Advertisement

Plasma Membrane Redox Enzymes

  • F. L. Crane
  • H. Löw
  • M. G. Clark

Abstract

The study of redox enzymes in plasma membranes is at the stage equivalent to looking at distant mountains at dawn through binoculars. Fog in the valleys obscures everything except the peaks. What is really there will only be known when the fog is blown away and the mountains stand isolated. Some of the peaks perchance may not be real. As everyone who has walked in mountains knows it might be a long way to the base of the mountain. Along the way are other mountains not appreciated from a distance.

Keywords

Xanthine Oxidase Erythrocyte Membrane NADH Dehydrogenase NADH Oxidase Liver Plasma Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbs, M. T., and Phillips, J. H., 1980, Organization of proteins in the chromaffin granule membrane, Biochim. Biophys. Acta 595: 200–221.PubMedCrossRefGoogle Scholar
  2. Agutter, P. S., Sherriff, R. V., and Kadlubowski, M., 1979, A novel lipid hydroperoxide reducing enzyme in human erythrocytes, Biochem. Soc. Trans. 7: 710–711.PubMedGoogle Scholar
  3. Arese, P., Bosia, A., and Pescamona, G. P., 1972, Effect of external oxidant on redox state of intracellular glutathione and pyridine nucleotides, in: VI International Symposium uber Structur und Function der Erythrozyten (S. Rapport and F. Jung, eds.), Akademie-Verlag, Berlin, pp. 91–101.Google Scholar
  4. Babior, B. M., and Peters, W. A., 1981, The O2 producing enzyme of human neutrophils, J. Biol. Chem. 256: 2321–2323.PubMedGoogle Scholar
  5. Badwey, J. A., and Karnovsky, M. L., 1980, Active oxygen species and the functions of phagocytic leukocytes, Annu. Rev. Biochem. 49: 695–726.PubMedCrossRefGoogle Scholar
  6. Benavides, J., Garcia, M. L., Valdivieso, F., and Gimenez-Gallego, G., 1981, Ubiquinone, nonheme iron and flavins in the renal brush border plasma membrane, Arch. Biochem. Biophys. 206: 451–453.PubMedCrossRefGoogle Scholar
  7. Benedetti, E. L., and Emmelot, P., 1968, Structure and function of plasma membranes isolated from liver, in: The Membranes, Vol. 4, (A. J. Dalton and F. Haguenau, eds.), Academic Press, New York, pp. 33–120.Google Scholar
  8. Berezney, R., and Crane, F. L., 1972, Characterization of electron transport activity in bovine liver nuclear membranes, J. Biol. Chem. 247: 5562–5568.PubMedGoogle Scholar
  9. Berg, A. C., 1969, Sulfanilic diazonium salt. A label for the outside of the human erythrocyte membrane, Biochim. Biophys. Acta 183: 65–78.PubMedCrossRefGoogle Scholar
  10. Biber, T. U. L., Mullen, T. L., and DeSimone, J. A., 1980, Effect of ferric chloride on ion transport in isolated frog skin, J. Membr. Biol. 52: 133–139.PubMedCrossRefGoogle Scholar
  11. Blomberg, F., and Berzius, K., 1975, Epinephrine binding plasma-membrane antigens in rat liver, Eur. J. Biochem. 56: 319–326.PubMedCrossRefGoogle Scholar
  12. Borgese, N., and Meldolesi, J., 1976, Immunological similarity of the NADH-cytochrome c electron transport in microsomes, Golgi complex and mitochondrial outer membrane of rat liver cells, FEBS Lett, 63: 231–234.PubMedCrossRefGoogle Scholar
  13. Borregaard, N., Johansen, K. S., and Esmann, V., 1979, Quantitation of Superoxide production in human polymorphonuclear leucocytes from normals and 3 types of chronic granulomatous disease, Biochem. Biophys. Res. Commun. 90: 214–219.PubMedCrossRefGoogle Scholar
  14. Bravo, F. P., and Uribe, E. G., 1981, Temperature dependence of the concentration kinetics of adsorption of phosphate and potassium in corn roots, Plant Physiol. 67: 815–819.CrossRefGoogle Scholar
  15. Briggs, W. R., 1980, A blue light photoreceptor system in high plants and fungi, in: Photoreceptors and Plant Development, (J. DeGreef, ed.), Antwerpen University Press, Antwerpen, pp. 17–28.Google Scholar
  16. Briley, M. S., and Eisenthal, R., 1975, Association of xanthine oxidase with the bovine milk fat globule membrane, Biochem. J. 147: 417–423.PubMedGoogle Scholar
  17. Bruder, G., Fink, A., and Jarasch, E.-D., 1978, The b-type cytochromes in endoplasmic reticulum of mammary gland epithelium and milk fat globule membrane consists of two components, cytochrome b 5 and cytochrome P420, Exp. Cell Res. 117: 207–217.PubMedCrossRefGoogle Scholar
  18. Bruder, G., Bretscher, A., Franke, W. W., and Jarasch, E.-D., 1980, Plasma membranes from intestinal microvilli and erythrocytes contain cytochromes b5 and P420, Biochim. Biophys. Acta 600: 739–755.PubMedCrossRefGoogle Scholar
  19. Bruder, G., Heid, H. Jarasch, E.-D., Keenan, T. W., and Mather, I. H., 1982, Characteristics of membrane bound and soluble forms of xanthine oxidase from milk and endothelial cells of capillaries, Biochim. Biophys. Acta 701: 357–369.PubMedCrossRefGoogle Scholar
  20. Buckland, R. M., Radda, G. K., and Wakefield, L. M., 1981, The role of phospholipids in the modulation of enzyme activities in the chromaffin granule membrane, Biochim. Biophys. Acta 643: 363–375.PubMedCrossRefGoogle Scholar
  21. Catignani, G. L., Chytil, F., and Darby, W. J., 1974, Vitamin E deficiency: Immunochemical evidence for increased accumulation of liver xanthine oxidase, Proc. Natl. Acad. Sci. USA 71: 1966–1968.PubMedCrossRefGoogle Scholar
  22. Charalampous, F. C., Gonatas, M. K., and Melbourne, A. D., 1973, Isolation and properties of the plasma membrane of KB cells, J. Cell Biol. 59: 421–435.PubMedCrossRefGoogle Scholar
  23. Chaney, R., Brown, J. C., and Tiffin, L. O., 1972, Obligatory reduction of ferric chelates in iron uptake by soybeans, Plant Physiol. 50: 208–213.PubMedCrossRefGoogle Scholar
  24. Chatterjee, T. B., and Banerjee, A., 1979, Estimation of dehydroascorbate in blood of diabetic patients, Anal. Biochem. 98: 368–374.PubMedCrossRefGoogle Scholar
  25. Cherry, J. M., MacKellar, W., Morré, D. J., Crane, F. L., Jacobsen, L. B., and Schirrmacher, V., 1981, Evidence for a plasma membrane redox system on intact ascites tumor cells with different metastatic capacity, Biochim. Biophys. Acta 634: 11–18.PubMedCrossRefGoogle Scholar
  26. Chesney, R. W., and Jox, D. K., 1979, Influence of glutathione oxidation on renal cortex taurine transport, Life Sci. 25:1497–1506.PubMedCrossRefGoogle Scholar
  27. Choury, D., Leroux, A., and Kaplan, J.-C., 1981, Membrane bound cytochrome b 5 reductase (methe-moglobin reductase) in human erythrocytes: Study in normal and methemoglobinemic subjects, J. Clin. Invest. 67:149–155.PubMedCrossRefGoogle Scholar
  28. Christensen, H. H., 1979, Exploiting amino-acid structure to learn about membrane transport, in: Advances in Enzymology and Related Areas of Molecular Biology, Vol. 49 (A Meister, ed.), Wiley, New York, pp. 41–101.Google Scholar
  29. Clark, M. G., Partick, E. J., Patten, G. S., Crane, F. L., Löw, H., and Grebing, C., 1981, Evidence for the extracellular reduction of ferricyanide by rat liver, Biochem. J. 200:565–572.PubMedGoogle Scholar
  30. Clark, M. G., Partick, E. J., and Crane, F. L., 1982, Properties and regulation of a trans-plasma membrane redox system in rat liver, Biochem. J. 204:795–801.PubMedGoogle Scholar
  31. Clark, M. G., Partick, E., and Crane, F. L., 1983, Effects of catecholamines on the transplasma membrane redox system in rat liver, Biochem. Int. 5:711–717.Google Scholar
  32. Cohen, C.M., Kalish, D. I., Jacobson, B. S., and Branton, D. J., 1977, Membrane isolation on polylysine coated beads: Plasma membrane from HeLa cells, J. Biol. Chem. 75:119–134.Google Scholar
  33. Cooperstein, S. J., and Watkins, D., 1977, Effect of alloxan on islet tissue reversibility: Protection and reversal by NADPH, Biochem. Biophys. Res. Commun. 79:756–762.PubMedCrossRefGoogle Scholar
  34. Craig, T. A., and Crane, F. L., 1981, Evidence for a transplasma membrane electron transport system in plant cells, Proc. Indiana Acad. Sci. 90:150–155.Google Scholar
  35. Craig, T. A., and Crane, F. L., 1982a, Transplasma membrane electron transport shows hormonal control and produces membrane hyperpolarization, Plant Physiol. 69:(suppl.):151.Google Scholar
  36. Craig, T. A., and Crane, F. L., 1982b, A transplasma membrane electron transfer system in plant cells under hormone control, Fed. Proc. 41:1165.Google Scholar
  37. Craig, T. A., and Crane, F. L., 1984, Hormonal control of a transplasmalemma electron transport system in plant cells, Proc. Indiana Acad. Sci. 91:150–154.Google Scholar
  38. Craig, T. A., Crane, F. L., Misra, P. C., and Barr, R., 1984, Transplasmalemma electron transport in Anacystis nidulans, Plant Sci. Lett., in press.Google Scholar
  39. Crane, F. L., 1957, Electron transport and cytochromes of subcellular particles from cauliflower buds, Plant Physiol. 32:619–625.PubMedCrossRefGoogle Scholar
  40. Crane, F. L., and Low, H., 1976, NADH oxidation in liver and fat cell plasma membranes, FEBS Lett. 68:153–156.PubMedCrossRefGoogle Scholar
  41. Crane, F. L., and Morré, D. J., 1977, Evidence for coenzyme Q function in Golgi membranes, in: Biomédical and Clinical Aspects of Coenzyme Q, Vol. 1 (K. Folkers and Y. Yamamura, eds.), Elsevier, Amsterdam, pp. 3–14.Google Scholar
  42. Crane, F. L., Goldenberg, H., Morré, D. J., and Löw, H., 1979, Dehydrogenases of the Plasma Membrane in Subcellular Biochemistry, Vol. 6 (D. B. Roodyn, ed.), Plenum, New York, pp. 345–399.CrossRefGoogle Scholar
  43. Crane, F. L., MacKellar, W. C., Morré, D. J., Ramasarma T, Goldenberg, A. Grebing. C., and Löw, H., 1980, Adriamycin affects plasma membrane redox functions, Biochem. Biophys. Res. Commun. 93:746–754.PubMedCrossRefGoogle Scholar
  44. Crane, F. L., Crane, H. E., Sun, I. L., MacKellar, W. C., Grebing, C., and Löw, H., 1982a, Insulin control of a transplasma membrane NADH dehydrogenase in erythrocyte membranes, J. Bioenerg. Biomembr. 14:425–433.PubMedCrossRefGoogle Scholar
  45. Crane, F. L., Roberts, H., Linnane, A. W., and Löw, H., 1982b, Transmembrane ferricyanide reduction by cells of the yeast Saccharomyces cerevisiae, J. Bioenerg. Biomembr. 14:191–205.PubMedCrossRefGoogle Scholar
  46. Crane, F. L., Löw, H., and Clark, M. G., 1982c, Transport and trans-plasma-membrane redox systems, in: Membranes and Transport, Vol. 2 (A. Martonosi, ed.), Plenum, New York, pp. 251–254.CrossRefGoogle Scholar
  47. Crawford, D. R., and Schneider, D. L., 1982, Identification of ubiquinone 50 in human neutrophils and its role in microbiocidal events, J. Biol. Chem. 257:6662–6668.PubMedGoogle Scholar
  48. Cross, A. R., Jones, O. T. G., Harper, A. M., and Segal, A. W., 1981, Oxidation-reduction properties of the cytochrome b found in the plasma membrane fraction of human neutrophils, Biochem. J. 194:599–606.PubMedGoogle Scholar
  49. Cushman, S. W., and Wardzala, L. J., 1980, Potential mechanism of insulin action on glucose transport in the isolated rat adipocyte cell, J. Biol. Chem. 255:4758–4762.PubMedGoogle Scholar
  50. Czech, M. P., 1977, Molecular basis of insulin action, Annu. Rev. Biochem. 46:359–384.PubMedCrossRefGoogle Scholar
  51. DePierre, J. W., and Ernster, L., 1977, Enzyme topology of intracellular membranes, Annu. Rev. Biochem. 46:201–262.PubMedCrossRefGoogle Scholar
  52. Dewald, B., Baggiolini, M., Curnutte, J. T., and Babior, B. M., 1979, Subcellular localization of the Superoxide forming enzyme in human neutrophils, J. Clin. Invest. 63:21–29.PubMedCrossRefGoogle Scholar
  53. Dilley, R. A., and McConnell, D. G., 1970, a Tocopherol in rod outer segments of bovine eyes, J. Membr. Biol. 2:317–323.CrossRefGoogle Scholar
  54. Dormandy, T. L., and Zarday, Z., 1965, The mechanism of insulin action: The immediate electrochemical effects of insulin on red cell systems, J. Physiol. 180:684–707.PubMedGoogle Scholar
  55. Eckman, J. R., and Eaton, J. W., 1972, Dependence of plasmodial glutathione metabolism on the host cell, Nature 278:754–756.CrossRefGoogle Scholar
  56. Emmelot, P., and Bos, C. J., 1972, Studies on plasma membranes XVII on the chemical composition of plasma membrane prepared from rat and mouse livers and hepatomas, J. Membr. Biol. 9:83–104.CrossRefGoogle Scholar
  57. Enser, M., 1979, The role of insulin in regulation of steric acid desaturase activity in liver and adipose tissue from obese-hyperglycaemic and lean mice, Biochem. J. 180:551–558.PubMedGoogle Scholar
  58. Erdmann, E., Krawietz, W., Philipp, G., Hackbarth, L, Schmitz, W., Scholz, H., and Crane, F. L., 1979, Purified cardiac cell membranes with high (Na+ + K+) ATPase activity contain significant NADH-vanadate reductase activity, Nature 282:335–336.PubMedCrossRefGoogle Scholar
  59. Finazzi-Agro, A., Menichelli, A., Persiami, M., Biancini, G., and Del Principe, D., 1982, Hydrogen peroxide release from human blood platelets, Biochem. Biophys. Acta 718:21–25.PubMedCrossRefGoogle Scholar
  60. Fischer, S., Cellino, M., Zambrano, F., Zampighi, G., Nagel, M. T., Marcus, D., and Canessa Fischer, M., 1970, Isolation characterization of plasma membranes from the retinal axons of the squid: An axolemma rich preparation, Arch. Biochem. Biophys. 138:1–15.PubMedCrossRefGoogle Scholar
  61. Flatmark, T., Langencrantz, H., Terland, O., Helle, K. B., and Stjärne L., 1971a, Electron carriers of the noradrenaline storage vesicles from bovine splemic nerve, Biochim. Biophys. Acta 245:249–252.PubMedCrossRefGoogle Scholar
  62. Flatmark, T., Terland, O., and Helle, K. B., 1971b, Chromaffin granule membranes. Electron carriers of the bovine adrenal chromaffin granules, Biochim. Biophys. Acta 226:9–19.PubMedCrossRefGoogle Scholar
  63. Fleischer, S., and Kervina, M., 1974, Subcellular fractionation of rat liver, in: Methods in Enzymology, Vol. 13 (S. Fleischer and L. Packer, eds.), Academic Press, New York, pp. 6–41.Google Scholar
  64. Fleischer, S., Fleischer, B., Azzi, A., and Chance, B., 1971, Cytochrome b 5 and P450 in liver cell fractions, Biochim. Biophys. Acta 225:194–200.PubMedCrossRefGoogle Scholar
  65. Fossel, E. T., and Solomon, A. K., 1977, Membrane mediated link between ion transport and metabolism in human red cells, Biochem. Biophys. Acta 464:82–92.PubMedCrossRefGoogle Scholar
  66. Fowler, S., Remade, J., Trouet, A., Beaufay, H., Berthet, J., Wibo, M., and Hansen, P., 1976, Analytical study of microsomes and isolated subcellular membranes from rat liver V, J. Cell Biol. 71:535–550.PubMedCrossRefGoogle Scholar
  67. Frantz, C. E., 1973, NADH: Ferricyanide oxidoreductase in rat liver plasma membrane, MS Thesis, Purdue University.Google Scholar
  68. Fried, G., 1978, Cytochrome b 561 in sympathetic nerve terminal vesicles from rat was deferens, Biochim. Biophys. Acta 507:175–177.PubMedCrossRefGoogle Scholar
  69. Gabig, T. G., Kipnes, R. S., and Babior, B. M., 1978, Solubilization of the O- 2 forming activity responsible for the respiratory burst in human neutrophils, J. Biol. Chem. 253:6663–6665.PubMedGoogle Scholar
  70. Garcia, M. L., Benevides, J., Valdivieso, F., Mayor, F., and Gimmenez-Gallego, G., 1978, Cytochromes in the rat kidney brush border membrane, Biochem. Biophys. Res. Commun. 82:738–744.PubMedCrossRefGoogle Scholar
  71. Garcia-Sancho, J., Sanchez, A., Handlogton, M. E., and Christensen, H. N., 1977, Unexpected additional mode of energization of amino-acid transport into Ehrlich cells, Proc. Natl. Acad. Sci. USA 74:1488–1491.PubMedCrossRefGoogle Scholar
  72. Garcia-Sancho, J., Sanchez, H., and Herreros, B., 1979, Stimulation of monovalent cation fluxes by electron donors in the human red cell membrane, Biochim. Biophys. Acta 556:118–130.PubMedCrossRefGoogle Scholar
  73. Gayda, D. P., Crane, F. L., Morré, D. J., and Löw, H., 1977, Hormone effects on NADH oxidizing enzymes of plasma membranes of rat liver, Proc. Indiana Acad. Sci. 86:385–390.Google Scholar
  74. Giacobino, J.-P., and Chmelar, M., 1975, Comparison of plasma membranes and endoplasmic reticulum fractions obtained from whole white adipose tissue and isolated adipocytes, Biochim. Biophys. Acta 406:68–82.PubMedCrossRefGoogle Scholar
  75. Giacobino, J.-P., and Chmelar, M., 1977, The role of chain elongation systems in the supplying of fatty acids to the adipocyte membrane lipids, Biochim. Biophys. Acta 487:269–276.PubMedCrossRefGoogle Scholar
  76. Gimenez-Gallego, G., Benevides, J., Gacia, M. L., and Valdivieso, F., 1980, Occurrence of a reduced nicotinamide adenine nucleotide oxidase activity linked to a cytochrome system in renal brush border membranes, Biochemistry 19:4834–4839.PubMedCrossRefGoogle Scholar
  77. Goldenberg, H., 1980, Insulin inhibits NADH-semidehydroascorbate reductase in rat liver plasma membrane, Biochem. Biophys. Res. Commun. 94:721–726.PubMedCrossRefGoogle Scholar
  78. Goldenberg, H., 1982a, Density gradient fractionation of digitonin-treated rat liver plasma membranes and subcellular localization of NADH oxidoreductase and B type cytochromes, Enzyme 27:227–238.PubMedGoogle Scholar
  79. Goldenberg, H., 1982b, Plasma membrane redox activities, Biochim. Biophys. Acta 694:203–223.PubMedCrossRefGoogle Scholar
  80. Goldenberg, H., Crane, F. L., and Morré, D. J., 1978, Influence of hormones on the NADH dehydrogenase in mouse liver plasma membrane, Biochem. Biophys. Res. Commun. 83:234–240.PubMedCrossRefGoogle Scholar
  81. Goldenberg, H., Crane, F. L., and Morré, D. J., 1979, NADH oxidoreductase of mouse liver plasma membranes, J. Biol. Chem. 254:2491–2498.PubMedGoogle Scholar
  82. Goldenberg, H., Grebing, C., and Löw, H., 1983, NADH monodehydroascorbate reductase in human erythrocyte membranes, Biochem. Internat. 6:1–10.Google Scholar
  83. Gota-Tamura, R., Takesue, Y., and Takesue, S., 1976, Immunological similarity between NADH-cytochrome b 5 reductase of erythrocytes and liver microsomes, Biochim. Biophys. Acta 423:293–302.CrossRefGoogle Scholar
  84. Grebing, C., Crane, F. L., Löw, H., and Hall, K., 1984, A transmembrane NADH-dehydrogenase in human erythrocyte membranes, J. Bioenerg. Biomemb., in press.Google Scholar
  85. Green, T. R., Schaefer, R. E., and Makler, M. T., 1980, Orientation of the NADPH dependent Superoxide generating oxidoreductase on the outer membrane of human PMN’s, Biochem. Biophys. Res. Commun. 94:262–269.PubMedCrossRefGoogle Scholar
  86. Gross, G. G., 1977, Cell wall bound malate dehydrogenase from horseradish, Phytochemistry 16:319–321.CrossRefGoogle Scholar
  87. Haest, C. W. M., 1982, Interactions between membrane skeleton proteins and the intrinsic domain of the erythrocyte membrane, Biochim. Biophys. Acta 694:331–352.PubMedCrossRefGoogle Scholar
  88. Haest, C. W. M., Kamp, D., and Deuticke, B., 1981, Topology of membrane sulfhydryl groups in the human erythrocyte. Demonstration of a nonreactive population in intrinsic proteins, Biochim. Biophys. Acta 643:319–326.PubMedCrossRefGoogle Scholar
  89. Hanker, J. S., Coleman, R. A., Carson, K. A., and Pearse, A. G. E., 1977, Electron microscopic demonstration of lactate dehydrogenase and NADH dehydrogenase (diaphorase) in phagosomes, Acta Histochem. Cytochem. 10:380–386.CrossRefGoogle Scholar
  90. Harmon, H. J., and Crane, F. L., 1976, Inhibition of mitochondrial electron transport by hydrophilic metal chelators: determination of dehydrogenase topography, Biochim. Biophys. Acta 440:45–58.PubMedCrossRefGoogle Scholar
  91. Harmon, H. J., Hall, J. D., and Crane, F. L., 1974, Structure of mitochondrial cristae membranes, Biochim. Biophys. Acta 334:119–155.Google Scholar
  92. Hatefi, Y., and Stempel, K. E., 1969, Mitochondrial NADH dehydogenase, J. Biol. Chem. 244:2350–2357.PubMedGoogle Scholar
  93. Henning, R., and Stoffel, W., 1972, Ubiquinone in the lysosomal membrane fraction of rat liver, Hoppe-Seyler Z. Physiol. Chem. 353:75–78.PubMedCrossRefGoogle Scholar
  94. Hersey, S. J., Miller, M., and Orvirodu, A., 1982, Role of glucose metabolism in acid formation by isolate gastric glands, Biochim. Biophys. Acta 714:143–151.PubMedCrossRefGoogle Scholar
  95. Holloway, P. W., 1971, A requirement for three protein components in microsomal stearyl coenzyme A desaturation, Biochemistry 10:1556–1560.PubMedCrossRefGoogle Scholar
  96. Home, D. W., Briggs, W. T., and Wagner, C., 1979, Studies on the transport mechanism of 5-methyl-tetrahydrofolic acid in freshly isolated hepatocytes: Effect of ethanol, Arch. Biochem. Biophys. 196:557–565.CrossRefGoogle Scholar
  97. Huang, C. M., Goldenberg, H., Frantz, D., Moore, D. J., Keenan, T. W., and Crane, F. L., 1979, Comparison of NADH linked cytochrome c reductases of endoplasmic reticulum, Golgi apparatus and plasma membrane, Int. J. Biochem. 10:723–731.PubMedCrossRefGoogle Scholar
  98. Ichikawa, Y., and Yamano, T., 1970, Cytochrome b 5 and CO-binding cytochromes in the Golgi membranes of mammalian livers, Biochem. Biophys. Res. Commun. 40:297–305.PubMedCrossRefGoogle Scholar
  99. Jansson, I., and Schenkman, J. B., 1977, Studies on three microsomal electron transfer enzyme systems, Arch. Biochem. Biophys. 178:89–107.PubMedCrossRefGoogle Scholar
  100. Jarasch, E.-D., Bruder, G., Keenan, T. W., and Franke, W. W., 1977, Redox constituants in milk fat globule membranes and rough endoplasmic reticulum from lactating mammary gland, J. Cell Biol. 73:223–241.PubMedCrossRefGoogle Scholar
  101. Jarasch, E.-D., Kartenbeck, J., Bruder, G., Fink, A., Morré, D. J., and Franke, W. W., 1979, B-type cytochromes in plasma membranes isolated from rat liver in comparison with those of endomembranes, J. Cell Biol. 80:37–52.PubMedCrossRefGoogle Scholar
  102. Jarasch, E.-D., Grund, C., Bruder, G., Heid, H. W., Keenan, T. W., and Franke, W. W., 1981, Location of xanthine oxidase in mammary gland epithelium and capillary endothelium, Cell 25:67–82.PubMedCrossRefGoogle Scholar
  103. Jelsema, C., and Morré, D. J., 1978, Distribution of phospholipid biosynthetic enzymes among cell components of rat liver, J. Biol. Chem. 253:7960–7971.PubMedGoogle Scholar
  104. Jesaitis, A. J., Heners, P. R., Hertel, R., and Briggs, W. R., 1977, Characterization of a membrane fraction containing a b type cytochrome, Plant Physiol. 59:941–947.PubMedCrossRefGoogle Scholar
  105. Jones, D. P., Moldeus, P., Stead, A. H., Ormstad, K., Jörnvall, H., and Orrenius, S., 1979, Metabolism of glutathione and a glutathione conjugate by isolated kidney cells, J. Biol. Chem. 254:2787–2792.PubMedGoogle Scholar
  106. Jones, H. P., Ghai, G., Pétrone, W. F., and McCord, J. M., 1982, Calmodulin-dependent stimulation of the NADPH oxidase of human neutrophils, Biochim. Biophys. 714:152–156.CrossRefGoogle Scholar
  107. Kadlubowski, M., and Agutter, P. M., 1977, NADH dehydrogenase in human erythrocyte membranes, Br.J.Hematol. 37:111–125.Google Scholar
  108. Kant, J. A., and Steck, T. L., 1972, Cation impermeable inside-out and right side out vesicles from human erythrocyte membranes, Nature 240:26–28.Google Scholar
  109. Kant, J. A., and Steck, T. L., 1973, Specificity in the association of glyceraldehyde-3-phosphate dehydrogenase with isolated human erythrocyte membranes, J. Biol. Chem. 248:8457–8464.PubMedGoogle Scholar
  110. Kilberg, M. S., and Christensen, H. N., 1979, Electron-transferring enzymes in the plasma membrane of the Ehrlich ascites tumor cell, Biochemistry 18:1525–1530.PubMedCrossRefGoogle Scholar
  111. Kitajima, S., Yasukochi, Y., and Minakami, S., 1981, Purification and properties of human erythrocyte membrane NADH cytochrome b 5 reductase, Arch. Biochem. Biophys. 210:330–339.PubMedCrossRefGoogle Scholar
  112. Kitchen, G. J., 1974, A comparison of enzyme activity in membranes from skim milk and cream, Biochim. Biophys. Acta 356:257–269.PubMedCrossRefGoogle Scholar
  113. Knull, L., 1980, Role of the muscle LDH subunit, Trends Biochem. Sci. 5:(1) IX.CrossRefGoogle Scholar
  114. Kosower, N. S., Kosower, E. M., Zipser, Y., Faltin, Z., and Shomrat, R., 1981, Dynamic changes of red cell membrane thiol groups followed by bimane fluorescent labeling, Biochim. Biophys. Acta 640:748–759.PubMedCrossRefGoogle Scholar
  115. Kuchii, M., Masuda, Y., Okada, N., Yamamoto, A., Murano, T., 1973, On the purity of the liver cell membrane fraction isolated from CCI4 treated rats, Japan J. Pharmacol. 23:639–644.CrossRefGoogle Scholar
  116. Kuma, F., Ishizawa, S., Hirayama, K., and Najajima, H., 1972, Studies on methemoglobin reductase. Comparative studies of diaphorases from normal and methemoglobinic erythrocytes, J. Biol. Chem. 247:550–555.PubMedGoogle Scholar
  117. Kurgarrov, B. I., and Loboda, N. I., 1979, Regulation of enzyme activity in absorptive enzyme systems, J. Theoret. Biol. 79:281–301.CrossRefGoogle Scholar
  118. Kwashima, Y., and Kozuka, H., 1982, Increased activity of stearyl coA desaturation in liver from rat fed clofibric acid, Biochim. Biophys. Acta 713:622–628.CrossRefGoogle Scholar
  119. Langreth, S. G., 1977, Electron microscope cytochemistry of host-parasite membrane interactions in malaria, Bull. W.H.O. 55:171–178.PubMedGoogle Scholar
  120. Lemberg, R., and Barrett, J., 1973, Cytochrome, Academic Press, London, pp. 1–580.Google Scholar
  121. Leong, T.-Y., and Briggs, W. R., 1981, Further characterization of a blue-light-sensitive cytochrome-flavin complex from corn coleoptile membranes, Carnegie Inst. Yearbook 1:93–95.Google Scholar
  122. Light, D. R., Walsh, C., O’Callaghan, A. M., Goetzl, E. J., and Tauber, A. I., 1981, Characteristics of the cofactor requirements for the superoxide-generating NADPH oxidase of human polymorphonuclear leucocytes, Biochemistry 20:1468–1476.PubMedCrossRefGoogle Scholar
  123. Lin, W., 1982a, Responses of corn root protoplasts to endogenous reduced nicotinanide adeniue dinucleotide (NADH): Oxygen consumption, ion uptake and membrane potential, Proc. Natl. Acad. Sci. USA 79:3773–3779.PubMedCrossRefGoogle Scholar
  124. Lin, W., 1982b, Isolation of NADH oxidation system from the plasmalemma of corn root protoplasts, Plant Physiol. 70:326–328.PubMedCrossRefGoogle Scholar
  125. Löw, H., and Crane, F. L., 1976, Hormone regulated redox functions in plasma membranes, FEBS Lett. 68:157–159.PubMedCrossRefGoogle Scholar
  126. Löw, H., and Crane, F. L., 1978, Redox function in plasma membranes, Biochim. Biophys. Acta 515:141–161.PubMedCrossRefGoogle Scholar
  127. Löw, H., and Werner, S., 1976, Effects of reducing and oxidizing agents on the adenylate cyclase activity in adipocyte plasma membranes, FEBS Lett. 65:96–98.PubMedCrossRefGoogle Scholar
  128. Löw, H., Crane, F. L., Grebing, C., Hall, K., and Tally, M., 1979, Metabolic Milieu and Insulin Action in Diabetes 1979 (W. K. Waldhüsl ed.), Excerpta Medica, Amsterdam, pp. 209–213.Google Scholar
  129. Löw, H., Crane, F. L., Grebing, C., Hall, K., and Tally, M., 1979, Metabolic Milieu and Insulin Action in Diabetes 1979 (W. K. Waldhäusl ed.), Excerpta Medica, Amsterdam, pp. 209–213.Google Scholar
  130. Lundborg, T., Widell, S., and Larsson, C., 1981, Distribution of ATPases in wheat root membranes separated by phase partition, Physiol. Plant. 52:89–95.CrossRefGoogle Scholar
  131. MacKellar, W. C., 1981, A transmembrane NADH dehydrogenase in porcine erythrocyte plasma membrane, Ph.D. Thesis, Purdue UniversityGoogle Scholar
  132. MacKellar, W. C., and Crane, F. L., 1982, Iron and copper in plasma membranes, J. Bioenerg. Biomembr. 14:241–247.PubMedCrossRefGoogle Scholar
  133. Mahler, H. R., Raw, I., Molinari, R., Amaral, D. F. D., 1958, Studies of electron transport enzymes. II. Isolation and some properties of a cytochrome-specific reduced diphosphopyridine nucleotide dehy-drogenase from pig liver, J. Biol. Chem. 233:230–239.PubMedGoogle Scholar
  134. Manyai, S., and Szekely, M., 1954, Die Wirkung von natriumfluorid und monojodessigsäure auf die Glykolyse von menschlichen raten blutkörperchen, Acta Physiol. Acad. Sci. Hung. 5:7–18.CrossRefGoogle Scholar
  135. Masuda, Y., Kuchii, M., Yamamoto, H., and Murano, T., 1973a, Influence of CC14 administration on solubilization of the enzymes in electron transport system in rat liver plasma membrane and microsome, Japan J. Pharmacol. 23:757–765.CrossRefGoogle Scholar
  136. Masuda, Y., Kuchii, M., Yamamoto, A., and Murano, T., 1973b, Characterization of NADH-cytochrome c reductase of liver cell membrane in normal and CCl4 treated rats, Japan J. Pharmacol. 23:653–663.CrossRefGoogle Scholar
  137. May, J. M., and de Haën, C., 1979, The insulin-like effect of hydrogen peroxide on pathways of lipid synthesis in rat adipocytes, J. Biol. Chem. 254:9017–9021.PubMedGoogle Scholar
  138. Maxfield, F. R., 1982, Weak bases and ionophores rapidly and reversibly raise the pH of endocytic vesicles in cultured mouse fibroblasts, J. Cell Biol. 95:676–681.PubMedCrossRefGoogle Scholar
  139. McKeel, D. W., and Jarett, L., 1970, Preparation and characterization of a plasma membrane fraction from isolated fat cells, J. Cell Biol. 44:417–432.PubMedCrossRefGoogle Scholar
  140. McLaughlin, P., Sun, I. L., and Crane, F. L., 1983, Membrane redox system in porcine neutrophils, Proc. Indiana Acad. Sci., 92:333–339.CrossRefGoogle Scholar
  141. McPhail, L. C., DeChatelet, L. R., Shirley, P. S., Wilfert, C., Johnston, R. B. Jr., and McCall, C. E., 1977, Deficiency of NADPH oxidase in chronic granulomatous disease, J. Pediat. 90:213–217.PubMedCrossRefGoogle Scholar
  142. McPhail, L. C., Henson, P. M., and Johnston, R. B., Jr., 1981, Location of Superoxide producing oxidases on leucocytes, J. Clin. Invest. 67:710–716.PubMedCrossRefGoogle Scholar
  143. Millard, J. A., Gerard, K. W., and Schneider, D. L., 1979, The isolation from rat peritoneal leukocytes of plasma membrane enriched in alkaline phosphatase and a B-type cytochrome, Biochem. Biophys. Res. Commun. 90:312–319.PubMedCrossRefGoogle Scholar
  144. Milsom, J. P., and Batey, R. G., 1979, The mechanism of hepatic iron uptake with native and denatured transferrin and its subcellular metabolism in the liver cell, Biochem. J. 182:117–125.PubMedGoogle Scholar
  145. Miner, C., Lopez-Burillo, S., Garcia-Sancho, J., and Herreros, B., 1983, Plasma membrane NADH dehydrogenase and Ca+ + dependent potassium transport in erythrocytes of several animal species, Biochim. Biophys. Acta 727:266–272.PubMedCrossRefGoogle Scholar
  146. Mishra, R. K., and Passow, H., 1969, Induction of intracellular ATP synthesis by extracellular ferricyanide in human red blood cells, J. Membr. Biol. 1:214–224.CrossRefGoogle Scholar
  147. Misra, P. C., Craig, T., and Crane, F. L., 1984, The link between transport and plasma membrane redox system(s) in carrot cells, J. Bioenerg. Biomemb., in press.Google Scholar
  148. Mitchell, P., 1976, Vectorial chemistry and the molecular mechanics of chemiosmotic coupling, Biochem. Soc. Trans. 4:399–430.PubMedGoogle Scholar
  149. Moore, R., 1983, Effects of insulin upon ion transport, Biochim. Biophys. Acta 737:1–49.PubMedCrossRefGoogle Scholar
  150. Morré, D. J., Keenan, T. W., and Huang, C. M., 1974, Membrane flow and differentiation: Origin of Golgi apparatus membranes from endoplasmic reticulum, in: Advances in Cytopharmacology, Vol. 2 (B. Ceccarelli, F. Clementi, and J. Meldolesi, eds.), Raven Press, New York, pp. 107–125.Google Scholar
  151. Morré, D. J., Vigil, E. L., Frantz, C., Goldenberg, H., and Crane, F. L., 1978, Cytochemical demonstration of glutaraldehyde-resistant NADH-ferricyanide oxidoreductase activities in rat liver plasma membranes and Golgi apparatus, Cytobiologie 18:213–230.PubMedGoogle Scholar
  152. Mukherjee, C., Lynn, W. S., and Mukherjee, S. P., 1980, Role of cellular redox state and glutathione in the response of adenylate cyclase in human leukocytes to prostaglandins and isoproterenol, J. Cell Biol. 87:172a.Google Scholar
  153. Mukherjee, S. P., and Lynn, W. S., 1977, Reduced nicotinamide adenine dinucleotide phosphate oxidase in adipocyte plasma membrane and its activation by insulin, Arch. Biochem. Biophys. 184:68–76.CrossRefGoogle Scholar
  154. Mukherjee, S. P., and Lynn, W. S., 1979, Role of cellular redox state and glutathione in adenylate cyclase activity in rat adipocytes, Biochim. Biophys. Acta 568:224–233.PubMedCrossRefGoogle Scholar
  155. Mukherjee, S. P., and Mukherjee, C., 1981, Role of sulfhydryl oxidation in adipocyte plasmamembrane surface in the response of adenylate cyclase to isoproterenol and glucagon, Biochim. Biophys. Acta 677:339–349.PubMedCrossRefGoogle Scholar
  156. Munoz, V., and Butler, W. L., 1975, Photoreceptor pigment for blue light responses in Neurospora crassa, Plant Physiol. 55:421–426.PubMedCrossRefGoogle Scholar
  157. Murikami, T., Suzuki, Y., and Murachi, T., 1979, An acid protease in human erythrocytes and its location in the inner membrane, Eur. J. Biochem. 96:221–227.CrossRefGoogle Scholar
  158. Nathans, G. R., and Hade, E. P. K., 1978, Bovine milk xanthine oxidase purification by ultrafiltration and conventional methods which omit addition of proteases, Biochim. Biophys. Acta 526:328–344.PubMedCrossRefGoogle Scholar
  159. Nielsen, C. S., and Bjerrum, O. J., 1977, Crossed immunoelectrophoresis of bovine milk fat globule membrane protein solubilized with non-ionic detergent, Biochem. Biophys. Acta 466:496–509.PubMedCrossRefGoogle Scholar
  160. Ohmori, H., 1978, Xanthine oxidase induced foot edema in rats: Involvement of oxygen radicals, Biochem. Pharmacol. 27:1397–1400.PubMedCrossRefGoogle Scholar
  161. Ormstad, K. Lastbom, T., and Orrenius, S., 1981, Characteristics of renal glutathione oxidase activity, FEBS Lett. 130:239–243.PubMedCrossRefGoogle Scholar
  162. Ormstad, K., Lastbom, T., and Orrenius, S., 1982, Evidence for a different location of glutathione oxidase and γ glutamyltransferase activities during extracellular glutathione metabolism in isolated perfused rat kidney, Biochim. Biophys. Acta 700:148–153.PubMedCrossRefGoogle Scholar
  163. Orringer, E. P., and Roer, M. E. S., 1979, An ascorbate mediated transmembrane-reducing system of the human erythrocyte, J. Clin. Invest. 63:53–58.PubMedCrossRefGoogle Scholar
  164. Passon, P. G., and Hultquist, D. E., 1972, Soluble cytochrome b5 reductase from human erythrocytes, Biochim. Biophys. Acta 275:62–73.PubMedCrossRefGoogle Scholar
  165. Patton, S., and Keenan, T. W., 1975, The milk fat globule membrane, Biochim. Biophys. Acta 415:273–309.PubMedCrossRefGoogle Scholar
  166. Peterson, J. A., Ullrich, V., and Hildebrandt, A. G., 1971, Metyrapone interaction with Pseudomonas putida cytochrome P450, Arch. Biochem. Biophys. 145:531–542.PubMedCrossRefGoogle Scholar
  167. Pollard, H. B., Miller, A., and Cox, G. C., 1973, Synaptic vesicles: Structure of chromaffin granule membranes, J. Supramol. Struct. 1:295–306.PubMedCrossRefGoogle Scholar
  168. Puppi, A., Dely, M., and Prager, P., 1979, The role of the redox state in heart activity, J. Interdise. Cycle Res. 10:85–94.CrossRefGoogle Scholar
  169. Ramasarma, T., 1982, Generation of H2O2 in biomembranes, Biochim. Biophys. Acta 694:69–94.PubMedCrossRefGoogle Scholar
  170. Ramasarma, T., MacKellar, W., and Crane, F. L., 1980, Nature of NADH: Acceptor oxidoreductase in plasma membranes of mouse liver, Indian J. Biochem. Biophys. 17:163–167.PubMedGoogle Scholar
  171. Ramasarma, T., MacKellar, W., and Crane, F. L., 1981a, Vanadate stimulated NADH oxidation in plasma membrane, Biochim. Biophys. Acta 646:88–98.PubMedCrossRefGoogle Scholar
  172. Ramasarma, T., Swaroop, A., MacKellar, W., and Crane, F. L., 1981b, Generation of hydrogen peroxide on oxidation of NADH by hepatic plasma membranes, J. Bioenerg. Biomembr. 13:241–253.PubMedCrossRefGoogle Scholar
  173. Rao, A., 1979, Disposition of the band 3 polypeptide in the human erythrocyte membrane, J. Biol. Chem. 254:3503–3511.PubMedGoogle Scholar
  174. Remacle, J., Fowler, S., Beaufay, H., Amar-Costec, A., and Berthet, J., 1976, Analytical study of microsomes and isolated subcellular membranes from rat liver VI, J. Cell Biol. 71:551–564.PubMedCrossRefGoogle Scholar
  175. Roberts, P. J., Cross, A. R., Jones, O. T., G., and Segal, A. W., 1982, Development of cytochrome b and an active oxidase system in association with maturation of a human promyelocytic (HL-60) cell line, J. Cell Biol. 95:720–726.PubMedCrossRefGoogle Scholar
  176. Robinson, J. M., Briggs, R. T., and Karnosky, M. J., 1978, Localization of D-amino acid oxidase on the cell surface of human polymorphonuclear leukocytes, J. Cell Biol. 77:59–71.PubMedCrossRefGoogle Scholar
  177. Rogers, M. J., and Strittmatter, P., 1973, Lipid protein interactions in the reconstitution of the microsomal reduced nicotinamide adenine dinucleotide cytochrome b5 reductase, J. Biol. Chem. 248:800–806.PubMedGoogle Scholar
  178. Romeo, D., 1982, Transmembrane signaling and modification of neutrophil behavior, Trends Biochem. Sci. 7:408–411.CrossRefGoogle Scholar
  179. Schneider, H., Fuhrmann, G. F., and Fiechter, 1979, A b type cytochrome in yeast plasma membranes. Saccharomyces cerevisiae and Candida tropicalis, Biochim. Biophys. Acta 554:309–322.PubMedCrossRefGoogle Scholar
  180. Schulze, H.-V., Gallencamp, H., and Staudinger, H., 1970, Untersuchungen zum mikrosomalen NADH-obhäugigen Elektrontransport, Hoppe-Seyler Z. Physiol. Chem. 351:309–317.CrossRefGoogle Scholar
  181. Segal, A. W., and Jones, O. T., 1979, The subcellular distribution and some properties of the cytochrome b component of the microbicidal oxidase system of human neutrophils, Biochem. J. 182:181–188.PubMedGoogle Scholar
  182. Segal, A. W., and Peters, T. J., 1976, Characterization of the enzyme defect in chronic granulamatous disease, Lancet 1:1363–1365.PubMedCrossRefGoogle Scholar
  183. Segal, A. W., Garcia, R., Goldstone, A. H., Cross, A. R., and Jones, O. T. G., 1981, Cytochrome b -245 of neutrophils is also present in human monocytes, macrophages and eosinophils, Biochem. J. 196:363–367.PubMedGoogle Scholar
  184. Segal, A. W., Cross, A. R., Garcia, R. C., Borregaard, N., Valerius, N. H., Soothill, J. F., and Jones, O. T. G., 1983, Absence of cytochromeb -245 in chronic granulomatous disease, New Eng. J. Med. 308:245–251.PubMedCrossRefGoogle Scholar
  185. Serrano, R., 1978, Characterization of the plasma membrane ATPase of Saccharomyces cerevisiae, Mol. Cell Biochem. 22:51–63.PubMedCrossRefGoogle Scholar
  186. Shimasaki, H., and Privett, O. S., 1975, Studies on the role of vitamin E in the oxidation of blood components by fatty acid hydroperoxides, Arch. Biochem. Biophys. 169:506–512.PubMedCrossRefGoogle Scholar
  187. Silsand, T., and Flatmark, T., 1974, Purification of cytochrome b -561 Biochim. Biophys. Acta 395:257–266.Google Scholar
  188. Slivkowski, M. B., Slivkowski, M. X., Swaisgood, H. E., and Horton, H. R., 1981, Nonidentity of sulfhydryl oxidase and γ-glutamyltransferase in bovine milk, Arch. Biochem. Biophys. 211:731–737.CrossRefGoogle Scholar
  189. Smith, M. T., Thor, H., and Orrenius, S., 1981, Toxic injury to isolated hepatocytes is not dependent on extracellular calcium, Science 213:1257–1259.PubMedCrossRefGoogle Scholar
  190. Sottocasa, G. L., Ernster, L., Kuylenstierna, B., and Bergstrand, A., 1967, Occurrence of an NADH-cytochrome c reductase system in the outer membrane of rat liver mitochondria, in: Mitochondrial Structure and Compartmentation (E. Quagliariello, S. Papa, E. C. Slater, and J. M. Tager, eds.), Adriatica Editrice, Bari, pp. 74–89.Google Scholar
  191. Spatz, L., and Strittmatter, P. S., 1973, A form of NADH cytochrome b5 reductase containing both the catalytic site and an additional hydrophobic membrane binding segment. J. Biol. Chem. 248: 793–799.PubMedGoogle Scholar
  192. Steck, T. L., 1974, Preparation of impermeable inside out and right side out vesicles from erythrocyte membranes, in: Methods in Membrane Biology, Vol 2. (E. D. Korn, ed.) Plenum, New York, pp. 245–281.CrossRefGoogle Scholar
  193. Steck, T. L., and J. A. Kant, 1974, Preparation of impermeable ghosts and inside-out vesicles from human erythrocyte membranes, in Methods in Enzymol. XXXI (Fleischer, S. and Packer, L., eds.) Academic Press, New York, pp. 172–180.Google Scholar
  194. Strittmatter, P., 1963, Microsomal cytochrome b5 and cytochrome b5 reductase, in: The Enzymes, 2nd Ed., Vol. 8 (P. D. Boyer, H. Lardy, and K. Myrback, eds.), Academic Press, New York, pp. 113–145.Google Scholar
  195. Strittmatter, P., and Velick, S. F., 1956, A microsomal cytochrome reductase specific for diphosphopyridine nucleotide, J. Biol. Chem. 221:277–286.PubMedGoogle Scholar
  196. Sun, I. L., and Crane, F. L., 1981a, Transplasmalemma NADH dehydrogenase is inhibited by actinomycin D, Biochem. Biophys. Res. Commun. 101:68–75.PubMedCrossRefGoogle Scholar
  197. Sun, I. L., and Crane, F. L., 1981b, Evidence that a transplasma membrane redox system is coupled to membrane potential in HeLa cells, Am. Soc. Microbiol. 82 Meet. ProC., p. 165.Google Scholar
  198. Sun, I. L., and Crane, F. L., 1982, Antitumor drug inhibition of transplasma membrane redox function, Fed. Proc. 41:737.Google Scholar
  199. Sun, I. L., MacKellar, W. C., and Crane, F. L., 1981, Plasma membrane NADH dehydrogenase is inhibited by anthracycline and other antineoplastic agents, Fed. Proc. 40:1815.Google Scholar
  200. Sun, I. L., Crane, F. L, and Morré, D. J., 1983, Calmodulin-NADH semidehydroascorbate oxidoreductase interactions of clathrin coated vesicles. Biochem. Biophys. Res. Commun. 115:952–957.PubMedCrossRefGoogle Scholar
  201. Takanaka, K., and O’Brien, P. J., 1975, Mechanisms of H2O2 formation by leucocytes. Evidence for a plasma membrane location, Arch. Biochem. Biophys. 169:428–435.PubMedCrossRefGoogle Scholar
  202. Takesue, S., and Omura, T., 1970, Purification and properties of NADH cytochrome b 5 reductase solubilized by lysosomes from rat liver microsomes, J. Biochem. 67:267–276.PubMedGoogle Scholar
  203. Tauber, A. I., 1982, The human neutrophil oxygen armory, Trends Biochem. Sci. 7:411–414.CrossRefGoogle Scholar
  204. Terland, O., and Flatmark, T., 1973, NADH (NADPH): Acceptor oxidoreductase activités of the bovine adrenal chromaffin granules, Biochem. Biophys. Acta 305:206–218.PubMedCrossRefGoogle Scholar
  205. Terland, O., and Flatmark, T., 1980, Oxidoreductase activities of chromaffin granule ghosts isolated from bovine adrenal medulla, Biochim. Biophys. Acta 597:318–330.PubMedCrossRefGoogle Scholar
  206. Terland, O., Silsand, T., and Flatmark, T., 1974, Cytochrome b 561as the single heme protein of bovine adrenal chromaffin granule membranes, Biochim. Biophys. Acta 359:253–256.PubMedCrossRefGoogle Scholar
  207. Tillmann, W., Cordua, A., and Schröter, W., 1975, Organization of enzymes of glycolysis and of glutathione metabolism in human red cell membranes, Biochim. Biophys. Acta 382:157–171.CrossRefGoogle Scholar
  208. Topham, R. W., Walker, M. C., Calisch, M. P., 1982, Liver xanthine oxidase and iron metabolism, Biochem. Biophys. Res. Commun. 109:1240–1246.PubMedCrossRefGoogle Scholar
  209. Trick, C. G., Andersen, R. J., Gillam, A., and Harrison, P. J., 1983, Prorocentrin: An extracellular siderophore produced by the marine dinoflagellate Prorocentrum minimum, Science 219:306–308.PubMedCrossRefGoogle Scholar
  210. Tritsch, G. L., and Niswander, P. W., 1981, Adenosine deaminase activity and Superoxide formation during phagocytosis at different cell densities, Biochem. Med. 26:185–190.PubMedCrossRefGoogle Scholar
  211. Tritsch, G. L., and Niswander, P. W., 1983, Modulaton of macrophage Superoxide release by purine metabolism, Life Sci. 32:1359–1362.PubMedCrossRefGoogle Scholar
  212. Tritton, T. R., and Yee, G., 1982, The anticancer drug adriamycin can be cytotoxic without entering cells, Science 217:248–250.CrossRefGoogle Scholar
  213. Van Berkel, T. J. C., and Kruijt, J. K., 1977, Distribution and some properties of NADPH and NADH oxidase in parenchymal and nonparenchymal liver cells, Arch. Biochem. Biophys. 179:8–14.PubMedCrossRefGoogle Scholar
  214. Varandani, P. T., Raveed, D., and Nafz, M. A., 1978, Distribution of glutathione-insulin transhydrogenase in isolated rat hepatocytes as studied by immunoferritin and electron microscopy, Biochim. Biophys. Acta 538:343–353.PubMedCrossRefGoogle Scholar
  215. Vassiletz, I. M., Derkatchev. E. F., and Neifakh, S. A., 1967, The electron transport chain in liver cell plasma membrane, Exp. Cell Res. 46:419–427.PubMedCrossRefGoogle Scholar
  216. Vermorken, A. J., DeWaal, R., Van De Ven, W. J. M., Bloemendal, H., and Henderson, P. T., 1977, Hydroxylation of dehydroepiandrosterone in the eye lens, Biochem. Biophys. Acta 496:495–506.PubMedCrossRefGoogle Scholar
  217. Vemon, L. P., Mahler, H. R., and Sarkar, H. K., 1952, Studies on diphosphopyridine nucleotide cytochrome c reductase, J. Biol. Chem. 199:599–606.Google Scholar
  218. Wang, C.-S., 1980, Human erythrocyte NADH: (acceptor) Oxidoreductase. Kinetic properties and competitive substrate inhibition by ferricyanide, Biochim. Biophys. Acta 616:22–29.PubMedCrossRefGoogle Scholar
  219. Wang, C.-S., and Alaupovic, P., 1978, Isolation and partial characterization of human erythrocyte membrane NADH: (Acceptor) oxidoreductase, J. Supramol. Struct. 9:1–14.PubMedCrossRefGoogle Scholar
  220. Weber, G., Prajda, N., and Jackson, R. C., 1976, Key enzymes of IMP metabolism: Transformation and proliferation linked alterations in gene expression, Adv. Enzyme Reg. 14:3–24.CrossRefGoogle Scholar
  221. Wibo, M., Thines-Sempoux, D., Amar-Costesec, A., Beaufay, H., and Godelaine, D., 1981, Analytical study of microsomes and isolated subcellular membranes from rat liver VIII subfractionation of preparations enriched with plasma membranes, outer mitochondrial membranes or Golgi complex membranes, J. Cell Biol. 89:456–474.PubMedCrossRefGoogle Scholar
  222. Widell, S., Britz, S. J., and Briggs, W. R., 1980, Characterization of the red light induced reduction of a particle associated b-type cytochrome from corn in the presence of methylene blue, Photochem. Photobiol. 32:669–677.CrossRefGoogle Scholar
  223. Williams, C. H., Jr. 1976, Flavin containing dehydrogenases, in: The Enzymes, 3rd Ed. Vol. 8C (P. O. Boyer, ed.), pp. 90–173.Google Scholar
  224. Wrigglesworth, J. M., Keokitichai, S., Wooster, M. S., and Millar, F. A., 1976, Modification of glycer-aldehyde-3-phosphate dehydrogenase activity by absorption to erythrocyte membranes and phospholipid vesicles, Biochem. Soc. Trans. 4:637–640.PubMedGoogle Scholar
  225. Wu, J. M., Nickels, J. S., and Fisher, J. R., 1977, Regulation of nitrogen catalytic enzymes in chick liver: Effects of insulin, Enzyme 22:60–69.PubMedGoogle Scholar
  226. Wüthrich, A., Schatzmann, H. J., and Romero, P., 1979, Net ATP synthesis by running the red cell calcium pump backwards, Experientia 35:1589–1591.PubMedCrossRefGoogle Scholar
  227. Yamamoto, S.-L, and Kawasaki, T., 1981, The involvement of membrane oxidoreduction system in stimulating amino acid uptake in Ehrlich ascites tumor cells, Biochim. Biophys. Acta 644:192–200.PubMedCrossRefGoogle Scholar
  228. Yubisui, T., and Takeshita, M., 1980, Characterization of the purified NADH cytochrome b 5 reductase of human erythrocytes as a FAD containing enzyme, J. Biol. Chem. 255:2454–2456.PubMedGoogle Scholar
  229. Zamudio, I., and Canessa, M., 1966, Nicotinamide-adenine dinucleotide dehydrogenase activity of human erythrocyte membranes, Biochim. Biophys. Acta 120:165–169.PubMedCrossRefGoogle Scholar
  230. Zamudio, I., Cellino, M., and Canessa-Fischer, M., 1969, The relation between membrane structure and NADH (acceptor) oxidoreductase activity of erythrocyte ghosts, Arch. Biochem. Biophys. 129:336–345.PubMedCrossRefGoogle Scholar
  231. Zederman, R., Löw, H., and Hall, K., 1977, Effect of ethanol and lactate on the basal and glucagon-activated cyclic AMP formation in isolated hepatocytes, FEBS Lett. 75:291–294.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1985

Authors and Affiliations

  • F. L. Crane
    • 1
  • H. Löw
    • 2
  • M. G. Clark
    • 3
  1. 1.Department of Biological SciencesPurdue UniversityWest LafayetteUSA
  2. 2.Endocrinology DepartmentKarolinska InstituteStockholmSweden
  3. 3.Division of Human NutritionCommonwealth Scientific and Industrial Research OrganizationAdelaideAustralia

Personalised recommendations