Biosynthesis of the Yeast Mitochondrial H+-ATPase Complex

  • Sangkot Marzuki
  • Anthony W. Linnane

Abstract

The elucidation of the mechanism of assembly of multimeric enzyme complexes of the mitochondrial inner membrane is a major challenge in biochemistry. One of these enzyme complexes, the mitochondrial H+-translocating ATPase, has been the focus of intensive investigations in recent years. This enzyme complex, which is the terminal enzyme in oxidative phosphorylation catalyzing in vivo the synthesis of ATP when coupled to the mitochondrial electron transport chain, is assembled from subunits which are synthesized in the mitochondria as well as subunits imported from the extramitochondrial cytoplasm. The formation of the H+-ATPase, therefore, is a complicated process involving the synthesis of its individual subunits on the cytoplasmic and mitochondrial ribosomes, the transport of the cytoplasmically synthesized subunits onto and across the mitochondrial membranes, and the assembly of these subunits into a functional H+-ATPase.

Keywords

Hydrolysis Codon Recombination Respiration Adenosine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chamberlain, J. P., 1979, Fluorographic detection of radioactivity in polyacrylamide gels with the water soluble fluor, sodium salicylate, Anal. Biochem. 98:132–135.PubMedCrossRefGoogle Scholar
  2. Douglas, M. G., Saltzgaber, J., Kunapuli, S., and Boutry, M, 1983, Isolation of genes coding yeast F1-ATPase subunits, in: Manipulation and Expression of Genes in Eukaryotes (P. Nagley, A. W. Linnane, W. J. Peacock, and J. A. Pateman, eds.), Academic Press, Sydney, pp. 151–158.Google Scholar
  3. Enns, R., and Criddle, R. S., 1977, Investigation of the structural arrangement of the protein subunits of mitochondrial ATPase, Arch. Biochem. Biophys. 183:742–752.PubMedCrossRefGoogle Scholar
  4. Fillingame, R. H., 1980, The proton translocating pumps of oxidative phosphorylation, Annu. Rev. Biochem. 49:1079–1113.PubMedCrossRefGoogle Scholar
  5. Foury, F., and Tzagoloff, A., 1976, Location on mitochondrial DNA of mutations leading to a loss of rutamycin-sensitive adenosine triphosphatase, Eur. J. Biochem. 68:113–119.PubMedCrossRefGoogle Scholar
  6. Hadikusumo, R. G., Hertzog, P. J. and Marzuki, S., 1984, Monoclonal antibodies against subunits of yeast mitochondrial H+-ATPase, Biochim. Biophys. Acta, in press.Google Scholar
  7. Hensgens, L. A. M., Grivell, L. A., Borst, P., and Bos, J. L., 1979, Nucleotide sequence of the mitochondrial structural gene for subunit 9 of yeast ATPase complex, Proc. Natl. Acad. Sci. USA 76: 1663–1667.PubMedCrossRefGoogle Scholar
  8. Kellems, R. E., Allison, V. F., and Butow, R. A., 1974, Cytoplasmic type 80S ribosomes associated with yeast mitochondria. II. Evidence for the association of cytoplasmic ribosomes with the outer mitochondrial membrane in situ, J. Biol. Chem. 249:3297–3303.PubMedGoogle Scholar
  9. Lewin, A. S., Gregor, I., Mason, T. L., Nelson, N., and Schatz, G., 1980, Cytoplasmically made subunits of yeast mitochondrial F1-ATPase and cytochrome c oxidase are synthesized as individual precursors, not as polyproteins, Proc. Natl. Acad. Sci. USA 77:3998–4002.PubMedCrossRefGoogle Scholar
  10. Li, M., and Tzagoloff, A., 1979, Assembly of the mitochondrial membrane system. Sequences of yeast mitochondrial valine and a usual threonine tRNA gene, Cell 18:47–53.PubMedCrossRefGoogle Scholar
  11. Linnane, A. W., and Nagley, P., 1978, Mitochondrial genetics in perspective. The derivation of a genetic and physical map of the yeast mitochondrial genome, Plasmid 1:324–345.PubMedCrossRefGoogle Scholar
  12. Linnane, A. W., Astin, A. M., and Beilharz, M. W., Bingham, C. G., Choo, W. M., Cobon, G. S., Marzuki, S., Nagley, P., and Roberts, H., 1980, Expression of the mitochondrial genome of yeast, in: The Organisation and Expression of the Mitochondrial Genome (A. M. Kroon and C. Saccone, eds.), Elsevier/North-Holland, Amsterdam, pp. 253–263.Google Scholar
  13. Maccechini, M. L., Rudin, Y., Blobel, G., and Schatz, G., 1979, Import of proteins into mitochondria: Precursor forms of the extramitochondrially made F1-ATPase subunits in yeast, Proc. Natl. Acad. Sci. USA 76:343–347.CrossRefGoogle Scholar
  14. Macino, G., and Tzagoloff, A., 1979, Assembly of the mitochondrial membrane system: Partial sequence of a mitochondrial ATPase gene in Saccharomyces cerevisiae, J. Biol. Chem. 254:4617–4623.PubMedGoogle Scholar
  15. Macino, G., and Tzagoloff, A., 1980, Assembly of the mitochondrial membrane system: Sequence analysis of a yeast mitochondrial ATPase gene containing the oli2 and oli4 loci, Cell 20:507–517.PubMedCrossRefGoogle Scholar
  16. Macreadie, I. G., Choo, W. M., Novitski, C. E., Marzuki, S., Nagley, P., Linnane, A. W., and Lukins, H. B., 1982, Novel mitochondrial mutations between the oli2 and oxi3 genes affect the yeast mitochondrial ATPase, Biochem. Int. 5:129–136.Google Scholar
  17. Macreadie, I. G., Novitski, C. E., Maxwell, R. J., John, U., Ooi, B. G., McMullen, G. C., Lukins, H. B., Linnane, A. W., and Nagley, P., 1983, Biogenesis of mitochondria: The mitochondrial gene (appl) coding for mitochondrial ATPase subunit 8 in Saccharomyces cerevisiae, Nucleic Acid Res. 11:4435–4451.PubMedCrossRefGoogle Scholar
  18. Marzuki, S., Cobon, G. S., Haslam, J. M., and Linnane, A. W., 1975a, Biogenesis of mitochondria. The effects of altered steady-state membrane lipid composition on mitochondrial-energy metabolism in Saccharomyces cerevisiae, Arch. Biochem. Biophys. 169:577–590.PubMedCrossRefGoogle Scholar
  19. Marzuki, S., Cobon, G. S., Crowfoot, P. D., and Linnane, A. W., 1975b, Biogenesis of mitochondria. The effects of membrane unsaturated fatty acid content on the activity and assembly of the yeast mitochondrial protein synthesizing system, Arch. Biochem. Biophys. 169:591–600.PubMedCrossRefGoogle Scholar
  20. Marzuki, S., Hadikusumo, R., Choo, W. M., Watkins, L., Lukins, H. B., and Linnane, A. W., 1983, Monoclonal anti-H+-ATPase antibodies in the study of the assembly of the yeast mitochondrial H+-ATPase, in: Mitochondria 1983. Nuclear Cytoplasmic Interactions (R. J. Schweyen, K. Wolf, and F. Kaudewitz, eds.), de Gruyter, Berlin, pp. 535–549.Google Scholar
  21. McAda, P. and Douglas, M. G., 1982, A neutral metallo-endoprotease involved in the processing of an F1-ATPase subunit precursor in the processing of an F1-ATPase subunit precursor in mitochondria, J. Biol. Chem. 257:3177–3182.PubMedGoogle Scholar
  22. Murphy, M., Roberts, H., Choo, W. M., Macreadie, I., Marzuki, S., Lukins, H. B., and Linnane, A. W., 1980, Biogenesis of mitochondria: oli2 mutations affecting the coupling of oxidation to phosphorylation in Saccharomyces cerevisiae, Biochim. Biophys. Acta 592:431–444.PubMedCrossRefGoogle Scholar
  23. Nelson, N., and Schatz, G., 1979, Energy-dependent processing of cytoplasmically made precursors to mitochondrial proteins, Proc. Natl. Acad. Sci. USA 76:4365–4369.PubMedCrossRefGoogle Scholar
  24. Neupert, W., and Schatz, G., 1981, How proteins are transported into mitochondria, Trends Biochem. Sci. 6:1–4.CrossRefGoogle Scholar
  25. Orian, J. M., and Marzuki, S., 1981, The largest mitochondrial translation product copurifying with the mitochondrial adenosine triphosphatase of Saccharomyces cerevisiae is not a subunit of the enzyme complex, J. Bacteriol. 146:813–815.PubMedGoogle Scholar
  26. Orian, J. M., Murphy, M., and Marzuki, S., 1981, Mitochondrially synthesized protein subunits of the yeast mitochondrial adenosine triphosphatase. A reassessment, Biochim. Biophys. Acta 652:234–239.PubMedCrossRefGoogle Scholar
  27. Orian, J. M., Marzuki, S., and Linnane, A. W., 1984, Mitochondrial biogenesis. In the absence of mitochondrial protein synthesis, cytoplasmically synthesized H+-ATPase subunits in yeast are assembled into a membrane associated complex, submitted for publication.Google Scholar
  28. Roberts, H., Choo, W. M., Murphy, M., Marzuki, S., Lukins, H. B., and Linnane, A. W., 1979, mir Mutations in the oli2 region of mitochondrial DNA affecting the 20,000 dalton subunit of the mitochondrial ATPase in Saccharomyces cerevisiae, FEBS Lett. 108:501–504.PubMedCrossRefGoogle Scholar
  29. Rott, R., and Nelson, N., 1981, Purification and immunological properties of proton-ATPase complexes from yeast and rat liver mitochondria, J. Biol. Chem. 256:9224–9228.PubMedGoogle Scholar
  30. Ryrie, I. J., 1977, The yeast mitochondrial adenosine triphosphatase complex. Purification, subunit composition, and some effects of protease inhibitors, Arch. Biochem. Biophys. 184:464–475.PubMedCrossRefGoogle Scholar
  31. Sebald, W., Graf, T., and Lukins, H. B., 1979a, The dicyclohexylcarbodiimide-binding protein of the mitochondrial ATPase complex from Neurospora crassa and Saccharomyces cerevisiae, Eur. J. Biochem. 93:587–599.PubMedCrossRefGoogle Scholar
  32. Sebald, W., Hoppe, J., and Wachter, E., 1979b, Amino acid sequence of the ATPase proteolipid from mitochondria, chloroplasts and bacteria (wild-type and mutants), in: Function and Molecular Aspects of Biomembrane Transport (E. Quagliariello, E. Palmieri, S. Papa, and M. Klingenberg, eds.), Elsevier/North-Holland, Amsterdam, pp. 63–74.Google Scholar
  33. Stephenson, G., Marzuki, S., and Linnane, A. W., 1981, Biogenesis of mitochondria. Defective assembly of the proteolipid into the mitochondrial adenosine triphosphatase complex in an oli2 mir mutant of Saccharomyces cerevisiae, Biochim. Biophys. Acta 636:104–112.PubMedCrossRefGoogle Scholar
  34. Thalenfeld, B. E., and Tzagoloff, A., 1980, Assembly of the mitochondrial membrane system. Sequence of the oxi2 gene of yeast mitochondrial DNA, J. Biol. Chem. 255:6173–6180.PubMedGoogle Scholar
  35. Todd, R. D., Griesenback, T. A., and Douglas, M. G., 1980, The yeast mitochondrial adenosine triphosphatase complex. Subunit stoichiometry and physical characterization, J. Biol. Chem. 255:5461–5467.PubMedGoogle Scholar
  36. Trembath, M. K., Molloy, P. L., Sriprakash, K. S., Cutting, G. J., Linnane, A. W., and Lukins, H. B., 1976, Biogenesis of mitochondria 44. Comparative studies and mapping of mitochondrial oligomycin resistance mutations in yeast based on gene recombination and petite deletion analysis, Mol. Gen. Genet. 145:43–52.PubMedCrossRefGoogle Scholar
  37. Tzagoloff, A., and Meagher, P., 1971, Assembly of the mitochondrial membrane system. V. Properties of a dispersed preparation of the rutamycin-sensitive adenosine triphosphatase of yeast mitochondria, J. Biol. Chem. 246:7328–7336.PubMedGoogle Scholar
  38. Tzagoloff, A., and Meagher, P., 1972, Assembly of the mitochondrial membrane system. VI. Mitochondrial synthesis of subunit proteins of the rutamycin sensitive adenosine triphosphatase, J. Biol. Chem. 247:594–603.PubMedGoogle Scholar
  39. Velours, J., Esparza, M., and Guerin, B., 1982, Amino acid composition of a new mitochondrially translated proteolipid isolated from yeast mitochondria and from the OSATPase complex, Biochem. Biophys. Res. Commun. 109:1192–1199.PubMedCrossRefGoogle Scholar
  40. Wachter, E., Sebald, W., and Tzagoloff, A., 1977, Altered amino acid sequence of the DCCD-binding protein in the oli1 resistant mutant D273-10B/A21 of Saccharomyces cerevisiae, in: Mitochondria 1977: Genetics and Biogenesis of Mitochondria (W. Bandlow, R. J. Schweyen, K. Wolf, and F. Kaudewitz, eds.), de Gruyter, Berlin, pp. 441–449.Google Scholar

Copyright information

© Springer Science+Business Media New York 1985

Authors and Affiliations

  • Sangkot Marzuki
    • 1
  • Anthony W. Linnane
    • 1
  1. 1.Department of BiochemistryMonash UniversityClaytonAustralia

Personalised recommendations