H+-ATPase as an Energy-Converting Enzyme

  • Toshiro Hamamoto
  • Yasuo Kagawa


The main energy sources of living organisms are oxidative and photosynthetic phosphorylation. In both reactions, the energy is finally transduced to the chemical bond energy of ATP by H+-ATPase (EC A part of H+-ATPase was first demonstrated in mitochondria as coupling factor 1 which hydrolyzed ATP and recovered the oxidative phosphorylation of submitochondrial particles depleted of their coupling factor 1 (Penefsky et al., 1960). The role of H+-ATPase has been understood in the light of the chemiosmotic theory; an electrochemical potential difference across the membrane is formed by respiration or photoreduction and H+-ATPase synthesizes ATP from ADP and Pi consuming the energy of H+ flow (Mitchell, 1979; Ferguson and Sorgato, 1982).


Catalytic Site Coupling Factor Thermophilic Bacterium Adenosine Triphosphatase Beef Heart 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abrams, A., Nolan, E. A., Jensen, C., and Smith J. C., 1973, Tightly bound adenine nucleotide in bacterial membrane ATPase, Biochem. Biophys. Res. Commun. 55:22–29.PubMedCrossRefGoogle Scholar
  2. Alfonzo, M., and Racker, E., 1979, Components and mechanism of action of ATP-driven proton pumps, Can. J. Biochem. 57:1351–1358.PubMedCrossRefGoogle Scholar
  3. Amzel, L. M., and Pedersen, P. L., 1978, Adenosine triphophatase from rat liver mitochondria: Crystallization and X-ray diffraction studies of the F1component of the enzyme, J. Biol. Chem. 253:2067–2069.PubMedGoogle Scholar
  4. Amzel, L. M., McKinney, M., Narayanan, P., and Pedersen, P. L., 1982, Structure of the mitochondrial F1 ATPase at 9-Å resolution, Proc. Natl. Acad. Sci. USA 79:5852–5856.PubMedCrossRefGoogle Scholar
  5. Andreu, J. M., and Muñoz, E., 1979, Molecular properties of random coil and refolded forms of alpha and beta subunits of an energy transducing ATPase from bacterial membrane, Biochemistry 18:1836–1844.PubMedCrossRefGoogle Scholar
  6. Bashford, C. L., and Smith, J. C., 1979, The use of optical probes to monitor membrane potential, in: Methods in Enzymology, Vol. 55 (S. Fleischer, and L. Packer, eds.), Academic Press, New York, pp. 569–586.Google Scholar
  7. Bengis-Garber, C., and Gromet-Elhanan, Z., 1979, Purification of the energy-transducing adenosine triphosphatase complex from Rhodospirillum rubrum, Biochemistry 18:3577–3581.PubMedCrossRefGoogle Scholar
  8. Boguslavksy, L. I., 1980, Interface between two immiscible liquids as a tool for studying membrane enzyme systems, Curr. Top. Membr. Trans. 14:1–55.CrossRefGoogle Scholar
  9. Boguslavsky, L. I., Kondrashin, A. A., Kozlov, I. A., Metelsky, S. T., Skulachev, V. P., and Volkov, A. G., 1975, Charge transfer between water and octane phases by soluble mitochondrial ATPase (F1), bacteriorhodopsin and respiratory chain enzymes, FEBS Lett. 50:223–226.PubMedCrossRefGoogle Scholar
  10. Boyer, P. D., Chance, B., Ernster, L., Mitchell, P., Racker, E., and Slater, E. C., 1977, Oxidative phosphorylation and photophosphorylation, Annu. Rev. Biochem. 46:955–1026.PubMedCrossRefGoogle Scholar
  11. Brand, M. D., and Lehninger, A. L., 1977, H+/ATP ratio during ATP hydrolysis by mitochondria: Modification of the chemiosmotic theory, Proc. Natl. Acad. Sci. USA 74:1955–1959.PubMedCrossRefGoogle Scholar
  12. Butlin, J. D., Cox, G. B., and Gibson, F., 1971, Oxidative phosphorylation in Escherichia coli K12: Mutations affecting magnesium ion-or calcium ion-stimulated adenosine triphosphatase, Biochem. J. 124:75–81.PubMedGoogle Scholar
  13. Carlier, M. F., and Hammes, G. G., 1979, Interaction of nucleotides with chloroplast coupling factor 1, Biochemistry 18:3446–3457.PubMedCrossRefGoogle Scholar
  14. Chernyak, B. V., Chernyak, V. Ya., Gladysheva, T. B., and Kozlov, I. A., 1981, Structural rearrangements in soluble mitochondrial ATPase, Biochim. Biophys. Acta 635:552–570.PubMedCrossRefGoogle Scholar
  15. Clarke, D. J., and Morris, J. G., 1979, The proton-translocating adenosine triphosphatase of the obligately anaerobic bacterium Clostridium pasteurianum: 2. ATP synthetase activity, Eur. J. Biochem. 98:613–620.PubMedCrossRefGoogle Scholar
  16. Cross, R. L., 1981, The mechanism and regulation of ATP synthesis by F1-ATPases, Annu. Rev. Biochem. 50:681–714.PubMedCrossRefGoogle Scholar
  17. Cross, R. L., Grubmeyer, C., and Penefsky, H. S., 1982, Mechanism of ATP hydrolysis by beef heart mitochondrial ATPase: Rate enhancements resulting from cooperative interactions between multiple catalytic sites, J. Biol. Chem. 257:12101–12105.PubMedGoogle Scholar
  18. de Meis, L., and Vianna, A. L., 1979, Energy interconversion by the Ca2+-dependent ATPase of the sarcoplasmic reticulum, Annu. Rev. Biochem. 48:275–292.PubMedCrossRefGoogle Scholar
  19. Downie, J. A., Gibson, F., and Cox, G. B., 1979, Membrane adenosine triphosphatases of procaryotic cells, Annu. Rev. Biochem. 48:103–131.PubMedCrossRefGoogle Scholar
  20. Dunker, A. K., and Marvin, D. A., 1978, A model for membrane transport through alpha helical protein pores, J. Theoret. Biol. 72:9–16.CrossRefGoogle Scholar
  21. Ebel, R. E., and Lardy, H. A., 1975, Influence of aurovertin of mitochondrial ATPase activity, J. Biol. Chem. 250:4992–4995.PubMedGoogle Scholar
  22. Enns, R. K., and Criddle, R. S., 1977, Affinity labeling of yeast mitochondrial adenosine triphosphatase by reduction wtih (3H)borohydride, Arch. Biochem. Biophys. 182:587–600.PubMedCrossRefGoogle Scholar
  23. Esch, F. S., and Allison, W. S., 1979, On the subunit stoichiometry of the F1ATPase and the sites in it that react specifically with p-fluorosulfonylbenzoyl-5′-adenosine, J. Biol. Chem. 254:10740–10746.PubMedGoogle Scholar
  24. Eytan, G. D., 1982, Use of liposomes for reconstitution of biological functions, Biochim. Biophys. Acta 694:185–202.PubMedCrossRefGoogle Scholar
  25. Feldman, R. I., and Sigman, D. S., 1982, The synthesis of enzyme-bound ATP by soluble chloroplast coupling factor 1, J. Biol. Chem. 257:1676–1683.PubMedGoogle Scholar
  26. Ferguson, S. J., and Sorgato, M. C., 1982, Proton electrochemical gradients and energy-transduction processes, Annu. Rev. Biochem. 51:185–217.PubMedCrossRefGoogle Scholar
  27. Ferguson, S. J., Lloyd, W. T., and Radda, G. K., 1975, The mitochondrial ATPase: Selective modification of nitrogen residue in the beta subunit, Eur. J. Biochem. 54:127–133.PubMedCrossRefGoogle Scholar
  28. Fillingame, R. H., 1980, The proton-translocating pumps of oxidative phosphorylation, Annu. Rev. Biochem. 49:1079–1113.PubMedCrossRefGoogle Scholar
  29. Fillingame, R. H., 1981, Biochemistry and genetics of bacterial H+-translocating ATPase, Curr. Top. Bioenerg. 11:34–106.Google Scholar
  30. Foster, D. L., and Fillingame, R. H., 1979, Energy-transducing H+-ATPase of Escherichia coli: Purification, reconstitution, and subunit composition, J. Biol. Chem. 254:8230–8236.PubMedGoogle Scholar
  31. Foster, D. L., and Fillingame, R. H., 1982, Stoichiometry of subunits in the H+-ATPase complex of Escherichia coli, J. Biol. Chem. 257:2009–2015.PubMedGoogle Scholar
  32. Foster, D. L., Mosher, M. E., Futai, M., and Fillingame, R. H., 1980, Subunits of the H+-ATPase of Escherichia coli: Overproduction of an eight-subunit F1F0-ATPase following induction of a lambda-transducing phage carrying the unc operon, J. Biol. Chem. 255:12037–12041.PubMedGoogle Scholar
  33. Friedl, P., Friedl, C., and Schairer, H. U., 1979, The ATP synthetase of Escherichia coli K12: Purification of the enzyme and reconstitution of energy-transducing activities, Eur. J. Biochem. 100: 175–180.PubMedCrossRefGoogle Scholar
  34. Furuno, T., Ikegami, A., Kihara, H., Yoshida, M., and Kagawa, Y., 1983, Small-angle X-ray scattering study of adenosine triphosphatase from thermophilic bacterium PS3, J. Mol. Biol. 170:137–153.PubMedCrossRefGoogle Scholar
  35. Futai, M., 1977, Reconstitution of ATPase activity from isolated alpha, beta, and gamma subunits of the coupling factor, F1, of Escherichia coli, Biochem. Biophys. Res. Commun. 79:1231–1237.PubMedCrossRefGoogle Scholar
  36. Futai, M., and Kanazawa, H., 1980, Role of subunits in proton translocating ATPase (F0-F1), Curr. Top. Bioenerg. 10:181–215.Google Scholar
  37. Garrett, N. E., and Penefsky, H. S., 1975, Interaction of adenine nucleotides with multiple binding sites on beef heart mitochondrial adenosine triphosphatase, J. Biol. Chem. 250:6640–6647.PubMedGoogle Scholar
  38. Goffeau, A., and Slayman, C. W., 1981, The proton-translocating ATPase of the fungal plasma membrane, Biochim. Biophys. Acta 639:197–223.PubMedCrossRefGoogle Scholar
  39. Gould, J. M., 1978, Dithiol-specific reversal of triphenyltin inhibition of CFo catalyzed transmembrane proton transfer in chloroplasts, FEBS Lett. 94:90–94.CrossRefGoogle Scholar
  40. Gräber, P., Schlodder, E., and Witt, H. T., 1977, Conformational change of the chloroplast ATPase induced by a transmembrane electric field and its correlation to phosphorylation, Biochim. Biophys. Acta 461:426–440.PubMedCrossRefGoogle Scholar
  41. Gräber, P., Rögner, M., Buchwald, H. E., Samoray, K., and Hauska, G., 1982, Field-driven ATP synthesis by the chloroplast coupling factor complex reconstituted into liposomes, FEBS Lett. 145:35–40.CrossRefGoogle Scholar
  42. Gresser, M. J., Myers, J. A., and Boyer, P. D., 1982, Catalytic site cooperativity of beef heart mitochondrial F1 adenosine triphosphatase: Correlations of initial velocity, bound intermediate, and oxygen exchange measurements with an alternating three-site model, J. Biol. Chem. 257:12030–12038.PubMedGoogle Scholar
  43. Grinius, L., Slusnyte, R., and Griniuviene, B., 1975, ATP synthesis driven by protonmotive force imposed across Escherichia coli cell membrane, FEBS Lett. 57:290–293.PubMedCrossRefGoogle Scholar
  44. Grubmeyer, C., Cross, R. L., and Penefsky, H. S., 1982, Mechanisms of ATP hydrolysis by beef heart mitochondrial ATPase: Rate constants for elementary steps in catalysis at a single site, J. Biol. Chem. 257:12092–12100.PubMedGoogle Scholar
  45. Hamamoto, T., Ohno, K., and Kagawa, Y., 1982, Net adenosine triphosphate synthesis driven by an external electric field in rat liver mitochondria, J. Biochem. 91:1759–1766.PubMedGoogle Scholar
  46. Hammes, G. G., 1982, Unifying concept for the coupling between ion pumping and ATP hydrolysis or synthesis, Proc. Natl. Acad. Sci. USA 79:6881–6884.PubMedCrossRefGoogle Scholar
  47. Harris, D. A., and Slater, E. C., 1975, Tightly bound nucleotides of the energy transducing ATPase of chloroplasts and their role in photophosphorylation, Biochim. Biophys. Acta 387:335–348.PubMedCrossRefGoogle Scholar
  48. Hashimoto, T., Negawa, Y., and Tagawa, K., 1981a, Properties of binding sites for adenine nucleotides on ATPase from yeast mitochondria, J. Biochem. 90:1141–1150.PubMedGoogle Scholar
  49. Hashimoto, T., Negawa, Y., and Tagawa, K., 1981b, Binding of intrinsic ATPase inhibitor to mitochondrial ATPase: Stoichiometry of binding of nucleotides, inhibitor, and enzyme, J. Biochem. 90:1151–1157.PubMedGoogle Scholar
  50. Höckle, M., Hulla, F. W., Risi, S., and Dose, K., 1978, Kinetic studies on bacterial plasma membrane ATPase(F1): Nucleotide-induced long term inactivation of ATP hydrolyzing activity is linked to the formation of multiple “tight” enzyme nucleotide complexes, J. Biol. Chem. 253:4292–4296.Google Scholar
  51. Hokin, L. E., 1981, Reconstitution of “carriers” in artificial membranes, J. Membr. Biol. 60:77–93.PubMedCrossRefGoogle Scholar
  52. Jagendorf, A. T., and Uribe, E., 1966, ATP formation caused by acid-base transition of spinach chloroplasts, Proc. Natl. Acad. Sci. USA 55:170–177.PubMedCrossRefGoogle Scholar
  53. Johnson, R. G., Beers, M. F., and Scarpa, A., 1982, H+-ATPase of chromaffin granules: Kinetics, regulation, and stoichiometry, J. Biol. Chem. 257:10701–10707.PubMedGoogle Scholar
  54. Jorgensen, P. L., 1982, Mechanism of the Na+,K+ pump: Protein structure and conformations of the pure (Na+ + K+)-ATPase. Biochim. Biophys. Acta 694:27–68.PubMedCrossRefGoogle Scholar
  55. Joshi, S., Hughes, J. B., Shaikh, F., and Sanadi, D. R., 1979, On the role of coupling factor B in the mitochondrial Pi-ATP exchange reaction, J. Biol. Chem. 254:10145–10152.PubMedGoogle Scholar
  56. Kagawa, Y., 1978, Reconstitution of the energy transformer, gate and channel: Subunit reassembly, crystalline ATPase and ATP synthesis, Biochim. Biophys. Acta 505:45–93.PubMedCrossRefGoogle Scholar
  57. Kagawa, Y., 1984, A new model of proton motive ATP synthesis: Acid-base cluster hypothesis, J. Biochem. 95:295–298.PubMedGoogle Scholar
  58. Kagawa, Y., and Racker, E., 1966, Partial resolution of the enzymes catalyzing oxidative phosphorylation: X. Correction of morphology and function in submitochondrial particles, J. Biol. Chem. 241:2475–2482.PubMedGoogle Scholar
  59. Kagawa, Y., and Racker, E., 1971, Partial resolution of the enzymes catalyzing oxidative phosphorylation: XXV. Reconstitution of vesicles catalyzing 32Pi-adenosine triphosphate exchange, J. Biol. Chem. 246:5477–5487.Google Scholar
  60. Kagawa, Y., Sone, N., Yoshida, M., Hirata, H., and Okamoto, H., 1976, Proton translocating ATPase of a thermophilic bacterium: Morphology, subunits and chemical composition, J. Biochem. 80:141–151.PubMedGoogle Scholar
  61. Kagawa, Y., Ohta, S., Yoshida, M., and Sone, N., 1980, Functions of subunits of H+-ATPase, Ann. N.Y. Acad. Sci. 358:103–117.PubMedCrossRefGoogle Scholar
  62. Kagawa, Y., Sone, N., Futai, T., Ohta, S., and Wakabayashi, T., 1981, Energy transduction in H+-ATPase, in: International Cell Biology 1980–1981 (H. G. Schweiger, ed.), Springer-Verlag, Berlin, pp. 719–727.CrossRefGoogle Scholar
  63. Kagawa, Y., Ide, C., Hamamoto, T., Rogner, M., and Sone, N., 1982, Reconstitution of stable proteoliposomes capable of energy transduction, Cell Surface Rev. 8:137–159.Google Scholar
  64. Kanazawa, H., and Futai, M., 1982, Structure and function of H+-ATPase: What we have learned from Escherichia coli H+-ATPase, Ann. N.Y. Acad. Sci., 402:45–64.PubMedCrossRefGoogle Scholar
  65. Kanazawa, H., Miki, T., Tamura, F., Yura, T., and Futai, M., 1979, Specialized transducing phage λ carrying the genes for coupling factor of oxidative phosphorylation of Escherichia coli: Increased synthesis of coupling factor on induction of prophage λasn, Proc. Natl. Acad. Sci. USA 76:1126–1130.PubMedCrossRefGoogle Scholar
  66. Kanazawa, H., Mabuchi, K., Kayano, K., Tamura, T., and Futai, M., 1981, Nucleotide sequence of genes coding for dicyclohexylcarbodiimide-binding protein and the alpha subunit of proton-translocating ATPase of Escherichia coli, Biochem. Biophys. Res. Commun. 100:219–225.PubMedCrossRefGoogle Scholar
  67. Kayalar, C., Rosing, J., and Boyer, P. D., 1977, An alternating site sequence for oxidative phophorylation suggested by measurement of substrate binding patterns and exchange reaction inhibition, J. Biol. Chem. 252:2486–2491.PubMedGoogle Scholar
  68. Knowles, A. F., and Penefsky, H. S., 1972, The subunit structure of beef heart mitochondrial adenosine triphosphatase: Physical and chemical properties of isolated subunits, J. Biol. Chem. 247:6624–6630.PubMedGoogle Scholar
  69. Kohlbrenner, W. E., and Cross, R. L., 1978, Efrapeptin prevents modification by phenylglyoxal of an essential arginyl residue in mitochondrial adenosine triphosphatase, J. Biol. Chem. 253:7609–7611.PubMedGoogle Scholar
  70. Konishi, T., Packer, L., and Criddle, R., 1979, Purification of a proteolipid ionophore from yeast mitochondrial ATP synthetase, in: Methods in Enzymology, Vol. 55 (S. Fleischer, and L. Packer, eds.), Academic Press, New York, pp. 414–421.Google Scholar
  71. Lambeth, D. O., and Lardy, H. A., 1971, Purification and properties of rat-liver-mitochondrial adenosine triphosphatase, Eur. J. Biochem. 22:355–363.PubMedCrossRefGoogle Scholar
  72. Lang, D. R., and Racker, E., 1974, Effects of quercetin and F1 inhibitor on mitochondrial ATPase and energy linked reactions in submitochondrial particles, Biochim. Biophys. Acta 333:180–186.PubMedCrossRefGoogle Scholar
  73. Leimgruber, R. M., and Senior, A. E., 1976, Removal of “tightly bound” nucleotides from soluble mitochondrial adenosine triphosphatase (F1), J. Biol. Chem. 251:7103–7109.PubMedGoogle Scholar
  74. Linnett, P. E., and Beechey, R. B., 1979, Inhibitors of the ATP synthetase system, in: Methods in Enzymology, Vol. 55 (S. Fleischer, and L. Packer, eds.), Academic Press, New York, pp. 472–518.Google Scholar
  75. Linnett, P. E., Mitchell, A. D., Osselton, M. D., Mulheim, L. J., and Beechey, R. B., 1978, Citreoviridin, a specific inhibitor of the mitochondrial adenosine triphosphatase, Biochem. J. 170:503–510.PubMedGoogle Scholar
  76. Maeda, M., Kobayashi, H., Futai, M., and Anraku, Y., 1976, Non-covalently bound adenine nucleotides in adenosine triphosphatase of Escherichia coli, Biochem. Biophys. Res. Commun. 70:228–234.PubMedCrossRefGoogle Scholar
  77. Magnusson, R. P., and McCarty, R. E., 1976, Light-induced exchange of nucleotides into coupling factor 1 in spinach chloroplast thylakoids, J. Biol. Chem. 251:7417–7422.PubMedGoogle Scholar
  78. Maloney, P. C., and Wilson, T. H., 1975, ATP synthesis driven by a proton motive force in Streptococcus lactis, J. Membr. Biol. 25:285–310.PubMedCrossRefGoogle Scholar
  79. McCarty, R. E., 1979, Roles of a coupling factor for photophosphorylation in chloroplasts, Annu. Rev. Plant Physiol. 30:79–104.CrossRefGoogle Scholar
  80. McCarty, R. E., Guillory, R. J., and Racker, E., 1965, Dio-9, an inhibitor of coupled electron transport and phosphorylation in chloroplasts, J. Biol. Chem. 240:4822–4823.PubMedGoogle Scholar
  81. Mitchell, P., 1979, Keilin’s respiratory chain concept and its chemiosmotic consequences, Science 206:1148–1159.PubMedCrossRefGoogle Scholar
  82. Moroney, J. V., and McCarty, R. E., 1979, Reversible uncoupling of photophosphorylation by a new bifunctional maleimide, J. Biol. Chem. 254:8951–8955.PubMedGoogle Scholar
  83. Nagle, J. F., and Mille, M., 1981, Molecular models of proton pumps, J. Chem. Phys. 74:1367–1372.CrossRefGoogle Scholar
  84. Negrin, R. S., Foster, D. L., and Fillingame, R. H., 1980, Energy transducing H+-ATPase of Escherichia coli: Reconstitution of proton translocation activity of the intrinsic membrane sector, J. Biol. Chem. 255:5643–5648.PubMedGoogle Scholar
  85. Nelson, N., 1981, Proton-ATPase of chloroplasts, Curr. Top. Bioenerg. 11:1–33.Google Scholar
  86. Ohta, S., Tsuboi, M., Ohshima, T. Yoshida, M., and Kagawa, Y., 1980a, Nucleotide binding to isolated alpha and beta subunits of proton translocating adenosine triphosphatase studied with circular dichroism, J. Biochem. 87:1609–1617.PubMedGoogle Scholar
  87. Ohta, S., Tsuboi, M., Yoshida, M., and Kagawa, Y., 1980b, Intersubunit interactions in proton-translocating adenosine triphosphatase as revealed by hydrogen-exchange kinetics, Biochemistry 19:2160–2165.PubMedCrossRefGoogle Scholar
  88. Okamoto, H., Sone, N., Hirata, H., Yoshida, M., and Kagawa, Y., 1977, Purified proton conductor in proton translocating adenosine triphosphatase of a thermophilic bacterium, J. Biol. Chem. 252:6125–6131.PubMedGoogle Scholar
  89. Oren, R., Weiss, S., Garty, H., Caplan, S. R., and Gromet-Elhanan, Z., 1980, ATP synthesis catalyzed by the ATPase complex from Rhodospirillum rubrum into phospholipid vesicles together with bacteriorhodopsin, Arch. Biochem. Biophys. 205:503–509.PubMedCrossRefGoogle Scholar
  90. Penefsky, H. S., 1979a, Mitochondrial ATPase, Adv. Enzymol. 49:224–280.Google Scholar
  91. Penefsky, H. S., 1979b, Preparation of beef heart mitochondrial ATPase, in: Methods in Enzymology, Vol. 55 (S. Fleischer, and L. Packer, eds.), Academic Press, New York, pp. 304–308.Google Scholar
  92. Penefsky, H. S., Pullman, M. E., Datta, A., and Racker, E., 1960, Partial resolution of the enzymes catalyzing oxidative phosphorylation: I. Purification and properties of soluble, dinitrophenol-stimulated adenosine triphosphatase, J. Biol. Chem. 235:3322–3329.PubMedGoogle Scholar
  93. Pick, U., and Racker, E., 1979, Purification and reconstitution of the N,N’-dicyclohexylcarbodiimidesensitive ATPase complex from spinach chloroplasts, J. Biol. Chem. 254:2793–2799.PubMedGoogle Scholar
  94. Pougeois, R., Satre, M., and Vignais, P. V., 1979, Reactivity of mitochondrial F1ATPase to dicyclohexylcarbodiimide: Inactivation and binding studies, Biochemistry 18:1408–1413.PubMedCrossRefGoogle Scholar
  95. Racker, E., and Stoeckenius, W., 1974, Reconstitution of purple membrane vesicles catalyzing light driven proton uptake and adenosine triphosphate formation, J. Biol. Chem. 249:662–663.PubMedGoogle Scholar
  96. Racker, E., Violand, B., O’Neal, S., Alfonzo, M., and Telford, J., 1979, Reconstitution, a way of biochemical research; Some new approaches to membrane-bound enzymes, Arch. Biochem. Biophys. 198:470–477.PubMedCrossRefGoogle Scholar
  97. Reid, R. A., Moyle, J., and Mitchell, P., 1966, Synthesis of adenosine triphosphate by a protonmotive force in rat liver mitochondria, Nature 212:257–258.PubMedCrossRefGoogle Scholar
  98. Rögner, M., Ohno, K., Hamamoto, T., Sone, N., and Kagawa, Y., 1979, Net ATP synthesis in H+-ATPase macroliposomes by an external electric field, Biochem. Biophys. Res. Commun. 91:362–367.PubMedCrossRefGoogle Scholar
  99. Rottenberg, H., 1979, The measurement of membrane potential and pH in cells, organelles, and vesicles, in: Methods in Enzymology, Vol. 55 (S. Fleischer, and L. Packer, eds.), Academic Press, New York, pp. 547–569.Google Scholar
  100. Ryrie, I. J., Critchley, C., and Tillberg, J. E., 1979, Structure and energy-linked activities in reconstituted bacteriorhodopsin-yeast ATPase proteoliposomes, Arch. Biochem. Biophys. 198:182–194.PubMedCrossRefGoogle Scholar
  101. Sachs, G., Koels, H. R., Berglindh, T., Rabon, E., and Saccomani, G., 1982, Aspects of gastric protontransport ATPase, in: Membranes and Transport, Vol. 1 (A.N. Martonosi, ed.), Plenum Publishing, New York, pp. 633–643.CrossRefGoogle Scholar
  102. Saishu, T., Kagawa, Y., and Shimizu, R., 1983, Resistance of thermophilic ATPase (TF1) to specific F1-ATPase inhibitors including local anesthetics, Biochem. Biophys. Res. Commun. 112:822–826.PubMedCrossRefGoogle Scholar
  103. Schindler, H., and Nelson, N., 1982, Proteolipid of adenosinetriphosphatase from yeast mitochondria forms proton-selective channels in planar lipid bilayers, Biochemistry 21:5787–5794.PubMedCrossRefGoogle Scholar
  104. Schlodder, E., and Witt, H. T., 1981, Relation between the initial kinetics of ATP synthesis and of conformational changes in the chloroplast ATPase studied by external field pulses, Biochim. Biophys. Acta 635:571–584.PubMedCrossRefGoogle Scholar
  105. Schlodder, E., Rögner, M., and Witt, H. T., 1982, ATP synthesis in chloroplasts induced by a transmembrane electric potential difference as a function of the proton concentration, FEBS Lett. 138:13–17.CrossRefGoogle Scholar
  106. Schneider, E., and Altendorf, K., 1982, ATP synthetase(F0F1) of Escherichia coli K-12: High-yield preparation of functional Fo by hydrophobic affinity chromatography, Eur. J. Biochem. 126:149–153.PubMedCrossRefGoogle Scholar
  107. Sebald, W., and Hoppe, J., 1981, On the structure and genetics of the proteolipid subunit of the ATP synthase complex, Curr. Top. Bioenerg. 12:1–64.Google Scholar
  108. Sebald, W., Graf, T., and Lukins, H. B., 1979, The dicyclohexyl carmodiimide-binding protein of the mitochondrial ATPase complex from Neurospora crassa and Saccharomyces cerevisiae: Identification and isolation, Eur. J. Biochem. 93:587–599.PubMedCrossRefGoogle Scholar
  109. Senior, A. E., 1979, The mitochondrial ATPase, in: Membrane Proteins in Energy Transduction (R. A. Capaldi, ed.), Marcel Dekker, New York, pp. 233–277.Google Scholar
  110. Senter, P., Eckstein, F., and Kagawa, Y., 1983, The metal ATP chelate structure and stereochemical course of reaction for TF1 ATPase, Biochemistry 22:5514–5518.CrossRefGoogle Scholar
  111. Serrano, R., Kanner, B. I., and Racker, E., 1976, Purification and properties of the proton-translocating adenosine triphosphatase complex of bovine heart mitochondria, J. Biol. Chem. 251:2453–2461.PubMedGoogle Scholar
  112. Shavit, N., 1980, Energy transduction in chloroplasts: Structure and function of the ATPase complex, Annu. Rev. Biochem. 49:111–138.PubMedCrossRefGoogle Scholar
  113. Sigrist-Nelson, K., and Azzi, A., 1980, The proteolipid subunit of the chloroplast adenosine triphosphatase complex: Reconstitution and demonstration of proton-conductive properties, J. Biol. Chem. 255:10638–10643.PubMedGoogle Scholar
  114. Sone, N., Yoshida, M., Hirata, H., and Kagawa, Y., 1975, Purification and properties of dicyclohexyl-carbodiimide-sensitive adenosine triphosphatase from a thermophilic bacterium, J. Biol. Chem. 250:7917–7923.PubMedGoogle Scholar
  115. Sone, N., Yoshida, M., Hirata, H., and Kagawa, Y., 1977a, Adenosine triphosphate synthesis by electrochemical proton gradient in vesicles reconstituted from purified adenosine triphosphatase and phospholipids of thermophilic bacterium, J. Biol. Chem. 252:2956–2960.PubMedGoogle Scholar
  116. Sone, N., Takeuchi, Y., Yoshida, M., and Ohno, K., 1977b, Formation of electrochemical proton gradient and adenosine triphosphate in proteoliposomes containing purified adenosine triphosphatase and bacteriorhodopsin, J. Biochem. 82:1751–1758.PubMedGoogle Scholar
  117. Sone, N., Yoshida, M., Hirata, H., and Kagawa, Y., 1977c, Reconstitution of vesicles capable of energy transformation from phospholipids and adenosine triphosphatase of a thermophilic bacterium, J. Biochem. 81:519–528.PubMedGoogle Scholar
  118. Sone, N., Yoshida, M., Hirata, H., and Kagawa, Y., 1978, Resolution of the membrane moiety of the H+-ATPase complex into two kinds of subunits, Proc. Natl. Acad. Sci. USA 75:4219–4223.PubMedCrossRefGoogle Scholar
  119. Sone, N., Ikeba, K., and Kagawa, Y., 1979a, Inhibition of proton conduction by chemical modification of the membrane moiety of proton translocation, FEBS Lett. 97:61–64.PubMedCrossRefGoogle Scholar
  120. Sone, N., Yoshida, M., Hirata, H., and Kagawa, Y., 1979b, Carbodiimide-binding protein of H+-translocating ATPase and inhibition of H+ conduction by dicyclohexylcarbodiimide, J. Biochem. 85:503–509.PubMedGoogle Scholar
  121. Sone, N., Hamamoto, T., and Kagawa, Y., 1981, pH dependence of H+ conduction through the membrane moiety of the H+-ATPase (F0F1 and effects of tyrosyl residue modification, J. Biol. Chem. 256:2873–2877.PubMedGoogle Scholar
  122. Soper, J. W., Decker, G. L., and Pedersen, P. L., 1979, Mitochondrial ATPase complex: A dispersed, cytochrome-deficient, oligomycin-sensitive preparation from rat liver containing molecules with a tripartite structural arrangement, J. Biol. Chem. 254:11170–11176.PubMedGoogle Scholar
  123. Spitsberg, V., and Haworth, R., 1977, The crystallization of beef heart mitochondrial adenosine triphosphatase, Biochim. Biophys. Acta 492:237–240.PubMedCrossRefGoogle Scholar
  124. Susa, J. B., and Lardy, H. A., 1975, Antibiotics as tools for metabolic studies: XVIII. Inhibitor of sodium and potassium dependent adenosine triphosphatase, Mol. Pharmacol. 11:166–173.PubMedGoogle Scholar
  125. Takeda, K., Hirano, M., Kanazawa, H., Nukiwa, N., Kagawa, Y., and Futai, M., 1982, Hybrid ATPase’s formed from subunits of coupling factor F1s of Escherichia coli and thermophilic bacterium PS3, J. Biochem. 91:695–701.PubMedGoogle Scholar
  126. Tanford, C., 1982, Mechanism of active transport: Free energy dissipation and free energy transduction, Proc. Natl. Acad. Sci. USA 79:6527–6531.PubMedCrossRefGoogle Scholar
  127. Teissie, J., Knox, B. E., Tsong, T. Y., and Wehrle, J., 1981, Synthesis of adenosine triphosphate in respiration-inhibited submitochondrial particles induced by microsecond electric pulses. Proc. Natl. Acad. Sci. USA 78:7473–7477.PubMedCrossRefGoogle Scholar
  128. Thayer, W. S., and Hinkle, P. C., 1975, Synthesis of adenosine triphosphate by an artificially imposed electrochemical proton gradient in bovine heart submitochondrial particles, J. Biol. Chem. 250:5330–5335.PubMedGoogle Scholar
  129. Todd, R. D., Griesenbeck, T. A., and Douglas, M. G., 1980, The yeast mitochondrial adenosine triphosphatase complex: Subunit stoichiometry and physical characterization, J. Biol. Chem. 255:5461–5467.PubMedGoogle Scholar
  130. Tsuchiya, T., and Rosen, B. P., 1976, Adenosine 5′-triphosphate synthesis energized by an artificially imposed membrane potential in membrane vesicles of Escherichia coli, J. Bacteriol. 127:154–161.PubMedGoogle Scholar
  131. Vinkler, C., and Korenstein, R., 1982, Characterization of external electric field-driven ATP synthesis in chloroplasts, Proc. Natl. Acad. Sci. USA 79:3183–3187.PubMedCrossRefGoogle Scholar
  132. Vinkler, C., Korenstein, R., and Farkas, D. L., 1982, External electric field driven ATP synthesis in chloroplasts: A slow, ATP synthase-dependent reaction, FEBS Lett. 145:235–240.CrossRefGoogle Scholar
  133. Wakabayashi, T., Kubota, M., Yoshida, M., and Kagawa, Y., 1977, Structure of ATPase (coupling factor TF1) from a thermophilic bacterium, J. Mol. Biol. 117:515–519.PubMedCrossRefGoogle Scholar
  134. Walker, J. E., Saraste, M., and Gay, N. J., 1982a, E. coli F1-ATPase interacts with a membrane protein component of a proton channel, Nature 298:867–869.PubMedCrossRefGoogle Scholar
  135. Walker, J. E., Runswick, M. J., and Saraste, M., 1982b, Subunit equivalence in Escherichia coli and bovine heart mitochondrial F1F0 ATPases, FEBS Lett. 146:393–396.PubMedCrossRefGoogle Scholar
  136. Walker, J. E., Saraste, M., Runswick, M. J., and Gay, N. J., 1982c, Distantly related sequences in the alpha-and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold, EMBO J. 1:945–951.PubMedGoogle Scholar
  137. Webb, M. R., Grubmeyer, C., Penefsky, H. S., and Trentham, D. R., 1980, The stereochemical course of phosphoric residue transfer catalyzed by beef heart mitochondrial ATPase, J. Biol. Chem. 255:11637–11639.PubMedGoogle Scholar
  138. Winget, G. E., Kanner, N., and Racker, E., 1977, Formation of ATP by the adenosine triphosphatase complex from spinach chloroplasts reconstituted together with bacteriorhodopsin, Biochim. Biophys. Acta 460:490–499.PubMedCrossRefGoogle Scholar
  139. Witt, H. T., Schlodder, E., and Gräber, P., 1976, Membrane-bound ATP synthesis generated by an external electrical field, FEBS Lett. 69:272–276.PubMedCrossRefGoogle Scholar
  140. Yaguzhinsky, L. S., Boguslavsky, L. I., Volkov, A. G., and Rachmaninova, A. B., 1976, Synthesis of ATP coupling with action of membrane protonic pumps at the octane/water interface, Nature 259:494–495.PubMedCrossRefGoogle Scholar
  141. Yoshida, M., Sone, N., Hirata, H., and Kagawa, Y., 1975, A highly stable adenosine triphosphatase from a thermophilic bacterium, J. Biol. Chem. 250:7910–7916.PubMedGoogle Scholar
  142. Yoshida, M., Sone, N., Hirata, H., and Kagawa, Y., 1977, Rconstitution of adenosine triphosphatase of thermophilic bacterium from purified individual subunits, J. Biol. Chem. 252:3480–3485.PubMedGoogle Scholar
  143. Yoshida, M., Sone, N., Hirata, H., and Kagawa, Y., 1978, Evidence for three alpha subunits in one molecule of F1-ATPase from thermophilic bacterium PS3, Biochem. Biophys. Res. Commun. 84:117–122.PubMedCrossRefGoogle Scholar
  144. Yoshida, M., Sone, N., Hirata, H., and Kagawa, Y., 1979, Subunit structure of adenosine triphosphatase: Comparison of the structure in thermophilic bacterium PS3 with those in mitochondria, chloroplasts, and Escherichia coli, J. Biol. Chem. 254:9525–9533.PubMedGoogle Scholar
  145. Yoshida, M., Allison, W. S., Esch, F. S., and Futai, M., 1982, The specificity of carboxyl group modification during the inactivation of the Escherichia coli F1-ATPase with dicyclohexyl[14C]carbodiimide, J. Biol. Chem. 257:10033–10037.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1985

Authors and Affiliations

  • Toshiro Hamamoto
    • 1
  • Yasuo Kagawa
    • 1
  1. 1.Department of BiochemistryJichi Medical SchoolMinamikawachi-machi, Tochigi-kenJapan

Personalised recommendations