binding properties of bacterial energy transducing ATPase, Biochem. Biophys. Res. Commun. 69:804–811.PubMedCrossRefGoogle Scholar
  22. Abrams, A., Morris, D., and Jensen, C., 1976b, Chymotryptic conversion of bacterial membrane ATPase to an active form with modified α chains and defective membrane binding properties, Biochemistry 15:5560–5566.PubMedCrossRefGoogle Scholar
  23. Apps, D., and Schatz, G., 1979, An adenosine triphosphatase isolated from chromaffin-granule membranes is closely similar to F1-adenosine triphosphatase of mitochondria, Eur. J. Biochem. 100:411–419.PubMedCrossRefGoogle Scholar
  24. Ashgar, S. S., Levin, E., and Harold, F. M., 1973, Accumulation of neutral amino acids by Streptococcus faecalis. J. Biol. Chem. 248:5225–5233.Google Scholar
  25. Bakker, E. P., and Harold, F. M., 1980, Energy coupling to potassium transport in Streptococcus faecalis, J. Biol. Chem. 255:433–440.PubMedGoogle Scholar
  26. Baron, C., and Abrams, A., 1971, Isolation of a bacterial membrane protein, nectin, essential for the attachment of adenosine triphosphatase, J. Biol. Chem. 246:1542.PubMedGoogle Scholar
  27. Beechey, R. B., Holloway, C. T., Knight, I. G., and Roberten, A. M., 1966, Dicyclohexylcarbodiimide— an inhibitor of oxidative phosphorylation, Biochem. Biophys. Res. Commun. 23:75.PubMedCrossRefGoogle Scholar
  28. Clarke, D. J., Fuller, F. M., and Morris, J. G., 1979, The proton-translocating adenosine triphosphatase of the obligately anaerobic bacterium Clostridium pasteurianum, Eur. J. Biochem. 98:597–612.PubMedCrossRefGoogle Scholar
  29. Downie, J. A., Gibson, F., and Cox, G. B., 1979, Membrane adenosine triphosphatases of prokaryotic cells, Annu. Rev. Biochem. 48:103–131.PubMedCrossRefGoogle Scholar
  30. Dunn, S. D., and Heppel, L. A., 1981, Properties and functions of the subunits of the Escherichia coli coupling factor ATPase, Arch. Biochem. 210:421–436.PubMedCrossRefGoogle Scholar
  31. Dunn, S. D., Heppel, L. A., and Fullmer, C. S., 1980, The NH2-terminal portion of the subunit of Escherichia coli F1 ATPase is required for binding the subunit, J. Biol. Chem. 255:6891–6896.PubMedGoogle Scholar
  32. Fillingame, R. H., 1981, Biochemistry and genetics of bacterial H+-translocating ATPases, Curr. Top. Bioenerg. 11:35–106.Google Scholar
  33. Foster, D. L., and Fillingame, R. H., 1979, Energy transducing H+-ATPase of Escherichia coli, J. Biol. Chem. 254:8230–8236.PubMedGoogle Scholar
  34. Futai, M., and Kanazawa, H., 1980, Role of subunits in proton translocating ATPase (F0F1), Curr. Top. Bioenerg. 19:181–215.Google Scholar
  35. Ganfield, M. W., and Pieringer, R. A., 1975, Phosphatidylkojibiosyl diglyceride, J. Biol. Chem. 250:702–709.PubMedGoogle Scholar
  36. Harold, F. M., 1977, Membranes and energy transduction in bacteria, Curr. Top. Bioenerg. 7:83–149.Google Scholar
  37. Harold, F. M., and Baarda, J. R., 1968, Inhibition of membrane transport in Streptococcus faecalis by uncouplers of oxidative phosphorylation and its relationship to proton conduction, J. Bacteriol. 96:2025–2034.PubMedGoogle Scholar
  38. Harold, F. M., Baarda, J. R., Baron, C., and Abrams, A., 1969, Inhibition of membrane-bound adenosine triphosphatase and of cation transport in Streptococcus faecalis by N,N’-dicychyclohexylcarbodiimide, J. Biol. Chem. 244:2261.PubMedGoogle Scholar
  39. Heefher, D. L., 1982, Transport of H+, K+, Na+ and Ca++ in Streptococcus, Mol. Cell. Biochem. 44:81–106.Google Scholar
  40. Heefher, D. L., and Harold, F. M., 1982, ATP-driven sodium pump in Streptococcus faecalis, Proc. Natl. Acad. Sci. USA 79:2798–2802.CrossRefGoogle Scholar
  41. Hoppe, J., Schairer, H. U., and Sebald, W., 1980, The proteolipid of a mutant ATPase from Escherichia coli defective in H+-conduction contains a glycine instead of the carbodiimide reactive aspartyl residue, FEBS Lett. 109:107–111.PubMedCrossRefGoogle Scholar
  42. Kobayashi, H., 1982, Second system for potassium transport in Streptococcus faecalis, J. Bacteriol. 150:506–511.PubMedGoogle Scholar
  43. Kobayashi, H., Murakami, N., and Unemoto, T., 1982, Regulation of the cytoplasmic pH in Streptococcus faecalis, J. Biol. Chem. 257:13246–13252.PubMedGoogle Scholar
  44. Laimins, L. A., Rhoads, D. B., and Epstein, W., 1981, Osmotic control of Kdp operon expression in Escherichia coli, Proc. Natl. Acad. Sci. USA 78:464–468.PubMedCrossRefGoogle Scholar
  45. Leimgruber, R. M., Jensen, C., and Abrams, A., 1978, Accessibility of the α-chains in membrane-bound and solubilized bacterial ATPase to chymotryptic cleavage, Biochem. Biophys. Res. Commun. 81:439–447.PubMedCrossRefGoogle Scholar
  46. Leimgruber, R. M., Jensen, C., and Abrams, A., 1981, Purification and characterization of the membrane adenosine triphosphatase complex from the wild-type and N,N’-dicyclohexylcarbodiimide-resistant strains of Streptococcus faecalis, J. Bacteriol. 147:363–372.PubMedGoogle Scholar
  47. Ludwig, B., Prochaska, L., and Capaldi, R. A., 1980, Arrangement of oligomycin-sensitive adenosine triphosphatase in the mitochondrial membrane, Biochemistry 15:5560–5566.Google Scholar
  48. Maeda, M., Kobayashi, H., Futai, M., and Anraku, Y., 1977, Studies on the turnovers in vivo of adenosine di-and triphosphates in a coupling factor of Escherichia coli, J. Biochem. 82:311–314.PubMedGoogle Scholar
  49. Maroney, J. V., and McCarty, R. E., 1982, Effect of proteolytic digestion on the Ca++-ATPase activity and subunits of latent and thiol-activated chloroplast coupling factor 1, J. Biol. Chem. 257:5910–5914.Google Scholar
  50. Mitchell, P., 1966, Chemiosmotic coupling in oxidative and photosynthetic phosphorylation, Biol. Rev. Cambridge Phil. Soc. 41:445–502.CrossRefGoogle Scholar
  51. Penefsky, H. S., 1974, Mitochondrial and chloroplast ATPases, in: The Enzymes, Vol. X (P. Boyer, ed.), Academic Press, New York, pp. 375–394.Google Scholar
  52. Rayle, D. L., and Cleland, R., 1977, Control of plant cell enlargement by hydrogen ions, Curr. Top. Dev. Biol. 11:187–214.PubMedCrossRefGoogle Scholar
  53. Rhoads, D. B., and Epstein, W., 1977, Energy coupling to net K+ transport in Escherichia coli K-12, J. Biol. Chem. 252:1394–1401.PubMedGoogle Scholar
  54. Ritchey, T. W., and Seeley, H. W., 1974, Cytochromes in Streptococcus var zymogens grown in a haematincontaining medium, J. Gen. Microbiol. 85:220–228.PubMedGoogle Scholar
  55. Ritchey, T. W., and Seeley, H. W., 1976, Distribution of cytochrome-like respiration in Streptococci, J. Gen. Microbiol. 93:195–203.PubMedGoogle Scholar
  56. Ritz-Gold, C. J., Gold, C. M., and Brodie, A. F., 1979, Tryptic proteolysis of coupling factor-latent ATPase from Mycobacterium phlei, Biochim. Biophys. Acta 547:1–17.PubMedCrossRefGoogle Scholar
  57. Schnebli, H., and Abrams, A., 1970, Membrane adenosine triphosphatase from Streptococcus faecalis. Preparation and homogeneity, J. Biol. Chem. 245:1115.PubMedGoogle Scholar
  58. Schnebli, H., Vatter, A. E., and Abrams, A., 1970, Membrane adenosine triphosphatase from Streptococcus faecalis. Molecular weight subunit structure and amino acid composition, J. Biol. Chem. 245:1122.PubMedGoogle Scholar
  59. Sebald, W., Graf, T., and Luckins, H. B., 1979, The dicyclohexylcarbodiimide-binding protein of the mitochondrial ATPase complex from Neurospora crassa and Saccharomyces cerevisiae, Eur. J. Biochem. 93:587–599.PubMedCrossRefGoogle Scholar
  60. Simoni, R. D., and Postma, P. W., 1975, The energetics of bacterial active transport, Annu. Rev. Biochem. 44:523–554.PubMedCrossRefGoogle Scholar
  61. Zarlengo, M. H., and Abrams, A., 1963, Selective penetration of ammonia and alkylamines into Streptococcus faecalis and their effect on glycolysis, Biochim. Biophys. Acta 71:65–77.PubMedCrossRefGoogle Scholar
  62. Zlotnick, G. W., and Abrams, A., 1978, Cellular incorporation of tightly bound non-exchangeable nucleotide into DCCD inhibited bacterial membrane ATPase, Fed. Proc. 37:1519.Google Scholar

Copyright information

© Springer Science+Business Media New York 1985

Authors and Affiliations

  • Adolph Abrams
    • 1
  1. 1.Department of Biochemistry, Biophysics, and GeneticsUniversity of Colorado Health Sciences CenterDenverUSA

Personalised recommendations