Proton Diffusion and the Bioenergies of Enzymes in Membranes

  • Robert J. P. Williams


The purpose of this article is to tackle again some of the central problems of the bioenergetics of ATP-enzyme reactions. The requirement of these reactions is that the energy of ATP hydrolysis should not be lost to heat but should be converted to ion movement. The opposite reaction of the conversion of ion movement down a gradient to ATP rather than to heat presents the same problems. The problems need to be seen in the light of such ideas as local fields, chemiosmosis, recent knowledge of ion channels not only in biological systems, and recent knowledge about kinases where phosphate exchange from ATP to ADP or to or from another acceptor avoids transfer to water. I shall point to the fundamental problems of each of these steps in this introduction. Control over diffusion is the central problem.


Proton Transfer Thylakoid Membrane Cytochrome Oxidase Proton Gradient Conformation Change 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alberti, G., Casciola, M., Costantino, U., Levi, G., and Ricciardi, R., 1978, On the mechanism of diffusion and ionic transport in crystalline insoluble acid salts of tetravalent metals—I. Electrical conductance of zirconium bis (monohydrogen orthophosphate) monohydrate with a layered structure, J. Inorg. Nucl. Chem. 40:533–537.CrossRefGoogle Scholar
  2. Albertsson, P. A., 1982, Interaction between the luminal sides of the thylakoid membrane, FEBS Lett. 149:186–190.CrossRefGoogle Scholar
  3. Andersson, B., Akerlund, H. E., Jergil, B., and Larsson, C., 1982, Differential phosphorylation of light-harvesting chlorophyll complexes in appressed and non-appressed regions of the thylakoid membrane, FEBS Lett. 149:181–185.CrossRefGoogle Scholar
  4. Bagotsky, V. S., and Skundin, A. M., 1980, Chemical Power Sources, Academic Press, New York, pp. 182–186.Google Scholar
  5. Baker, G. M., Bhatnager, D., and Dilley, R. A., 1981, Proton release in photosynthetic water oxidation: Evidence for proton movement in a restricted domain, Biochemistry 20:2307–2315.PubMedCrossRefGoogle Scholar
  6. Bendall, D.S., 1982, Photosynthetic cytochromes of oxygenic organisms, Biochim. Biophys. Acta 683:119–151.CrossRefGoogle Scholar
  7. Boyer, P. D., 1975, Energy transduction and proton translocation by adenosine triphosphates, FEBS Lett. 50:91–97.PubMedCrossRefGoogle Scholar
  8. Cahan, B. D., and Chen, C.-T., 1982, III. The chemi-conductor model and further supporting evidence, J. Electrochem. Soc. 129:921–928.CrossRefGoogle Scholar
  9. Capaldi, R. A., 1982, Arrangements of proteins in the mitochondrial inner membrane, Biochim. Biophys. Acta 694:291–306.PubMedCrossRefGoogle Scholar
  10. Carlsson, C., and Ernster, L., 1981a, Uncoupler reversible inhibition of mitochondrial ATPase. I. General features, Biochim. Biophys. Acta 638:345–357.PubMedCrossRefGoogle Scholar
  11. Carlsson, C., and Ernster, L., 1981b, Uncoupler-reversible inhibition of mitochondrial ATPase by metal chelates of bathophenanthroline. II. Comparison with ether inhibitors, Biochim. Biophys. Acta, 638:358–364.PubMedCrossRefGoogle Scholar
  12. Chandra, S., 1982, Superionic Solids, North-Holland Publishing, Amsterdam.Google Scholar
  13. Chowdhry, U., Barkley, J. R., English, A. D., and Sleight, A. W., 1982, New inorganic proton conductors, Mater. Res. Bull. 17:917–933.CrossRefGoogle Scholar
  14. Cox, G. B., Jans, D. A., Gibson, F., Langman, L., Senior, A. E., and Fimmel, A. L., 1983, Oxidative phosphorylation by mutant Escherichia coli membranes with impaired proton permeability, Biochem. J., 216:143–150.PubMedGoogle Scholar
  15. Culpin, D., Day, P., Edwards, P. R., and Williams, R. J. P., 1968a, Charge transfer in mixed valence solids, III. Spectra and conductivity of chlorocuprates, J. Chem. Soc., 1155-1163.Google Scholar
  16. Dickens, P. G., Hibble, S. J., and Jarman, R. H., 1981, Hydrogen insertion compounds of transition metal oxides, J. Electr. Mater. 10:999–1009.CrossRefGoogle Scholar
  17. Dzimitrowicz, D. J., Goodenough, J. B., and Wiseman, P. J., 1982, A. C. proton conduction in hydrous oxides, Mater. Res. Bull. 17:971–979.CrossRefGoogle Scholar
  18. Edmonds, D. T., 1982, Modelling the control mechanism of the sodium channel in the apical membrane of tight epithelia, Proc. Roy. Soc. (London) 217B:111–115.Google Scholar
  19. Egmond, M. R., Williams, R. J. P., Welsh, E. J., and Rees, D. A., 1979, Nuclear magnetic resonance studies on glycophorin and its carbohydrate containing tryptic peptides, Eur. J. Biochem. 97:73–83.PubMedCrossRefGoogle Scholar
  20. Eigen, M., 1963, Protonenubertragung: Sauer-base Katalyse und enzymatische Hydrolyse, Angew. Chem. 75:489–508.CrossRefGoogle Scholar
  21. Elferink, M. G. L., Friedberg, I., Hellingwerf, K. J., and Konings, W. N., 1983, The role of protonmotive force and electron flow in light driven solute transport in Rhodopseudomonas sphaeroides, Eur. J. Biochem. 129:583–587.PubMedCrossRefGoogle Scholar
  22. England, W. A., Cross, M. G., Hamnett, A., Wiseman, P. J., and Goodenough, J. B., 1982, Fast proton conduction in inorganic ion-exchange compounds, Solid State Ionics 1:231–249.CrossRefGoogle Scholar
  23. Farrington, G. C., and Briant, J. L., 1978, Hydronium beta alumina: A fast proton conductor, Mater. Res. Bull. 13:763–773.CrossRefGoogle Scholar
  24. Fergusson, S. J., and Sorgato, M. C., 1982, Proton electrochemical gradients and energy transduction processes, Annu. Rev. Biochem. 51:185–217.CrossRefGoogle Scholar
  25. Fimmel, A. L., Jans, D. A., Langman, L., James, L. B., Ash, G. R., Downie, J. A., Senior, A. E., Gibson, F., and Cox, G. B., 1983, The F1F0-ATPase of Escherichia coli: Substitution of proline by leucine at position 64 in the c-subunit causes loss of oxidative phosphorylation, Biochem. J., 213:451–458.PubMedGoogle Scholar
  26. Gibson, F., 1983, Biochemical and genetic studies on the assembly and function of the F1-F0 ATPase of Escherichia coli, Thirteenth Hopkins Memorial Lecture, Biochem. Soc. Trans., 11:229–240.PubMedGoogle Scholar
  27. Glarum, S. H., and Marshall, J. H., 1982, The A-C response of nickel oxide electrode films, J. Electrochem. Soc. 129:535–540.CrossRefGoogle Scholar
  28. Goodenough, J. B., 1984, Fast ion transport in solids, Proc. Roy. Soc. (London), in press.Google Scholar
  29. Gratzel, M., 1982, Artificial photosynthesis, energy and light driven electron transfer in organized molecular assemblies and colloidal semiconductors, Biochim. Biophys. Acta 683:221–244.CrossRefGoogle Scholar
  30. Guffanti, A. A., Fuchs, R. T., and Krulwich, T. A., 1983, Oxidative phosphorylation by isolated membrane vesicles from Bacillus megaterium and its uncoupler-resistant mutant derivative, J. Biol. Chem. 258:35–37.PubMedGoogle Scholar
  31. Haines, T. H., 1983, Anionic lipid headgroups as proton conducting pathways along the surface of membranes, Proc. Natl. Acad. Sci. USA 80:160–164.PubMedCrossRefGoogle Scholar
  32. Hammes, G. G., 1983, Mechanism of ATP synthesis and coupled proton transport, Trends Biochem. Sci. 8:131–134.CrossRefGoogle Scholar
  33. Hengarter, R. G., and Good, N. E., 1982, Energy thresholds for ATP synthesis in chloroplasts, Biochim. Biophys. Acta 681:397–404.CrossRefGoogle Scholar
  34. Higuti, T., Arakaki, N., and Hattori, A., 1979, Localized energization of the mitochondrial inner membrane by ATP, Biochim. Biophys. Acta 548:166–171.PubMedCrossRefGoogle Scholar
  35. Hitchens, G. D., and Kell, D. B., 1982, On the extent of localization of the energized membrane state in chromatophores from Rhodopseudomonas capsulata N22, Biochem. J. 206:351–357.PubMedGoogle Scholar
  36. Hong, Y. Q., and Junge, W., 1983, Localized or delocalized protons in photophosphorylation? On the accessibility of the thylakoid lumen for ions and buffers, Biochim. Biophys. Acta 722:197–208.CrossRefGoogle Scholar
  37. Jorgensen, J. D., Varma, R., Rotella, F. J., Cook, G., and Yao, N. P., 1982, Lead deficiency and hydrogen content in battery electrode. Beta-lead (IV) oxide, J. Electrochem. Soc. 129:1678–1681.CrossRefGoogle Scholar
  38. Kagawa, Y., 1978, Reconstruction of the energy transformer, gate and channel subunit reassembly, crystalline ATPase and ATP-synthesis, Biochim. Biophys. Acta 505:45–93.PubMedCrossRefGoogle Scholar
  39. Kell, D. B., 1979, On the functional proton current pathway of electron transport phosphorylation: An electrodic view, Biochim. Biophys. Acta 549:55–99.PubMedCrossRefGoogle Scholar
  40. Kouchkovsky, Y., Haraux, F., and Sigalat, C., 1982, Effect of hydrogen-deuterium exchange on energy coupled processes in thylakoids, FEBS Lett. 139:245–249.CrossRefGoogle Scholar
  41. Lee, C. P., 1974, Reaction mechanism of the respiratory chain-linked energy conservation, in: Dynamics of Energy-transducing Membranes (L. Ernster, R. W. Westbrook, and C. Slater, eds.), Elsevier, Amsterdam.Google Scholar
  42. Levine, B. A., Dalgarno, D. C., Esnouf, M. P., Klevit, R. E., Scott, G. M. M., and Williams, R. J. P., 1983, The mobility of calcium-trigger proteins and its function, in: Mobility and Function in Proteins and Nucleic Acids, Ciba Foundation Symposium No. 93, Pitman, London, pp. 72–90.Google Scholar
  43. Littler, J. G. F., and Williams, R. J. P., 1965, Electrical and optical properties of crocidolite and some other iron compounds, J. Chem. Soc. (London) 5:6368–6371.Google Scholar
  44. MacArthur, D. M., 1970, The hydrated nickel hydroxide electrode. Potential sweep experiments, J. Electrochem. Soc. 117:422–426.CrossRefGoogle Scholar
  45. Malenkova, I. V., Kuprin, S. P., Davydov, R. M., and Blumenfeld, L. A., 1982, pH-jump-induced ADP phosphorylation in mitochondria, Biochim. Biophys. Acta 682:179–183.PubMedCrossRefGoogle Scholar
  46. Michel, H., and Oesterhelt, D., 1980, Electrochemical proton gradient across the cell membrane of Halobacterium halobiurn, Biochemistry 19:4615–4619.PubMedCrossRefGoogle Scholar
  47. Mitchell, P., 1961, Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type mechanism, Nature 191:144–145.PubMedCrossRefGoogle Scholar
  48. Mitchell, P., and Moyle, J., 1983, Alternative hypotheses of proton injection in cytochrome oxidase vesicles, FEBS Lett. 151:167–178.PubMedCrossRefGoogle Scholar
  49. Moore, G. R., Huang, Z.-X., Eley, C. G. S., Barker, H. A., Williams, G., Robinson, M. H., and Williams, R. J. P., 1982, Electron transfer in biology, Disc. Faraday Soc. 74: 311–330.CrossRefGoogle Scholar
  50. Nagle, J. R., Mille, M., and Morowitz, H. J., 1980, Theory of hydrogen-bonded chains in bio-energetics, J. Chem. Phys. 72:3959.CrossRefGoogle Scholar
  51. Ovchinnikov, Y. A., 1981, Ion channels: Structure and function, Biochem. Soc. Symp. 46:103–137.PubMedGoogle Scholar
  52. Petty, K. M., and Jackson, J. B., 1979, Kinetic factors limiting the synthesis of ATP in chromatophores exposed to short flash excitation, Biochim. Biophys. Acta 547:474–483.PubMedCrossRefGoogle Scholar
  53. Rich, P. R., 1982, Electron and proton transfers in chemical and biological quinone systems, Disc. Faraday Soc. 74, 349–364.CrossRefGoogle Scholar
  54. Sebald, W., and Hoppe, J., 1981, On the structure and genetics of the proteolipid subunit of the ATP synthase complex, Curr. Top. Bioenerg. 12:1–64.Google Scholar
  55. Senior, A. E., 1983, On the secondary and tertiary structure of membrane proteins involved in proton translocation, Biochim. Biophys. Acta, 726:81–95.PubMedCrossRefGoogle Scholar
  56. Sheffield, S. H., and Howe, A. T., 1979, High proton conductivity in pressed pellets of H-montmorillonite, H-Al-montmorillonite and H-Al-Fe-montmorillonite clays, Mater. Res. Bull. 14:929–935.CrossRefGoogle Scholar
  57. Shilton, M. G., and Howe, A. T., 1977, Rapid H+ conductivity in hydrogen uranyl phosphate—a solid H+ electrolyte, Mater. Res. Bull. 12:701–706.CrossRefGoogle Scholar
  58. Sjostrand, F. S., 1978, The structure of mitochondrial membranes, a new concept, J. Ultrastruct. Res. 64:217–245.PubMedCrossRefGoogle Scholar
  59. Sorgato, M. C., Branca, D., and Ferguson, S. J., 1980, The rate of ATP synthesis by submitochondrial particles can be independent of the magnitude of the protonmotive force, Biochem. J. 188: 945–948.PubMedGoogle Scholar
  60. Tager, J. M., Groen, A. K., Wanders, R. J. A., Duszynski, J., Westerhoff, H. V., and Vervoorn, R. V., 1983, Control of mitochondrial respiration, Biochem. Soc. Trans. 11:40–43.PubMedGoogle Scholar
  61. Takahashi, T., 1976, Some superionic conductors and their applications, in: Superionic Conductors (G. D. Mahan and W. L. Roth, eds.), Plenum Press, New York, pp. 379–394.Google Scholar
  62. Tanswell, P., Westhead, E. W., and Williams, R. J. P., 1976, Nuclear magnetic resonance study of the active site structure of yeast phosphoglycerate kinase, Eur. J. Biochem. 63:249–262.PubMedCrossRefGoogle Scholar
  63. Tiemann, R., and Witt, H. T., 1982, Salt dependence of the electrical potential at the photosynthetic membrane, Biochim. Biophys. Acta 681:202–211.CrossRefGoogle Scholar
  64. Venturoli, G., and Melandri, B. A., 1982, The localized coupling of bacterial photophosphorylation. Effect of antimycin A and N,N-dicyclohexylcarbodiimide in chromatophores from Rhodopseudomonas sphaeroides, Ga, studied by single turnover event analysis, Biochim. Biophys. Acta 680:8–16.CrossRefGoogle Scholar
  65. Watson, H. C., Walker, N. P. C., Shaw, P. J., Bryant, T. N., Wendell, P. L., Fothergill, L. A., Perkins, R. E., Conroy, S. C., Dobson, M. J., Truite, M. F., Kingsman, A. J., and Kingsman, S. M., 1984, Sequence and structure of yeast phosphoglycerate kinase, J. Mol. Biol., accepted.Google Scholar
  66. Westerhoff, H. V., Colen, A.-M., and van Dam, K., 1983, Metabolic control by pump slippage and proton leakage in “delocalized” and more localized chemiosmotic energy-coupling schemes, Biochem. Soc. Trans. 11:81–85.PubMedGoogle Scholar
  67. Wikström, M., Krab, K., and Saraste, M., 1981, Proton translocating cytochrome complexes, Annu. Rev. Biochem. 50:623–645.PubMedCrossRefGoogle Scholar
  68. Williams, R. J. P., 1961, Possible functions of chains of catalysts, J. Theoret. Biol. 1:1–13.CrossRefGoogle Scholar
  69. Williams, R. J. P., 1962, Possible functions of chains of catalysts II, J. Theoret. Biol. 3:209–220.CrossRefGoogle Scholar
  70. Williams, R. J. P., 1966, The Selectivity of Metal-Protein Interactions in Protides of the Biological Fluids, Vol. 14 (M. Peters, ed.), Elsevier, Amsterdam, pp. 25–33.Google Scholar
  71. Williams, R. J. P., 1969, Electron transfer and energy conservation, Curr. Top. Bioenerg. 3:79–156.Google Scholar
  72. Williams, R. J. P., 1971, Electron transfer, conformation change and energy conservation, in: Electron Transport and Energy Conservation (J. M. Tager, S. Papa, E. Quagliariello, and E. C. Slater, eds.), Adriatica Editrice, Bari, Italy, pp. 7–23.Google Scholar
  73. Williams, R. J. P., 1975, Protein connections between protons, electrons and ATP, in: Electron Transfer Chains and Oxidative Phosphorylation (E. Quagliariello, ed.), North-Holland, Amsterdam, pp. 417–422.Google Scholar
  74. Williams, R. J. P., 1978, The multifarious couplings of energy transduction, Biochim. Biophys. Acta 505:1–44.PubMedCrossRefGoogle Scholar
  75. Williams, R. J. P., 1980, On first looking into nature’s chemistry, Chem. Soc. Rev. (London). 9:281–364.CrossRefGoogle Scholar
  76. Williams, R. J. P., 1982, The nature of local chemical potentials, FEBS Lett. 150:1–3.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1985

Authors and Affiliations

  • Robert J. P. Williams
    • 1
  1. 1.Inorganic Chemistry LaboratoryOxfordEngland

Personalised recommendations