Advertisement

Relationships between Structure and Function in Cytochrome Oxidase

  • Mårten Wikström
  • Matti Saraste
  • Timo Penttilä

Abstract

Ferrocytochrome c:O2 oxidoreductase (EC 1.9.3.1) or, briefly, cytochrome oxidase, is the terminal dioxygen-reducing enzyme in the respiratory chains of mitochondria from various organisms, as well as in some aerobic bacteria.

Keywords

Electron Paramagnetic Resonance Cytochrome Oxidase Electron Paramagnetic Resonance Signal Heme Iron Axial Ligand 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alben, J. O., Moh, P. P., Fiamingo, F. G., and Altschuld, R. A., 1981, Cytochrome oxidase (a 3) heme and copper observed by low-temperature Fourier transform infrared spectroscopy of the CO complex, Proc. Natl. Acad. Sci. USA 78:234–237.PubMedCrossRefGoogle Scholar
  2. Anderson, S., Bankier, A. T., Barrell, B. G., de Bruijn, M. H. L., Coulson, A. R., Drouin, J., Eperon, I. C., Nierlich, D. P., Roe, B. A., Sanger, F., Schreier, P. H., Smith, A. J. H., Staden, R., and Young, I. G., 1981, Sequence and organization of the human mitochondrial genome, Nature 290:457–465.PubMedCrossRefGoogle Scholar
  3. Anderson, S., de Bruijn, M. H. L., Coulson, A. R., Eperon, I. C., Sanger, F., and Young, I. G., 1982, Complete sequence of bovine mitochondrial DNA. Conserved features of the mammalian mitochondrial genome, J. Mol. Biol. 156:683–717.PubMedCrossRefGoogle Scholar
  4. Antalis, T. M., and Palmer, G., 1982, Kinetic characterization of the interaction between cytochrome oxidase and cytochrome c. J. Biol. Chem. 257:6194–6206.PubMedGoogle Scholar
  5. Artzatbanoy, V. Yu., Konstantinov, A. A., and Skulachev, V. P., 1978, Involvement of intramitochondrial protons in redox reactions of cytochrome a, FEBS Lett. 87:180–185.CrossRefGoogle Scholar
  6. Azzi, A., 1980, Cytochrome c oxidase. Towards a clarification of its structure, interactions and mechanism, Biochim. Biophys. Acta 594:231–252.PubMedCrossRefGoogle Scholar
  7. Azzi, A., Bill, K., Bolli, R., Broger, C., Casey, R. P., and Corbley, M., 1982, On the Structure of Cytochrome c Oxidase and the Location of its Active Centers. 2nd Eur. Bioenerg. Conf. Short Reports, L.B.T.M.-C.N.R.S. éditeur, Villeurbanne, pp. 125–126.Google Scholar
  8. Babcock, G. T., and Salmeen, I., 1979, Resonance Raman spectra and optical properties of oxidized cytochrome oxidase, Biochemistry 18:2493–2498.PubMedCrossRefGoogle Scholar
  9. Babcock, G. T., Vickery, L. E., and Palmer, G., 1976, Electronic state of heme in cytochrome oxidase. I. Magnetic circular dichroism of the isolated enzyme and its derivatives, J. Biol. Chem. 251:7907–7919.PubMedGoogle Scholar
  10. Babcock, G. T., Van Steelandt, J., Palmer, G., Vickery, L. E., and Salmeen, I., 1979, Heme a models for cytochromes a and a 3 in cytochrome oxidase—EPR, MCD and resonance Raman studies, in: Cytochrome Oxidase (T. E. King, Y. Orii, B. Chance, and K. Okunuki, eds.) Amsterdam, New York, and Oxford, Elsevier/North-Holland pp. 105–115.Google Scholar
  11. Babcock, G. T., Callahan, P. M., Ondrias, M. R., and Salmeen, I., 1981, Coordination geometries and vibrational properties of the cytochromes a and a 3 in cytochrome oxidase from soret excitation Raman spectroscopy, Biochemistry 20:959–966.PubMedCrossRefGoogle Scholar
  12. Bibb, M. J., Van Etten, R. A., Wright, C. T., Walberg, M. W., and Clayton, D. A., 1981, Sequence and gene organization of mouse mitochondrial DNA, Cell 26:167–180.PubMedCrossRefGoogle Scholar
  13. Birchmeyer, W., Köhler, C. E., and Schatz, G., 1976, Interaction of integral and peripheral membrane proteins: Affinity labelling of yeast cytochrome oxidase by modified yeast cytochrome c, Proc. Natl. Acad. Sci. USA 73:4334–4338.CrossRefGoogle Scholar
  14. Bisson, R., and Montecucco, C., 1982, Different polypeptides of bovine heart cytochrome c oxidase are in contact with cytochrome c, FEBS Lett. 150:49–53.PubMedCrossRefGoogle Scholar
  15. Bisson, R., Montecucco, C., Gutweniger, H., and Azzi, A., 1978, Photoaffinity labels for the study of cytochrome c and phospholipid interactions with cytochrome c oxidase, in: Frontiers of Biological Energetics, Vol. 2 (P. L. Dutton, J. S. Leigh, Jr., and A. Scarpa, eds.), Academic Press, New York, pp. 809–816.Google Scholar
  16. Bisson, R., Steffens, G. C. M., and Buse, G., 1982a, Localization of lipid binding domains on subunit II of beef heart cytochrome c oxidase, J. Biol. Chem. 257:6716–6720.PubMedGoogle Scholar
  17. Bisson, R., Steffens, G. C. M., Capaldi, R. A., and Buse, G., 1982b, Mapping of the cytochrome c binding site on cytochrome c oxidase, FEBS Lett. 144:359–363.PubMedCrossRefGoogle Scholar
  18. Blasie, J. K., Erecinska, M., Samuels, S., and Leigh, J. S., 1978, The structure of a cytochrome oxidaselipid model membrane, Biochim. Biophys. Acta 501:33–52.PubMedCrossRefGoogle Scholar
  19. Blasie, J. K., Pachence, J. M., Tavormina, A., Dutton, P. L., Stamatoff, J., Eisenberger, P., and Brown, G., 1982, The location of redox centres in biological membranes determined by resonance X-ray diffraction. II. Analysis of the resonance diffraction data, Biochim. Biophys. Acta 679:188–197.PubMedCrossRefGoogle Scholar
  20. Blokzijl-Homan, M. F. J., and Van Gelder, B. F., 1971, Biochemical and biophysical studies on cytochrome aa 3. III. The EPR spectrum of NO-ferrocytochrome a 3, Biochim. Biophys. Acta 234:493–498.PubMedCrossRefGoogle Scholar
  21. Blum, H., Harmon, H. J., Leigh, J. S., Salerno, J. C., and Chance, B., 1978, The orientation of a heme of cytochrome c oxidase in submitochondrial particles, Biochim. Biophys. Acta 502:1–10.PubMedCrossRefGoogle Scholar
  22. Blumberg, W. E., and Peisach, J., 1979, Some possible chemical and electronic states of cytochrome c oxidase and its intermediate redox states, in: Cytochrome Oxidase (T. E. King, Y. Orii, B. Chase, and K. Okunuki, eds.), Elsevier/North-Holland Biomedical Press, Amsterdam, New York, and Oxford, pp. 153–159.Google Scholar
  23. Bonitz, S. G., Coruzzi, C., Thalenfeld, B. E., Tzagoloff, A., and Macino, G., 1980, Assembly of mitochondrial membrane system. Structure and nucleotide sequence of the gene coding for subunit I of yeast cytochrome oxidase, J. Biol. Chem. 255:11927–11941.PubMedGoogle Scholar
  24. Boogaart, P., van den, van Dijk, S., and Agsteribbe, E., 1982, The mitochondrially made subunit 2 of Neurospora crassa cytochrome aa 3 is synthesized as a precursor protein, FEBS Lett. 147:97–100.PubMedCrossRefGoogle Scholar
  25. Brown, G. G., and Simpson, M. V., 1982, Novel features of animal mtDNA evolution as shown by sequences of two rat cytochrome oxidase subunit II genes, Proc. Natl. Acad. Sci. USA 79:3246–3250.PubMedCrossRefGoogle Scholar
  26. Browning, K. S., and Raj Bhandary, U. L., 1982, Cytochrome oxidase subunit III gene in Neurospora crassa mitochondria. Location and sequence, J. Biol. Chem. 257:5253–5256.PubMedGoogle Scholar
  27. Brudvig, G. W., Stevens, T. H., and Chan, S. I., 1980, Reactions of nitric oxide with cytochrome c oxidase, Biochemistry 19:5275–5285.PubMedCrossRefGoogle Scholar
  28. Burger, G., Scriven, C., Machleidt, W., and Werner, S., 1982, Subunit I of cytochrome oxidase from Neurospora crassa: Nucleotide sequence of the coding gene and partial amino acid sequence of the protein, EMBO J. 1:1385–1391.PubMedGoogle Scholar
  29. Buse, G., Steffens, G. C. M., Steffens, G. J., Meinecke, L., Biewald, R., and Erdweg, M., 1982, Cytochrome c Oxidase: Present Status of the Sequence Analysis, 2nd Eur. Bioenerg. Conf. Short Reports, L.B.T.M.-C.N.R.S. éditeur, Villeurbanne, France, pp. 163–164.Google Scholar
  30. Callahan, P. M., and Babcock, G. T., 1984, The origin of the cytochrome a absorption red shift: A pH dependent interaction between its heme a formyl and protein in cytochrome oxidase, Biochemistry, in press.Google Scholar
  31. Capaldi, R. A., 1982, Arrangement of proteins in the mitochondrial inner membrane, Biochim. Biophys. Acta 694:291–306.PubMedCrossRefGoogle Scholar
  32. Capaldi, R. A., Darley-Usmar, V., Fuller, S. D., and Georgevich, G., 1981, Structure and functioning of cytochrome c oxidase, in: Vectorial Reactions in Electron and Ion Transport in Mitochondria and Bacteria (F. Palmieri, E. Quagliariello, N. Siliprandi, and E. C. Slater, eds.), Elsevier/North-Holland Biomedical Press, Amsterdam, pp. 25–35.Google Scholar
  33. Capaldi, R. A., Darley-Usmar, V., Fuller, S., and Millett, F., 1982, Structural and functional features of the interaction of cytochrome c with complex III and cytochrome c oxidase, FEBS Lett. 138:1–7.PubMedCrossRefGoogle Scholar
  34. Carithers, R. P., and Palmer, G., 1981, Characterization of the potentiometric behavior of soluble cytochrome oxidase by magnetic circular dichroism, J. Biol. Chem. 256:7967–7976.PubMedGoogle Scholar
  35. Casey, R. P., Thelen, M., and Azzi, A., 1980, Dicyclohexylcarbodiimide binds specifically and covalently to cytochrome c oxidase while inhibiting its H+-translocating activity, J. Biol. Chem. 255:3994–4000.PubMedGoogle Scholar
  36. Caughey, W. S., Smythe, G. A., O’Keeffe, D. H., Maskasky, J. E., and Smith, M. L., 1975, Heme A of cytochrome c oxidase. Structure and properties: Comparisons with hemes B, C, and S and derivatives, J. Biol. Chem. 250:7602–7622.PubMedGoogle Scholar
  37. Chan, S. I., Brocian, D. F., Brudvig, G. W., Morse, R. H., and Stevens, T. H., 1978, A model for the “visible” copper in cytochrome c oxidase, in: Frontiers of Biological Energetics, Vol. 2 (P. L. Dutton, J. S. Leigh, Jr., and A. Scarpa, eds.), Academic Press, New York, pp. 883–888.Google Scholar
  38. Chan, S. I., Bocian, D. F., Brudvig, G. W., Morse, R. H., and Stevens, T. H., 1979, The nature of the “visible” copper in cytochrome c oxidase, in: Cytochrome Oxidase (T, E. King, Y. Orii, B. Chase, and K. Okunuki, eds.), Elsevier/North-Holland Biomedical Press, Amsterdam, pp. 177–188.Google Scholar
  39. Chance, B., Saronio, C., and Leigh, J. S., Jr., 1975, Functional intermediates in the reaction of membrane-bound cytochrome oxidase with oxygen, J. Biol. Chem. 250:9226–9237.PubMedGoogle Scholar
  40. Chothia, C., and Lesk, A. M., 1982, Evolution of proteins formed by β-sheets. I. Plastocyanin and azurin, J. Mol. Biol. 160:309–323.PubMedCrossRefGoogle Scholar
  41. Clore, G. M., Andréasson, L.-E., Karlsson, B., Aasa, R., and Malmström, B. G., 1980, Characterization of the low-temperature intermediates of the reaction of fully reduced soluble cytochrome c oxidase with oxygen by electron paramagnetic resonance and optical spectroscopy, Biochem. J. 185:139–154.PubMedGoogle Scholar
  42. Coruzzi, G., and Tzagoloff, A., 1979, Assembly of mitochondrial membrane systems. DNA sequence of subunit 2 of yeast cytochrome oxidase, J. Biol. Chem. 254:9324–9330.PubMedGoogle Scholar
  43. Darley-Usmar, V., Capaldi, R. A., and Wilson, M. T., 1981, Identification of cysteines in subunit II as ligands to the redox centers of bovine cytochrome c oxidase, Biochem. Biophys. Res. Commun. 103:1223–1230.PubMedCrossRefGoogle Scholar
  44. Deatherage, J. F., Henderson, R., and Capaldi, R. A., 1982a, Three-dimensional structure of cytochrome c oxidase vesicle crystals in negative stain, J. Mol. Biol. 158:487–499.PubMedCrossRefGoogle Scholar
  45. Deatherage, J. F., Henderson, R., and Capaldi, R. A., 1982b, Relationship between membrane and cytoplasmic domains in cytochrome c oxidase by electron microscopy in media of different density, J. Mol. Biol. 158:501–514.PubMedCrossRefGoogle Scholar
  46. Dockter, M. E., Steinemann, A., and Schatz, G., 1978, Mapping of yeast cytochrome c oxidase by fluorescence resonance energy transfer, J. Biol. Chem. 253:311–317.PubMedGoogle Scholar
  47. Edmundson, A. B., 1965, Amino acid sequence of sperm whale myoglobin, Nature 205:883–887.CrossRefGoogle Scholar
  48. Eklund, H., Nordstrom, B., Zeppezauer, E., Söderlund, G., Ohlsson, I., Boiwe, T., Söderberg, B., Tapia, O., Brändén, C., and Åkeson, Å., 1976, Three-dimensional structure of horse liver alcohol dehydrogenase at 2.4 Å resolution, J. Mol. Biol. 102:27–59.PubMedCrossRefGoogle Scholar
  49. Erecinska, M., 1977, A new photoaffinity-labeled derivative of mitochondrial cytochrome c, Biochem. Biophys. Res. Commun. 76:495–501.CrossRefGoogle Scholar
  50. Erecinska, M., and Wilson, D. F., 1978, Cytochrome c oxidase: A synopsis, Arch. Biochem. Biophys. 188:1–14.PubMedCrossRefGoogle Scholar
  51. Erecinska, M., Blasie, J. K., and Wilson, D. F., 1977, Orientation of the hemes of cytochrome c oxidase and cytochrome c in mitochondria, FEBS Lett. 76:235–239.PubMedCrossRefGoogle Scholar
  52. Erecińska, M., Wilson, D. F., and Blasie, J. K., 1979, Studies of the orientation of the mitochondrial redox carriers. III. Orientation of the g x and g y axes of the hemes of cytochrome oxidase with respect to the plane of the membrane in oriented membrane multilayers, Biochim. Biophys. Acta 545:352–364.PubMedCrossRefGoogle Scholar
  53. Falk, K.-E., Vänngård, T., and Ångström, J., 1977, Heme spin-states of cytochrome c oxidase derived from room temperature magnetic susceptibility measurements, FEBS Lett. 75:23–27.PubMedCrossRefGoogle Scholar
  54. Ferguson-Miller, S., Brautigan, D. L., and Margoliash, E., 1978, Definition of cytochrome c binding domains by chemical modification. III. Kinetics of reaction of carboxydinitrophenyl cytochromes c with cytochrome c oxidase, J. Biol. Chem. 253:149–159.PubMedGoogle Scholar
  55. Fiamingo, F. G., Altschuld, R. A., Moh, P. P., and Alben, J. O., 1982, Dynamic interactions of CO with a3Fe and CuB in cytochrome c oxidase in beef heart mitochondria studied by Fourier transform infrared spectroscopy at low temperatures, J. Biol. Chem. 257:1639–1650.PubMedGoogle Scholar
  56. Fox, T. D., 1979, Five TGA “stop” codons occur within the translated sequence of the yeast mitochondrial gene for cytochrome c oxidase subunit II, Proc. Natl. Acad. Sci. USA 76:6534–6538.PubMedCrossRefGoogle Scholar
  57. Fox, T. D., and Leaver, C. J., 1981, The Zea mays mitochondrial gene coding cytochrome oxidase subunit II has an intervening sequence and does not contain TGA codons, Cell 26:315–323.PubMedCrossRefGoogle Scholar
  58. Freedman, J. A., Tracy, R. P., and Chan, S. P., 1979, Heme-associated subunit complex of cytochrome c oxidase identified by a new two-dimensional gel electrophoresis, J. Biol. Chem. 254:4305–4308.PubMedGoogle Scholar
  59. Freund, F., 1982, The proton pump at work. Part I. The basic concept of excess proton/defect proton translocation, Bioelectrochem. Bioenerg. 9:61–77.CrossRefGoogle Scholar
  60. Frey, T. G., Chan, S. H. P., and Schatz, G., 1978, Structure and orientation of cytochrome c oxidase in crystalline membranes, J. Biol. Chem. 253:4389–4395.PubMedGoogle Scholar
  61. Fuller, S.D., Capaldi, R. A., and Henderson, R., 1979, Structure of cytochrome c oxidase in deoxycholatederived two-dimensional crystals, J. Mol. Biol. 134:305–327.PubMedCrossRefGoogle Scholar
  62. Fuller, S.D., Darley-Usmar, V.M., and Capaldi, R. A., 1981, Covalent complex between yeast cytochrome c and beef heart cytochrome c oxidase which is active in electron transfer, Biochemistry 20:7046–7053.PubMedCrossRefGoogle Scholar
  63. Gennis, R. B., Casey, R. P., Azzi, A., and Ludwig, B., 1982, Purification and characterization of the cytochrome c oxidase from Rhodopseudomonas sphaeroides, Eur. J. Biochem. 125:189–195.PubMedCrossRefGoogle Scholar
  64. Georgevich, G., Darley-Usmar, V. M., Malatesta, F., and Capaldi, R. A., 1984, Electron transfer in monomeric forms of beef and shark heart cytochrome c oxidase, Biochemistry, in press.Google Scholar
  65. Gregor, I., and Tsugita, A., 1982, The amino acid sequence of cytochrome c oxidase subunit IV from Saccharomyces cerevisiae, J. Biol. Chem. 257:13081–13087.PubMedGoogle Scholar
  66. Hansson, Ö., Karlsson, B., Aasa, R., Vänngård, T., and Malmström, B. G., 1982, EMBO J 1:1295–1297.PubMedGoogle Scholar
  67. Henderson, R., Capaldi, R. A., and Leigh, J. S., 1977, Arrangement of cytochrome oxidase molecules in two-dimensional vesicle crystals, J. Mol. Biol. 112:631–648.PubMedCrossRefGoogle Scholar
  68. Hill, T. L., 1977, Biochemical cycles and free energy transduction, TIBS 2:204–207.Google Scholar
  69. Hoffman, B. M., Roberts, J. E., Awanson, M., Speck, S. H., and Margoliash, E., 1980, Copper electronnuclear double resonance of cytochrome c oxidase, Proc. Natl. Acad. Sci. USA 77:1452–1456.PubMedCrossRefGoogle Scholar
  70. Kadenbach, B., and Merle, P., 1981, On the function of multiple subunits of cytochrome c oxidase from higher eukaroytes, FEBS Lett. 135:1–11.PubMedCrossRefGoogle Scholar
  71. Kadenbach, B., Hartmann, R., Glanville, R., and Buse, G., 1982, Tissue-specific genes code for polypeptide VIa of bovine liver and heart cytochrome c oxidase, FEBS Lett. 138:236–238.PubMedCrossRefGoogle Scholar
  72. Kadenbach, B., Jarausch, J., Hartmann, R., and Merle, P., 1984, Separation of mammalian cytochrome c oxidase into 13 polypeptides by an SDS-gel electrophoresis procedure, Anal. Biochem., in press.Google Scholar
  73. King, T. E., Yu, L., Yu, C.-A., and Wei, Y.-H., 1979, Subunits of cytochrome oxidase and their large scale preparations, in: Cytochrome Oxidase (T. E. King, Y. Orii, B. Chase, and K. Okunuki, eds.), Elsevier/North-Holland Biomedical Press, Amsterdam, pp. 53–65.Google Scholar
  74. Koppenol, W. H., and Margoliash, E., 1982, The asymmetric distribution of charges on the surface of horse cytochrome c, J. Biol. Chem. 257:4426–4437.PubMedGoogle Scholar
  75. Kroneck, P. M. H., Vortisch, V., and Hemmerich, P., 1980, Model studies on the coordination of copper in biological systems, Eur. J. Biochem. 109:603–612.PubMedCrossRefGoogle Scholar
  76. Kyte, J., and Doolittle, R. F., 1982, A simple method for displaying the hydropathic character of a protein, J. Mol. Biol. 157:105–132.PubMedCrossRefGoogle Scholar
  77. Lehtovaara, P., and Ellfolk, N., 1975, The amino acid sequence of leghemoglobin component a from Phaseolus vulgaris (kidney bean), Eur. J. Biochem. 54:577–584.PubMedCrossRefGoogle Scholar
  78. Ludwig, B., 1980, Heme aa 3 type cytochrome c oxidases from bacteria, Biochim. Biophys. Acta 594:177–189.PubMedCrossRefGoogle Scholar
  79. Ludwig, B., Downer, N. W., and Capaldi, R. A., 1979, Labeling of cytochrome c oxidase with (35S)diazobenzenesulfonate. Orientation of this election transfer complex in the inner mitochondrial membrane, Biochemistry 18:1401–1407.PubMedCrossRefGoogle Scholar
  80. Ludwig, B., Grabo, M., Gregor, L, Lustig, A., Regenass, M., and Rosenbusch, J. P., 1982, Solubilized cytochrome c oxidase from Paracoccus denitrificans is a monomer, J. Biol. Chem. 257:5576–5578.PubMedGoogle Scholar
  81. Makinen, M. W., 1979, A comment on the electronic structure of the Fe-O2 group in oxyheme, in: Biochemical and Clinical Aspects of Oxygen (W. S. Caughey, ed.), Academic Press, New York, pp. 143–155.CrossRefGoogle Scholar
  82. Malmström, B. G., 1979, Cytochrome c oxidase. Structure and catalytic activity, Biochim. Biophys. Acta 549:281–303.PubMedCrossRefGoogle Scholar
  83. Malmström, B. G., 1982, Enzymology of oxygen, Annu. Rev. Biochem. 51:21–59.PubMedCrossRefGoogle Scholar
  84. Mann, A. J., and Auer, H. E., 1980, Partial inactivation of cytochrome c oxidase by nonpolar mercurial reagents, J. Biol. Chem. 255:454–458.PubMedGoogle Scholar
  85. Merle, P., and Kadenbach, B., 1980, The subunit composition of mammalian cytochrome c oxidase, Eur. J. Biochem. 105:499–507.PubMedCrossRefGoogle Scholar
  86. Merle, P., and Kadenbach, B., 1982, Kinetic and structural differences between cytochrome c oxidases from beef liver and heart, Eur. J. Biochem. 125:239–244.PubMedCrossRefGoogle Scholar
  87. Millett, F., de Jong, C., Paulson, L., and Capaldi, R. A., 1984, Identification of specific carboxylate groups in cytochrome c oxidase that are involved in binding cytochrome c, Biochemistry, in press.Google Scholar
  88. Mims, W. B., Peisach, J., Shaw, R. W., and Beinert, H., 1980, Electron spin echo studies of cytochrome c oxidase, J. Biol. Chem. 255:6843–6846.PubMedGoogle Scholar
  89. Mitchell, P., 1968, Chemiosmotic Coupling and Energy Transduction, Glynn Research, Bodmin, U.K.Google Scholar
  90. Moss, T. H., Shapiro, E., King, T. E., Beinert, H., and Hartzell, C. R., 1978, The magnetic susceptibility of cytochrome oxidase in the 4.2-1.5K range, J. Biol. Chem. 253:8072–8073.PubMedGoogle Scholar
  91. Nagle, J. F., and Mille, M., 1981, Molecular models of proton pumps, J. Chem. Phys. 74:1367–1372.CrossRefGoogle Scholar
  92. Netzker, R., Köchel, H. G., Basak, N., and Küntzel, H., 1982, Nucleotide sequence of Aspergillus nidulans mitochondrial genes coding for ATPase subunit 6, cytochrome oxidase subunit 3, seven unidentified proteins, four tRNAs and L-RNA, Nucl. Acid Res. 10:4783–4794.CrossRefGoogle Scholar
  93. Ohnishi, T., Blum, H., Leigh, J. S., Jr., and Salerno, J. C., 1979, Membrane Bioenergetics (C. P. Lee, G. Schatz, and L. Ernster, eds.), Addison-Wesley, Reading, Massachusetts, pp. 21–30.Google Scholar
  94. Ohnishi, T., LoBrutto, R., Salerno, J. C., Bruckner, R. C., and Frey, T. G., 1982, Spatial relationship between cytochrome a and a 3, J. Biol. Chem. 257:14821–14825.PubMedGoogle Scholar
  95. Peisach, J., 1978, EPR probes of cytochrome c oxidase, in Frontiers of Biological Energetics, Vol. 2 (P. L. Dutton J. S. Leigh, and A. Scarpa, eds.), Academic Press, New York, pp. 873–881.Google Scholar
  96. Penttilä, T., 1984, Properties and reconstitution of a subunit Ill-deficient cytochrome oxidase, Eur. J. Biochem., in press.Google Scholar
  97. Penttilä, T., and Wikström, M., 1981, Mechanism of proton/electron coupling in cytochrome oxidase, in: Vectorial Reactions in Electron and Ion Transport in Mitochondria and Bacteria (F. Palmieri, E. Quagliarelli, N. Siliprandi, and E. C. Slater, eds.), Elsevier/North-Holland Biomedical Press, Amsterdam, pp. 71–80.Google Scholar
  98. Perutz, M. F., Kendrew, J. C., and Watson, H. C., 1965, Structure and function of haemoglobin. II. Some relations between polypeptide chain configuration and amino acid sequence, J. Mol. Biol. 13:669–678.CrossRefGoogle Scholar
  99. Powers, L., Blumberg, W. E., Chance, B., Barlow, C. H., Leigh, J. S., Jr., Smith, J., Yonetani, T., Vik, S., and Peisach, J., 1979, The nature of the copper atoms of cytochrome c oxidase as studied by optical and X-ray absorption edge spectroscopy, Biochim. Biophys. Acta 546:520–538.PubMedCrossRefGoogle Scholar
  100. Powers, L., Chance, B., Ching, Y., and Angiolillo, P., 1981, Structural features and the reaction mechanism of cytochrome oxidase, Biophys. J. 34:465–498.PubMedCrossRefGoogle Scholar
  101. Poyton, R. O., and Schatz, G., 1975, Cytochrome c oxidase from baker’s yeast. III. Physical characterization of isolated subunits and chemical evidence for two different classes of polypeptides, J. Biol. Chem. 250:752–761.PubMedGoogle Scholar
  102. Prochaska, L. J., Bisson, R., Capaldi, R. A., Steffens, G. C. M., and Buse, G., 1981, Inhibition of cytochrome c oxidation function by dicyclohexylcarbodiimide, Biochim. Biophys. Acta 637:360–373.PubMedCrossRefGoogle Scholar
  103. Rieder, R., and Bosshard, H. R., 1980, Comparison of the binding sites on cytochrome c for cytochrome c oxidase, cytochrome bc 1, and cytochrome c 1. Differential acetylation of lysyl residues in free and complexed cytochrome c, J. Biol. Chem. 255:4732–4739.PubMedGoogle Scholar
  104. Ryden, L., and Lundgren, J.-O., 1976, Homology relationships among the small blue proteins, Nature 261:344–346.PubMedCrossRefGoogle Scholar
  105. Saari, H., Penttilä, T., and Wikström, M., 1980, Interaction of Ca2+ and H+ with heme A in cytochrome oxidase, J. Bioenerg. Biomembr. 12:325–338.PubMedCrossRefGoogle Scholar
  106. Sacher, R., Steffens, G. J., and Buse, G., 1979, Studies on cytochrome c oxidase. VI. Polypeptide IV— The complete primary structure, Hoppe-Seyler’s Z. Physiol. Chem. 360:1385–1392.PubMedCrossRefGoogle Scholar
  107. Saraste, M., 1984, How complex is a respiratory complex? TIBS, in press.Google Scholar
  108. Saraste, M., Penttilä, T., and Wikström, M., 1981, Quaternary structure of bovine cytochrome oxidase, Eur. J. Biochem. 115:261–268.PubMedCrossRefGoogle Scholar
  109. Scott, R. A., Cramer, S. P., Shaw, R. W., Beinert, H., and Gray, H. B., 1981, Extended X-ray absorption fine structure of copper in cytochrome c oxidase: Direct evidence for copper-sulfur ligation, Proc. Natl. Acad. Sci. USA 78:664–667.PubMedCrossRefGoogle Scholar
  110. Sebald, W., Machleidt, W., and Wächter, E., 1980, N,N’-Dicyclohexylcarbodiimide binds specifically to a single glutamyl residue of the proteolipid subunit of the mitochondrial adenosinetriphosphatases from Neurospora crassa and Saccharomyces cerevisiae, Proc. Natl. Acad. Sci. USA 77:785–789.PubMedCrossRefGoogle Scholar
  111. Seiter, C. H. A., Angelos, S. G., Jr., and Perreault, R. A., 1978, Resonance Raman and EPR studies of cytochrome oxidase ligand complexes, in: Frontiers of Biological Energetics, Vol. 2 (P. L. Dutton, J. S. Leigh, Jr., and A. Scarpa, eds.), Academic Press, New York, pp. 897–903.Google Scholar
  112. Shaw, R. W., Rife, J. E., O’Leary, M. H., and Beinert, H., 1981, Oxidation of reduced cytochrome c oxidase with 18O2, J. Biol. Chem. 256:1105–1107.PubMedGoogle Scholar
  113. Smith, H. T., Ahmed, A. J., and Millet, F., 1981, Electrostatic interaction of cytochrome c with cytochrome c 1 and cytochrome oxidase, J. Biol. Chem. 256:4984–4990.PubMedGoogle Scholar
  114. Solioz, M., Carafoli, E., and Ludwig, B., 1982, The cytochrome c oxidase of Paracoccus denitrificans pumps protons in a reconstituted system, J. Biol. Chem. 257:1579–1582.PubMedGoogle Scholar
  115. Sone, N., and Hinkle, P. C., 1982, Proton transport by cytochrome oxidase from the thermophilic bacterium PS3 reconstituted in liposomes, J. Biol. Chem. 257:12600–12604.PubMedGoogle Scholar
  116. Sone, N., and Yanagita, Y., 1982, A cytochrome aa 3-type terminal oxidase of a thermophilic bacterium. Purification, properties and proton pumping, Biochim. Biophys. Acta 682:216–226.CrossRefGoogle Scholar
  117. Steffens, G. J., and Buse, G., 1979, Studies on cytochrome c oxidase, IV. Primary structure and function of subunit II, Hoppe-Seyler’s Z. Physiol. Chem. 360:613–619.PubMedGoogle Scholar
  118. Steffens, G. C. M., Steffens, G. J., and Buse, G., 1979, Studies on cytochrome c oxidase, VIII. The amino acid sequence of polypeptide VII, Hoppe-Seyler’s Z. Physiol. Chem. 360:1641–1650.PubMedCrossRefGoogle Scholar
  119. Stevens, T. H., and Chan, S. I., 1981, Histidine is the axial ligand to cytochrome a 3 in cytochrome c oxidase, J. Biol. Chem. 256:1069–1071.PubMedGoogle Scholar
  120. Stevens, T. H., Martin, C. T., Wang, H., Brudvig, G. W., Scholes, C. P., and Chan, S. I., 1982, The nature of CuA in cytochrome c oxidase, J. Biol. Chem. 257:12106–12113.PubMedGoogle Scholar
  121. Tanaka, M., Haniu, M., Yasunobu, K. T., Yu, C.-A., Yu, L., Wei, Y.-H., and King, T. E., 1979, Amino acid sequence of subunit V of bovine heart cytochrome oxidase, the heme a-containing subunit, J. Biol. Chem. 254:3879–3885.PubMedGoogle Scholar
  122. Tanaka, M., Yasunobu, K. T., Wei, Y.-H., and King, T. E., 1981, Complete amino acid sequence of bovine heart cytochrome oxidase subunit VI, J. Biol. Chem. 256:4832–4837.PubMedGoogle Scholar
  123. Thalenfeld, B. E., and Tzagoloff, A., 1980, Assembly of the mitochondrial membrane system. Sequence of the Oxi 2 gene of yeast mitochondrial DNA, J. Biol. Chem. 255:6173–6180.PubMedGoogle Scholar
  124. Tweedle, M. F., Wilson, L. J., Garcia-Iniquez, L., Babcock, G. T., and Palmer, G., 1978, Electronic state of heme in cytochrome oxidase III. The magnetic susceptibility of beef heart cytochrome oxidase and some of its derivatives from 7-200K. Direct evidence for an antiferromagnetically coupled Fe(III)/ Cu(II) pair, J. Biol. Chem. 253:8065–8071.PubMedGoogle Scholar
  125. Tzagoloff, A., 1982, Mitochondria, Plenum Press, New York and London.Google Scholar
  126. Vanderkooi, J. M., Landesberg, R., Hayden, G. W., and Owen, C. S., 1977, Metal-free and metal-substituted cytochromes c. Use in characterization of the cytochrome c binding site, Eur. J. Biochem. 81:339–347.PubMedCrossRefGoogle Scholar
  127. Van Gelder, B. F., and Beinert, H., 1969, Studies of the heme components of cytochrome c oxidase by EPR spectroscopy, Biochim. Biophys. Acta 189:1–24.PubMedCrossRefGoogle Scholar
  128. Van Verseveld, H. W., Krab, K., and Stouthamer, A. H., 1981, Proton pump coupled to cytochrome c oxidase in Paracoccus denitrificans, Biochim. Biophys. Acta 635:525–534.PubMedCrossRefGoogle Scholar
  129. Verheul, F. E. A. M., Draijer, J. W., Muijsers, A. O., and Van Gelder, B. F., 1982, The reactivity of thiol groups in bovine heart cytochrome c oxidase towards 5,5′-dithiobis(2-nitrobenzoic acid), Biochim. Biophys. Acta 681:118–129.PubMedCrossRefGoogle Scholar
  130. Viola, R. E., Shaw, R. W., Ransom, S. C., and Villafranca, J. J., 1983, Solvent proton relaxation studies of cytochrome c oxidase solutions, Arch. Biochem. Biophys. 220:106–115.PubMedCrossRefGoogle Scholar
  131. Von Jagow, G., Engel, W. D., Schägger, H., Machleidt, W., and Machleidt, I., 1981, On the mechanism of proton translocation linked to electron transfer at energy conversion site 2, in: Vectorial Reactions in Electron and Ion Transport in Mitochondria and Bacteria (F. Palmieri, E. Quagliariello, N. Siliprandi, and E. C. Slater, eds.), Elsevier/North-Holland Biomédical Press, Amsterdam, pp. 149–161.Google Scholar
  132. Wallace, D. C., 1982, Structure and evolution of organelle genomes, Microbiol. Rev. 46:208–240.PubMedGoogle Scholar
  133. Weiss, H., and Kolb, H. J., 1979, Isolation of mitochondrial succinate: Ubiquinone reductase, cytochrome c reductase and cytochrome c oxidase from Neurospora crassa using nonionic detergent, Eur. J. Biochem. 99:139–149.PubMedCrossRefGoogle Scholar
  134. Wikström, M., 1972, Energy-linked change in the redox state and absorption spectrum of cytochrome a in situ, Biochim. Biophys. Acta 283:385–390.PubMedCrossRefGoogle Scholar
  135. Wikström, M., 1977, Proton pump coupled to cytochrome c oxidase in mitochondria, Nature 266:271–273.PubMedCrossRefGoogle Scholar
  136. Wikström, M., 1981, Cytochrome oxidase, in: Mitochondria and Microsomes (C. P. Lee, G. Schatz, and G. Dallner, eds.), Addison-Wesley, Reading, Massachusetts, p. 249–269.Google Scholar
  137. Wikström, M., and Krab, K., 1979, Proton-pumping cytochrome c oxidase, Biochim. Biophys. Acta 549:177–222.PubMedCrossRefGoogle Scholar
  138. Wikström, M., and Krab, K., 1980, Respiration-linked H+ translocation in mitochondria: Stoichiometry and mechanism, Curr. Top. Bioenerg. 10:51–101.Google Scholar
  139. Wikström, M., Harmon, H. J., Ingledew, W. J., and Chance, B., 1976, A re-evaluation of the spectral, potentiometric and energy-linked properties of cytochrome c oxidase in mitochondria, FEBS Lett. 65:259–277.PubMedCrossRefGoogle Scholar
  140. Wikström, M., Krab, K., and Saraste, M., 1981a, Cytochrome Oxidase—A Synthesis, Academic Press, London.Google Scholar
  141. Wikström, M., Krab, K., and Saraste, M., 1981b, Proton-translocating cytochrome complexes, Annu. Rev. Biochem. 50:623–655.PubMedCrossRefGoogle Scholar
  142. Wilson, M. T., Greenwood, C., Brunori, M., and Antonini, E., 1975, Kinetic studies on the reaction between cytochrome c oxidase and ferrocytochrome c, Biochem. J. 147:145–153.PubMedGoogle Scholar
  143. Wilson, M. T., Lalla-Maharajh, W., Darley-Usmar, V., Bonaventura, J., Bonaventura, C., and Brunori, M., 1980, Structural and functional properties of cytochrome c oxidases isolated from sharks, J. Biol. Chem. 255:2722–2728.PubMedGoogle Scholar
  144. Wilson, M. T., Jensen, P., Aasa, R., Malmström, B. G., and Vänngård, T., 1982, An investigation by E.P.R. and optical spectroscopy of cytochrome oxidase during turnover, Biochem. J. 203:483–492.PubMedGoogle Scholar
  145. Winter, D. B., Bruyninckx, W. J., Foulke, F. G., Grinich, N. P., and Mason, H. S., 1980, Location of heme A on subunits I and II and Cu on subunit II of cytochrome c oxidase, J. Biol. Chem. 255:11408–11414.PubMedGoogle Scholar
  146. Woodruff, W. H., Kessler, R. J., Ferris, N. S., Dallinger, R. F., Carter, K. R., Antalis, T. M., and Palmer, G., 1982, Modern approaches to the study of cytochrome oxidase. Resonance Raman and magnetic circular dichroism characterization of the enzyme and its derivatives, in: Advances in Chemistry Series, Vol. 201, (K. M. Kadish, ed.), American Chemical Society, pp. 625–659.CrossRefGoogle Scholar
  147. Yamanaka, T., Kamita, Y., and Fukumori, Y., 1981, Molecular and enzymatic properties of “cytochrome aa 3”-type terminal oxidase derived from Nitrobacter agilis, J. Biochem. (Tokyo) 89:265–273.Google Scholar
  148. Yoshikawa, S., Choc, M. G., O’Toole, M. C., and Caughey, W. S., 1977, An infrared study of CO binding to heart cytochrome c oxidase and hemoglobin A, J. Biol. Chem. 252:5498–5508.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1985

Authors and Affiliations

  • Mårten Wikström
    • 1
  • Matti Saraste
    • 1
  • Timo Penttilä
    • 1
  1. 1.Department of Medical ChemistryUniversity of HelsinkiHelsinki 17Finland

Personalised recommendations