Advertisement

Functions of the Subunits and Regulation of Chloroplast Coupling Factor 1

  • Richard E. McCarty
  • James V. Moroney

Abstract

Illuminated chloroplasts catalyze the synthesis of ATP from ADP and Pi. This process, known as photophosphorylation, is very similar to oxidative phosphorylation in mitochondria and bacteria. There are several compelling reasons to study photophosphorylation. The coupling membrane of higher plant chloroplasts, called the thylakoid membrane, may be isolated very rapidly in large amounts and in high purity from inexpensive and convenient sources. The thylakoid membrane is the simplest of the coupling membranes. Its only known functions are to catalyze the synthesis of ATP and NADPH which are used to drive carbon dioxide reduction in the chloroplast stroma. Since ATP and NADPH are generated in the same compartment in which they are used, there is no need for the thylakoid membrane to contain systems for their transport. In contrast, ATP is made inside the mitochondrion and converted to ADP and Pi in the cytosol. The mitochondrial inner membrane contains transport systems for nu-cleotides, Pi, several substrates, Ca2+, and Na+. The bacterial coupling membrane is the plasma membrane of the bacterial cell and contains a myriad of transport systems. The large size of the thylakoid membrane and its ease of energization by illumination are also advantageous.

Keywords

ATPase Activity Thylakoid Membrane Coupling Factor Spinach Chloroplast Adenosine Triphosphatase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abrams, A., Morris, D., and Jensen, C., 1976, Chymotryptic conversion of bacterial membrane ATPase to an active form with modified a chains and defective membrane binding properties, Biochemistry 15:5560.PubMedCrossRefGoogle Scholar
  2. Andreo, C. S., Ravizzini, R. A., and Vallejos, R. H., 1979, Sulfhydryl groups in photosynthetic energy conservation, Biochim. Biophys. Acta 547:370.PubMedCrossRefGoogle Scholar
  3. Andreo, C. S., Patrie, W. J., and McCarty, R. E., 1982, Effect of ATPase activation and the δ subunit of coupling factor 1 on reconstitution of photophosphorylation, J. Biol. Chem. 257:9968.PubMedGoogle Scholar
  4. Arana, J. L., and Vallejos, R. H., 1982, Involvement of sulfhydryl groups in the activation mechanism of the ATPase activity of chloroplast coupling factor 1, J. Biol. Chem. 257:1125.PubMedGoogle Scholar
  5. Avron, M., 1978, Energy transduction in photophosphorylation, FEBS Lett. 96:225.CrossRefGoogle Scholar
  6. Baird, B. A., and Hammes, G. G., 1976, Chemical cross-linking studies of chloroplast coupling factor 1, J. Biol. Chem. 251:6953.PubMedGoogle Scholar
  7. Bakker-Grunwald, T., 1977, ATPase, in: Encyclopedia of Plant Physiology New Series, Vol. 5 (A. Trebst and M. Avron eds.), Springer-Verlag, Berlin, pp. 369–373.Google Scholar
  8. Bakker-Grunwald, T., and van Dam, K., 1973, The energy level associated with the light-triggered Mg2+-dependent ATPase in spinach chloroplasts, Biochim. Biophys. Acta 292:808.PubMedCrossRefGoogle Scholar
  9. Bakker-Grunwald, T., and van Dam, K., 1974, On the mechanism of activation of the ATPase in chloroplasts, Biochim. Biophys. Acta 347:290.PubMedCrossRefGoogle Scholar
  10. Béliveau, R., Moroney, J. V., and McCarty, R. E., 1982, Endogenous fluorescence of coupling factor 1 from spinach chloroplasts, Arch. Biochem. Biophys. 214:668.PubMedCrossRefGoogle Scholar
  11. Bennun, A., and Racker, E., 1969, Partial resolution of the enzymes catalyzing photophosphorylation, J. Biol. Chem. 244:1325.PubMedGoogle Scholar
  12. Binder, A., Jagendorf, A. T., and Ngo, E., 1978, Isolation and composition of the subunits of spinach coupling factor protein, J. Biol. Chem. 253:3094.PubMedGoogle Scholar
  13. Boyer, P. D., 1977, Coupling mechanisms in capture, transmission and use of energy, Annu. Rev. Biochem. 46:957.CrossRefGoogle Scholar
  14. Boyer, P. D., and Kohlbrenner, W. E., 1981, The present status of the binding change mechanism and its relation to ATP formation by chloroplasts, in: Energy Coupling in Photosynthesis (B. R. Selman and S. Selman-Reimer, eds.), Elsevier North Holland, New York, pp. 231–240.Google Scholar
  15. Bragg, P. D., and Hou, C., 1978, Binding of the Ca2+, Mg2+-activated adenosine triphosphatase of Escherichia coli to phospholipid vesicles, Can. J. Biochem. 56:559.PubMedCrossRefGoogle Scholar
  16. Bruist, M. F., and Hammes, G. G., 1981, Further characterization of nucelotide binding sites on chloroplast coupling factor one, Biochemistry 20:6298.PubMedCrossRefGoogle Scholar
  17. Cantley, L. C., and Hammes, G. G., 1976, Characterization of sulfhydryl groups on chloroplast coupling factor 1 exposed by heat activation, Biochemistry 15:9.PubMedCrossRefGoogle Scholar
  18. Carlier, M.-F., and Hammes, G. G., 1979, Interactions of nucleotides with chloroplast coupling factor 1, Biochemistry 18:3446.PubMedCrossRefGoogle Scholar
  19. Carmeli, C., 1970, Proton translocation induced by ATPase activity in chloroplasts, FEBS Lett. 7:297.PubMedCrossRefGoogle Scholar
  20. Carmeli, C., and Lifshitz, Y., 1972, Effects of Pi and ADP on ATPase activity in chloroplasts, Biochim. Biophys. Acta 267:86.PubMedCrossRefGoogle Scholar
  21. Cerione, R. A., McCarty, R. E., and Hammes, G. G., 1983, Spatial relationships between specific sites on reconstituted chloroplast H+-ATPase and the phospholipid vesicle surface, Biochemistry, 22:769.PubMedCrossRefGoogle Scholar
  22. Chua, N.-H., 1980, Electrophoretic analysis of chloroplast proteins, Meth. Enzymol. 69:434.CrossRefGoogle Scholar
  23. Cross, R. L., 1981, The mechanism and regulation of ATP synthesis by F1-ATPases, Annu. Rev. Biochem. 50:681.PubMedCrossRefGoogle Scholar
  24. Cross, R. L., and Nalin, C. M., 1982, Adenine nucleotide binding sites on beef heart F1-ATPase, J. Biol. Chem. 257:2874.PubMedGoogle Scholar
  25. Cross, R. L., Grubmeyer, C., and Penefsky, H. S., 1982, Mechanism of ATP hydrolysis by beef heart mitochondrial ATPase, J. Biol. Chem. 257:12101.PubMedGoogle Scholar
  26. Davenport, J. W., and McCarty, R. E., 1981, Quantitative aspects of adenosine triphosphate-driven proton translocation in spinach chloroplast thylakoids, J. Biol. Chem. 256:8947.PubMedGoogle Scholar
  27. Deters, D. W., Racker, E., Nelson, N., and Nelson, H., 1975, Partial resolution of the enzymes catalyzing photophosphorylation, J. Biol. Chem. 250:1041.PubMedGoogle Scholar
  28. Dunham, K. R., and Selman, B. R., 1981, Regulation of spinach chloroplast coupling factor 1 ATPase activity, J. Biol. Chem. 256:212.PubMedGoogle Scholar
  29. Dunn, S.D., 1980, ATP causes a large change in the conformation of the isolated a subunit of Escherichia coli F, ATPase, J. Biol. Chem. 255:11857.PubMedGoogle Scholar
  30. Dunn, S.D., and Futai, M., 1980, Reconstitution of a functional coupling factor from the isolated subunits of Escherichia coli F1 ATPase, J. Biol. Chem. 255:113.PubMedGoogle Scholar
  31. Dunn, S. D., and Heppel, L. A., 1981, Properties and functions of the subunits of the Escherichia coli coupling factor ATPase, Arch. Biochem. Biophys. 210:421.PubMedCrossRefGoogle Scholar
  32. Dunn, S. D., Heppel, L. A., and Fullmer, C. S., 1980, The NH2-terminal portion of the a subunit of Escherichia coli F1 ATPase is required for binding the 8 subunit, J. Biol. Chem. 255:6891.PubMedGoogle Scholar
  33. Esch, F. S., and Allison, W. S., 1979, On the subunit stoichiometry of the F1ATPase and the sites in it that react specifically with p-fluorosulfonylbenzonyl-5′-adenosine, J. Biol. Chem. 254:10740PubMedGoogle Scholar
  34. Farron, F., 1970, Isolation and properties of a chloroplast coupling factor and heat activated adenosine triphosphatase, Biochemistry 9:3823.PubMedCrossRefGoogle Scholar
  35. Farron, F., and Racker, E., 1970, Studies on the mechanism of the conversion of coupling factor 1 from chloroplasts to an active adenosine triphosphatase, Biochemistry 9:3829.PubMedCrossRefGoogle Scholar
  36. Foster, D. L., and Fillingame, R. H., 1982, Stoichiometry of subunits in the H+-ATPase complex of Escherichia coli, J Biol. Chem. 257:2009.PubMedGoogle Scholar
  37. Frasch, W. D., Deluca, C. R., Kulzick, M. J., and Selman, B. R., 1980, A quantitative estimation of chloroplast thylakoid-bound coupling factor 1 by rocket immunoelectrophoresis, FEBS Lett. 122:125.CrossRefGoogle Scholar
  38. Futai, M., 1977, Reconstitution of ATPase activity from the isolated α, β and γ subunits of the coupling factor, F1, of Escherichia coli, Biochem. Biophys. Res. Commun. 79:1231.PubMedCrossRefGoogle Scholar
  39. Gaensslen, R. E., and McCarty, R. E., 1971, Amine uptake in chloroplasts, Arch. Biochem. Biophys. 147:55.PubMedCrossRefGoogle Scholar
  40. Gay, N. J., and Walker, J. E., 1981a, The atp operon: Nucleotide sequence of the region encoding the a subunit of Escherichia coli ATP-synthase, Nucl. Acids Res. 9:2187.PubMedCrossRefGoogle Scholar
  41. Gay, N. J., and Walker, J. E., 1981b, The atp operon: Nucleotide sequence of the promoter and the genes for the membrane proteins and the 8 subunit of Escherichia coli ATP-synthase, Nucl. Acids Res. 9:3919.PubMedCrossRefGoogle Scholar
  42. Gräber, P., and Witt, H. T., 1976, Relations between the electrical potential, pH gradient, proton flux and phosphorylation in the photosynthetic membrane, Biochim. Biophys. Acta 423:141.PubMedCrossRefGoogle Scholar
  43. Gräber, P., Schlodder, E., and Witt, H. T., 1977, Conformational change of the chloroplast ATPase induced by a transmembrane electric field and its correlation to phosphorylation, Biochim. Biophys. Acta 461:426.PubMedCrossRefGoogle Scholar
  44. Gromet-Elhanan, Z., Philosoph, S., and Khananshvili, D., 1981, Sequential removal and reconstitution of subunits β and γ of the Rhodospirillum rubrum membrane bound ATP synthase, in: Energy Coupling in Photosynthesis (B. R. Selman and S. Selman-Reimer, eds.), Elsevier North Holland, New York.Google Scholar
  45. Harris, D. A., and Crofts, A. R., 1978, The initial steps of photophosphorylation. Studies using excitation by saturating short flashes of light, Biochim. Biophys. Acta 502:87.PubMedCrossRefGoogle Scholar
  46. Holowka, D. A., and Hammes, G. G., 1977, Chemical modification and fluorescence studies of chloroplast coupling factor 1, Biochemistry 16:5538.PubMedCrossRefGoogle Scholar
  47. Jagendorf, A. T., and Hind, G., 1963, Studies on the mechanism of photophosphorylation, in: Photosynthetic Mechanisms of Green Plants, National Academy of Sciences Research Council Publications, 1146, pp. 599–610.Google Scholar
  48. Kahn, J. S., 1982, The e subunit of the chloroplast coupling factor 1 from Euglena gracilis, Plant Physiol. 70:451.PubMedCrossRefGoogle Scholar
  49. Kamienietzky, A., and Nelson, N., 1975, Preparation and properties of chloroplasts depleted of chloroplast coupling factor 1 by sodium bromide treatment, Plant Physiol. 55:282.PubMedCrossRefGoogle Scholar
  50. Kanazawa, H., Kayano, T., Mabuchi, K., and Futai, M., 1981, Nucleotide sequence of the genes coding for α, β and γ subunits of the proton-translocating ATPase of Escherichia coli, Biochem. Biophys. Res. Commun. 103:604.PubMedCrossRefGoogle Scholar
  51. Kanazawa, H., Kayano, T., Kiyasu, T., and Futai. M., 1982, Nucleotide sequence of the genes for β and E subunits of proton translocating ATPase from Escherichia coli, Biochem. Biophys. Res. Commun. 105:1257.PubMedCrossRefGoogle Scholar
  52. Khananshvili, D., and Gromet-Elhanan, Z., 1982, Isolation and purification of an active γ-subunit of the F0-F1 ATP synthase from chromatophore membranes of Rhodospirillum rubrum, J. Biol. Chem. 257:11377.PubMedGoogle Scholar
  53. Krebbers, E. T., Larrinua, I. M., McIntosh, L., and Bogorad, L., 1982, The maize chloroplast genes for the β and E subunits of the photosynthetic coupling factor CF1 are fused, Nucl. Acids Res. 10:4985.PubMedCrossRefGoogle Scholar
  54. Laemmli, U. K., 1970, Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature 222:680.CrossRefGoogle Scholar
  55. Lien, S., and Racker, E., 1971, Preparation and assay of chloroplast coupling factor CF1, Meth. Enzymol. 23a:547.CrossRefGoogle Scholar
  56. Lynn, W. S., and Sträub, K. D., 1969, ADP kinase and ATPase in chloroplasts, Biochemistry 63:540.Google Scholar
  57. Mabuchi, K., Kanazawa, H., Kayano, T., and Futai, M., 1981, Nucleotide sequence of the gene coding for the δ subunit of proton-translocating ATPase of Escherichia coli, Biochem. Biophys. Res. Commun. 102:172.PubMedCrossRefGoogle Scholar
  58. Marchant, R. H., 1981, Induction of the thiol-dependent ATP hydrolase activity in thylakoids as a result of illumination in the intact leaf, in: Proc. 5th Int. Cong. Photosynthesis, Halkidiki, Vol. 11 (G. Akoyunoglou, eds.), Balaban International Science Services, Philadelphia, pp. 999–1008.Google Scholar
  59. Martin, P. G., 1979, Amino acid sequence of the small subunit of ribulose 1,5-bisophosphate carboxylase from spinach, Aust. J. Plant Physiol. 6:401.Google Scholar
  60. McCarty, R. E., and Carmeli, C., 1982, Proton translocating ATPases of photosynthetic membranes, in: Energy Conversion by Plants and Bacteria (Govindjee, ed.), Academic Press, New York, pp. 647–695.Google Scholar
  61. McCarty, R. E., and Fagan, J., 1973, Light stimulated incorporation of N-ethylmaleimide into coupling factor 1 in spinach chloroplasts, Biochemistry 12:1503.PubMedCrossRefGoogle Scholar
  62. McCarty, R. E., and Portis, A. R., Jr., 1976, A simple, quantitative approach to the coupling of photophosphorylation to electron flow in terms of proton fluxes, Biochemistry 15:5110.PubMedCrossRefGoogle Scholar
  63. McCarty, R. E., and Racker, E., 1966, Effect of a coupling factor and its antiserum on photophosphorylation and hydrogen ion transport, Brookhaven Symp. Biol. 19:202.PubMedGoogle Scholar
  64. McCarty, R. E., and Racker, E., 1967, The inhibition and stimulation of photophosphorylation by N,N′-dicyclohexylcarbodiimide, J. Biol. Chem. 242:3435.Google Scholar
  65. McCarty, R. E., and Racker, E., 1968, Partial resolution of the enzymes catalyzing photophosphorylation, J. Biol. Chem. 243:129.PubMedGoogle Scholar
  66. McCarty, R. E., Fuhrman, J. S., and Tsuchiya, Y., 1971, Effects of adenine nucleotides on hydrogen ion transport in chloroplasts, Proc. Natl. Acad. Sci. USA 68:2522.PubMedCrossRefGoogle Scholar
  67. McCarty, R. E., Pittman, P. R., and Tsuchiya, Y., 1972, Light-dependent inhibition of photophosphorylation by N-ethylmaleimide, J. Biol. Chem. 247:3048.PubMedGoogle Scholar
  68. Merchant, S., Shaner, S. L., and Selman, B. R., 1983, Molecular weight and subunit stoichiometry of the chloroplast coupling factor one from Chlamydomas reinhardi, J. Biol. Chem. 258:1026.PubMedGoogle Scholar
  69. Mills, J. D., and Hind, G., 1979, Light induced Mg2+-ATPase activity of coupling factor in intact chloroplasts, Biochim. Biophys. Acta 547:455.PubMedCrossRefGoogle Scholar
  70. Mills, J. D., and Mitchell, P., 1982, Modulation of coupling factor ATPase activity in intact chloroplasts, Biochim. Biophys. Acta 679:75.CrossRefGoogle Scholar
  71. Mills, J. D., Mitchell, P., and Schürmann, P., 1980, Modulation of coupling factor ATPase activity in intact chloroplasts, FEBS Lett. 112:173.CrossRefGoogle Scholar
  72. Moroney, J. V., and McCarty, R. E., 1979, Reversible uncoupling of photophosphorylation by a new bifunctional maleimide, J. Biol. Chem. 254:8951.PubMedGoogle Scholar
  73. Moroney, J. V., and McCarty, R. E., 1981, The activation of the latent Ca++-ATPase of chloroplast coupling factor 1 by a variety of proteases, in: Energy Coupling in Photosynthesis (B. R. Selman and S. Selman-Reimer, eds.), Elsevier North Holland, New York, pp. 169–174.Google Scholar
  74. Moroney, J. V., and McCarty, R. E., 1982a, Effect of proteolytic digestion on the Ca+ +-ATPase activity and subunits of latent and thiol-activated chloroplast coupling factor 1, J. Biol. Chem. 257:5910.PubMedGoogle Scholar
  75. Moroney, J. V., and McCarty, R. E., 1982b, Light-dependent cleavage of the γ subunit of coupling factor 1 by trypsin causes activation of Mg+ +-ATPase activity and uncoupling of photophosphorylation in spinach chloroplasts, J. Biol. Chem. 257:5915.PubMedGoogle Scholar
  76. Moroney, J. V., Andreo, C. S., Vallejos, R. H., and McCarty, R. E., 1980, Uncoupling and energy transfer inhibition of photophosphorylation by sulfhydryl reagents, J. Biol. Chem. 255:6670.PubMedGoogle Scholar
  77. Moroney, J. V., Warncke, K., and McCarty, R. E., 1982, The distance between the thiol groups in the γ subunit of coupling factor 1 influences the proton permeability of thylakoid membranes, J. Bioenerg. Biomembr. 14:347.PubMedCrossRefGoogle Scholar
  78. Moroney, J. V., Lopresti, L., McEwen, B. F., McCarty, R. E. and Hammes, G. G., 1983, The Mr-value of chloroplast coupling factor 1, FEBS Lett. 158:58.CrossRefGoogle Scholar
  79. Moudrinanakis, E. N., Homer, R. D., and Tiefert, M. A., 1981, On the mechanism of ATP synthesis during photophosphorylation, in: Energy Coupling in Photosynthesis (B. R. Selman and S. Selman-Reimer, eds.), Elsevier North Holland, New York, pp 149–155.Google Scholar
  80. Nalin, C. M., Béliveau, R., and McCarty, R. E., 1983, Selective modification of coupling factor 1 in spinach chloroplast thylakoids by a fluorescent maleimide, J. Biol. Chem. 258: 3376.PubMedGoogle Scholar
  81. Nelson, N., 1976, Structure and function of chloroplast ATPase, Biochim. Biophys. Acta 456:314.PubMedCrossRefGoogle Scholar
  82. Nelson, N., 1982, Structure and function of the higher plant coupling factor, in: Electron Transport and Photophosphorylation, (J. Barber, ed.), Elsevier Biomédical Press, New York, pp. 81–104.Google Scholar
  83. Nelson, N., and Eytan, E., 1979, Approach to the membrane sector of the chloroplast coupling device, in: Cation Flux Across Biomembranes (Y. Mukohata and L. Packer, eds.), Academic Press, New York, pp. 409–416.CrossRefGoogle Scholar
  84. Nelson, N., and Karny, O., 1976, The role of the 8 subunit in the coupling activity of chloroplast coupling factor 1, FEBS Lett. 71:249.CrossRefGoogle Scholar
  85. Nelson, N., Nelson, H., and Racker, E., 1972, Purification and properties of an inhibitor isolated from chloroplast coupling factor 1, J. Biol. Chem. 247:7657.PubMedGoogle Scholar
  86. Nelson, N., Deters, D. W., Nelson, H., and Racker, E., 1973, Partial resolution of isolated subunits of coupling factor 1 from spinach chloroplasts, J. Biol. Chem. 248:2049.PubMedGoogle Scholar
  87. Nielsen, J., Hansen, F. G., Hoppe, J., Friedl, P., and von Meyenburg, K., 1981, Nucleotide sequence of the ATP genes coding for the F0 subunits a, b, c and the F1 subunit 8 of the membrane bound ATP synthase of Escherichia coli, Mol. Gen. Genet. 184:33.PubMedCrossRefGoogle Scholar
  88. Ohta, S., Tsuboi, M., Yoshida, M., and Kagawa, Y., 1980, Intersubunit interactions in proton-translocating adenosine triphosphatase as revealed by hydrogen-exchange studies, Biochemistry 19:2160.PubMedCrossRefGoogle Scholar
  89. Paradies, H. H., Zimmermann, J., and Schmidt, U. D., 1978, The conformation of chloroplast coupling factor 1 from spinach in solution, J. Biol. Chem. 253:8972.PubMedGoogle Scholar
  90. Penefsky, H. S., Pullman, M. E., Datta, A., and Racker, E., 1960, Participation of a soluble adenosine triphosphatase in oxidative phosphorylation, J. Biol. Chem. 235:3330.PubMedGoogle Scholar
  91. Petrack, B., Craston, A., Sheppy, F., and Farron, F., 1965, Studies on the hydrolysis of adenosine triphosphate by chloroplasts, J. Biol. Chem. 240:906.PubMedGoogle Scholar
  92. Philosoph, S., and Gromet-Elhanan, Z., 1981, Antibodies to the F1 ATPase of Rhodospirillum rubrum and its purified native α-subunit, Eur. J. Biochem. 119:107PubMedCrossRefGoogle Scholar
  93. Philosoph, S., Binder, A., and Gromet-Elhanan, Z., 1977, Coupling factor ATPase complex of Rhodospirillum rubrum, J. Biol. Chem. 252:8747.PubMedGoogle Scholar
  94. Pick, U., and Bassilian, S., 1981, Octyl glucoside stimulates Mg++.-specific ATPase activity in chloroplast CF1, in: Energy Coupling in Photosynthesis (B. R. Selman and S. Selman-Reimer, eds.), Elsevier North Holland, New York, pp. 251–260.Google Scholar
  95. Pick, U., and Racker, E., 1979, Purification and reconstitution of the N,N′-dicyclohexylcarbodiimide sensitive ATPase complex from spinach chloroplasts, J. Biol. Chem. 254:2793.PubMedGoogle Scholar
  96. Pick, U., Rottenberg, H., and Avron, M., 1973, Effect of phosphorylation on the size of the proton gradient across chloroplast membranes FEBS Lett. 32:91.PubMedCrossRefGoogle Scholar
  97. Pick, U., Conrad, P. L., Conrad, J. M., Durbin, R. D., and Selman, B. R., 1982, Synergistic activation of an Mg-specific ATPase activity in chloroplast coupling factor by octylglucoside and tentoxin, Biochim. Biophys. Acta 682:55.CrossRefGoogle Scholar
  98. Portis, A. R., Jr., and McCarty, R. E., 1974, Effects of adenine nucleotides and of photophosphorylation on H+ uptake and the magnitude of the H+ gradient in illuminated chloroplasts, J. Biol. Chem. 249:6250.PubMedGoogle Scholar
  99. Portis, A. R., Jr., Magnusson, R. P., and McCarty, R. E., 1975, Conformational changes in coupling factor 1 may control the rate of electron flow in spinach chloroplasts, Biochem. Biophys. Res. Commun. 64:877.PubMedCrossRefGoogle Scholar
  100. Pullman, M. E., and Monroy, G. C., 1963, A naturally occurring inhibition of mitochondrial adenosine triphosphatase, J. Biol. Chem. 238:3762.PubMedGoogle Scholar
  101. Racker, E., Hauska, G. A., Lien, S., Berzborn, R. J., and Nelson, N., 1971, Resolution and reconstitution of the system of photophosphorylation, in: Proceedings from 2nd International Congress on Photosynthesis, Stresa, Vol. 11 (G. Forti, M. Avron, and A. Melandri, eds.), Dr. W. Junk N. V. Publishers, The Hague, pp. 1097–1113.Google Scholar
  102. Ravizzini, R. A., Andreo, C. S., and Vallejos, R. H., 1980, Sulfhydryl groups in photosynthetic energy conservation, Biochim. Biophys. Acta 591:135.PubMedCrossRefGoogle Scholar
  103. Rott, R., and Nelson, N., 1981, Purification and immunological properties of proton-ATPases complexes from yeast and rat liver mitochondria, J. Biol. Chem. 256:9224.PubMedGoogle Scholar
  104. Ryrie, I. J., and Jagendorf, A. T., 1972, Correlation between a conformational change in the coupling factor protein and the high energy state in chloroplasts, J. Biol. Chem. 247:4453.PubMedGoogle Scholar
  105. Sakuri, H., Shinohara, K., Hisbori, T., and Shinohara, K., 1981, Enhancement of adenosine triphosphatase activity of purified chloroplast coupling factor 1 in an aqueous organic solvent, J. Biochem. 90:95.Google Scholar
  106. Saraste, M., Gay, N. J., Eberle, A., Ronswick, N. J., and Walker, J. E., 1981, The atp operon: Nucleotide sequences of the genes for the γβ and e subunits of Escherichia coli ATPsynthase, Nucl. Acids Res. 9:5287.PubMedCrossRefGoogle Scholar
  107. Schlodder, E., Gräber, P., and Witt, H. T., 1982, Mechanism of phosphorylation in chloroplasts, in: Electron Transport and Photophosphorylation (J. Barber ed.), Elsevier Biomedical Press, Amsterdam, pp. 105–175.Google Scholar
  108. Senior, A. E., and Wise, J. G., 1983, The proton-ATPase of bacteria and mitochondria, J. Membr. Biol. 73:105.PubMedCrossRefGoogle Scholar
  109. Shavit, N., 1980, Energy transduction in chloroplasts: Structure and function of the ATPase complex, Annu. Rev. Biochem. 49:111.PubMedCrossRefGoogle Scholar
  110. Shoshan, V., and Selman, B. R., 1980, The interaction of N,N′-dicyclohexylcarbodiimide with chloroplast coupling factor 1, J. Biol. Chem. 255:384.PubMedGoogle Scholar
  111. Smith, J. B., and Sternweis, P. C., 1977, Purification of membrane attachment and inhibitory subunits of the proton adenosine triphosphatase from Escherichia coli, Biochemistry 16:306.PubMedCrossRefGoogle Scholar
  112. Steele, J. A., Uchytil, T. F., Durbin, R. D., Bhatnagar, P., and Rich, D. H., 1976, Chloroplast coupling factor 1: A species-specific receptor for tentoxin, Proc. Natl. Acad. Sci. USA 73:2245.PubMedCrossRefGoogle Scholar
  113. Sternweis, P. C., 1978, The e subunit of Escherichia coli coupling factor 1 is required for its binding to the cytoplasmic membrane, J. Biol. Chem. 253:3123.PubMedGoogle Scholar
  114. Strotmann, H., and Bickel-Sandkotter, S., 1977, Energy-dependent exchange of adenine nulceotides on chloroplast coupling factor (CF1), Biochim. Biophys. Acta 411:126.Google Scholar
  115. Strotmann, H., Hesse, H., and Edelmann, K., 1973, Quantitative determination of coupling factor CF1 of chloroplasts, Biochim. Biophys. Acta 314:202.PubMedCrossRefGoogle Scholar
  116. Sugiyama, Y., and Mikahata, Y., 1978, Energy transfer inhibition induced by modification of membranebound chloroplast coupling factor 1 by pyridoxal phosphate, FEBS Lett. 85:211.PubMedCrossRefGoogle Scholar
  117. Süss, K.-H., 1982, Topology and association of the subunits of chloroplast and eitoplast ATPase complex (CF1CF0). A lactoperoxidase-catalyzed iodination and limited proteolysis study, Biochim. Physiol. Pflanzen 177:143.Google Scholar
  118. Süss, K.-H., and Schmidt, O., 1982, Evidence for an α3, β3, γ, δ, II, III, ε, III5 subunit stoichiometry of chloroplast ATP synthase complex (CF1CF0), FEBS Lett. 144:213.CrossRefGoogle Scholar
  119. Takabe, T., Debenedetti, E., and Jagendorf, A. T., 1982, Inhibition of chloroplast coupling factor by naphthylglyoxal, Biochim. Biophys. Acta 862:11.Google Scholar
  120. Telfer, A., Barber, J., and Jagendorf, A. T., 1980, Electrostatic control of chloroplast coupling factor binding to thylakoid membranes as indicated by cation effects on electron transport and reconstitution of photophosphorylation, Biochim. Biophys. Acta 591:331.PubMedCrossRefGoogle Scholar
  121. Trebst, A., 1974, Energy conservation in photosynthetic electron transport of chloroplasts, Annu. Rev. Plant Physiol. 25:423.CrossRefGoogle Scholar
  122. Vambutas, V. K., and Racker, E., 1965, Stimulation of photophosphorylation by a preparation of a latent Ca++-dependent adenosine triphosphatase from chloroplasts, J. Biol. Chem. 241:2660.Google Scholar
  123. van de Stadt, R. J., de Buer, B. L., and van Dam, K., 1973, The interaction between the mitochondrial ATPase (F1) and the ATPase inhibitor, Biochim. Biophys. Acta 292:338.PubMedCrossRefGoogle Scholar
  124. Walker, J. E., Runswick, M. J., and Saraste, M., 1982, Subunit equivalents in Escherichia coli and bovine heart mitochondrial F1-F2 ATPases, FEBS Lett. 146:393PubMedCrossRefGoogle Scholar
  125. Weber, K., and Osborn, M., 1969, The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis, J. Biol. Chem. 244:4406.PubMedGoogle Scholar
  126. Weiss, M. A., and McCarty, R. E., 1977, Cross-linking within a subunit of coupling factor 1 increases the proton permeability of spinach chloroplast thylakoids, J. Biol. Chem. 252:8007.PubMedGoogle Scholar
  127. Yoshida, M., Onamoto, H., Sone, N., Hirata, H., and Kagawa, Y., 1977, Reconstitution of thermostable ATPase capable of energy coupling from its purified subunits, Proc. Natl. Acad. Sci. USA 74:936.PubMedCrossRefGoogle Scholar
  128. Yoshida, M., Sone, N., Hirata, H., Kagawa, Y., and Ui, N., 1979, Subunit structure of adenosine triphosphatase, J. Biol. Chem. 254:9525.PubMedGoogle Scholar
  129. Younis, H. M., and Morjana, N. A., 1982a, Resolution of the chloroform-released CF1 into ATPase complexes differing in their ATPase activity, FEBS Lett. 140:317.CrossRefGoogle Scholar
  130. Younis, H. M., and Morjana, N. A., 1982b, Isolation and properties of a natural inhibitor of the chloroplast adenosine triphosphatase, FEBS Lett. 140:320.CrossRefGoogle Scholar
  131. Younis, H. M., Winget, G. D., and Racker, E., 1977, Requirement of the 8 subunit of chloroplast coupling factor 1 for photophosphorylation, J. Biol. Chem. 252:1814.PubMedGoogle Scholar
  132. Zurawski, G., Perrot, B., Bottomry, W., and Whitfeld, P. R., 1981, The structure of the gene for the large subunit of ribulose 1,5-bisphosphate carboxylase from spinach chloroplast DNA, Nucl. Acids Res. 9:3251.PubMedCrossRefGoogle Scholar
  133. Zurawski, G., Bottomly, W., and Whitf, P. R., 1982, Structures of the genes for the β and ε subunits of spinach chloroplasts ATPase indicate a dicistronic mRNA and an overlapping stop/start signal, Proc. Natl. Acad. Sci. USA 79:6260.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1985

Authors and Affiliations

  • Richard E. McCarty
    • 1
  • James V. Moroney
    • 1
  1. 1.Section of Biochemistry, Molecular and Cell Biology, Division of Biological SciencesCornell UniversityIthacaUSA

Personalised recommendations