Advertisement

The Mechanism of the Ubiquinol: Cytochrome c Oxidoreductases of Mitochondria and of Rhodopseudomonas sphaeroides

  • Antony R. Crofts

Abstract

Enzymic complexes which oxidize quinol are essential components of all major electron-transport chains. For mitochondria (for reviews, see Trumpower and Katki, 1979; Trumpower, 1981; Slater, 1981; Bowyer and Trumpower, 1981a), photosynthetic bacteria (Gabellini et al., 1982; Yu and Yu, 1982), and chloroplasts (Nelson and Neuman, 1972; Rich and Bendall, 1981; Hurt and Hauska, 1981), quinol-oxidizing complexes have been isolated and shown to function independently of other enzymic complexes, requiring only a quinol as reductant and a mobile, small aqueous protein (cytochrome c, cytochrome c 2, plastocyanin) as oxidant. An excellent comparative review by Hauska et al. (1983) has recently appeared. The question of whether or not the complexes in situ act independently has been controversial. In the simplest view, the quinone species act as shuttles of reducing (hydrogen) equivalents, operating in the lipid phase between the substrate dehydrogenase complexes of respiratory systems (or the photochemical reaction centers of photosynthetic systems) which act as quinone reductases, and the quinol oxidizing complexes (Green and Wharton, 1963; Kröger and Klingenberg, 1967; Schneider et al., 1980; Sowers and Hackenbrock, 1981; Schneider et al., 1982). A corollary of this classical picture was the role of cytochrome c (cytochrome c 2, or plastocyanin) as a shuttle of electrons between the cytochrome c reductase site of the complex, and the cytochrome c oxidase (or photooxidase). In contrast, largely as the result of experiments in both photosynthetic and respiratory systems which have identified specific bound quinones as reactants in the chain (Ohnishi and Trumpower, 1980; DeVries et al., 1980; King, 1981; Prince et 1978; Wraight, 1977; Vermeglio, 1977; Wraight, 1981), it has been suggested that the electron-transfer chains may operate as supercomplexes, operating in an integrated fashion with electron or hydrogen transfer occurring between complexes through bound quinone prosthetic groups (for reviews, see Dutton and Prince, 1978b; Prince et al., 1982).

Keywords

Photosynthetic Bacterium Mitochondrial Complex Electron Transfer Chain Quinone Pool Elsevier Biomedical 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, S., De Bruijn, M. H. L., Coulson, A. R., Eperon, J. C., and Sanger, F., 1982, Complete sequence of bovine mitochondrial DNA: Conserved features of the mammalian mitochondria genome, J. Mol. Biol. 156:683–717.PubMedCrossRefGoogle Scholar
  2. Arutjunan, A. M., Kamensky, Y. A., Milgrom, E., Surkov, S., Konstantivov, A. A., and Sharonov, Y. A., 1978, Is mitochondrial cytochrome b-566/588 a single hemoprotein or two individual components?, FEBS Lett. 95:40–44.CrossRefGoogle Scholar
  3. Babcock, G., and Callahan, P. M., 1983, Redox linked hydrogen-bond strength changes in cytochrome a: Implication for the cytochrome oxidase proton pump, Biochemistry, in press.Google Scholar
  4. Baccarini-Melandri, A., and Melandri, B. A., 1977, A role for ubiquinone-10 in the b-c 2 segment of the photosynthetic bacteria electron transport chain, FEBS Lett. 80:459–464.PubMedCrossRefGoogle Scholar
  5. Baccarini-Melandri, A., Gabellini, N., Melandri, B. A., Jones, K. R., Rutherford, A. W., Crofts, A. R., and Hurt, E., 1982a, Differential extraction and structural specificity of specialized ubiquinone molecules in secondary electron transfer in chromatophores from Rhodopseudomonas sphaeroides, Ga, Arch. Biochem. Biophys. 216:566–580.PubMedCrossRefGoogle Scholar
  6. Baccarini-Melandri, A., Gabellini, N., and Melandri, B. A., 1982b, The multifarious role of ubiquinone in bacterial chromatophores, in: Function of Quinones in Energy Conserving Systems (B. L. Trumpower, ed.), Academic Press, New York, pp. 285–298.Google Scholar
  7. Beattie, D. S., Ceejan, L., Chen, Y. S., Lin, C. P., and Sidhu, A., 1981, Orientation of complex III in the yeast mitochondrial membrane: Labeling with [I125] diazobenzenesulfonate and functional studies with the decyl analogue of coenzyme Q as substrate, J. Bioenerg. Biomembr. 13:357–374.PubMedCrossRefGoogle Scholar
  8. Beattie, D. S., Sidhu, A., and Clejan, L., 1982, Topographical organization of complex III in yeast mitochondria, 2nd EBEC Short Rep. 1982:203–204.Google Scholar
  9. Becker, W. F., von Jagow, G., Anke, T., and Steglich, W., 1981, Oudemansin, strobilurin A, strobilurin B, and myxothiazol: New inhibitors of the b-c 1 segment of the respiratory chain with an E-β-methoxy acrylate system as a common structural element, FEBS Lett. 132:329–333.PubMedCrossRefGoogle Scholar
  10. Bell, R. L., Sweetland, J., Ludwig, B., and Capaldi, R., 1979, Labeling of complex III with [35S] diazobenzenesulfonate: Orientation of this electron transfer segment in the mitochondrial inner membrane, Proc. Natl. Acad. Sci. USA 76:741–745.PubMedCrossRefGoogle Scholar
  11. Bowes, J. M., and Crofts, A. R., 1981, Effect of 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone on the secondary electron acceptor B of photosystem II, Arch. Biochem. Biophys. 209:682–686.PubMedCrossRefGoogle Scholar
  12. Bowyer, J. R., 1979, Light driven electron transfer reactions in photosynthetic bacteria, Ph.D. dissertation, University Library, University of Bristol, U.K.Google Scholar
  13. Bowyer, J. R., and Crofts, A. R., 1978, Inhibition of electron transport in Rps. capsulata by a ubiquinone analogue, in: Frontiers of Biological Energetics, Vol. I (P. L. Dutton, J. S. Leigh, and A. Scarpa, eds.), Academic Press, New York, pp. 326–333.Google Scholar
  14. Bowyer, J. R., and Crofts, A. R., 1981, On the mechanism of photosynthetic electron transfer in Rhodopseudomonas capsulata and Rhodopseudomonas sphaeroides, Biochim. Biophys. Acta 636:218–233.PubMedCrossRefGoogle Scholar
  15. Bowyer, J. R., and Trumpower, B. L., 1981a, Pathways of electron transfer in the cytochrome b-c 1 complexes of mitochondria and photosynthetic bacteria, in: Chemiosmotic Proton Circuits in Biological Membranes (V. P. Skulachev and P. C. Hinkle, eds.), Addison-Wesley Publishing, Reading-Massachusetts, pp. 105–122.Google Scholar
  16. Bowyer, J. R., and Trumpower, B. L., 1981b, Rapid reduction of cytochrome c 1 in the presence of antimycin and its implication for the mechanism of electron transfer in the cytochrome b-c 1 segment of the mitochondrial respiratory chain, J. Biol. Chem. 256:2245–2251.PubMedGoogle Scholar
  17. Bowyer, J. R., Baccarini-Melandri, A., Melandri, B. A., and Crofts, A. R., 1978, The role of ubiquinone-10 in cyclic electron transport in Rhodopseudomonas capsulata Ala pho+: Effects of lyophilization and extraction, Z. Naturforsch. 33c:704–711.Google Scholar
  18. Bowyer, J. R., Tiemey, G. V., and Crofts, A. R., 1979a, Secondary electron transfer in chromatophores of Rhodopseudomonas capsulata Ala pho+. Binary out-of-phase oscillations in ubisemiquinone formation and cytochromic b 50 reduction with consecutive light flashes, FEBS Lett. 101:201–206.PubMedCrossRefGoogle Scholar
  19. Bowyer, J. R., Tiemey, G. V., and Crofts, A. R., 1979b, Cytochrome c 2-reaction centre coupling in chromatophores of Rhodopseudomonas sphaeroides and Rhodopseudomonas capsulata, FEBS Lett. 101:207–212.PubMedCrossRefGoogle Scholar
  20. Bowyer, J. R., Dutton, P. L., Prince, R. C., and Crofts, A. R., 1980, The role of the Rieske Fe-S center as the electron donor to ferricytochrome c 2 in Rps. sphaeroides, Biochim. Biophys. Acta 592:445–460.PubMedCrossRefGoogle Scholar
  21. Bowyer, J. R., Meinhardt, S. W., Tiemey, G. V., and Crofts, A. R., 1981, Resolved difference spectra of redox centers involved in photosynthetic electron flow in Rhodopseudomonas capsulata and Rhodopseudomonas sphaeroides, Biochim. Biophys. Acta 635:167–186.PubMedCrossRefGoogle Scholar
  22. Bowyer, J. R., Edwards, C. A., Ohnishi, T., and Trumpower, B. L., 1982, An analogue of ubiquinone which inhibits respiration by binding to the iron-sulfur protein of the cytochrome b-c 1 segment of the mitochondrial respiratory chain, J. Biol. Chem. 257:8321–8330.PubMedGoogle Scholar
  23. Capaldi, R. A., Darley-Usmar, V., Fuller, S., and Millett, F., 1982, Structural and functional features of the interaction of cytochrome c with complex III and cytochrome c oxidase, FEBS Lett. 138:1–7.PubMedCrossRefGoogle Scholar
  24. Chance, B., 1958, The kinetics and inhibition of cytochrome components of the succinic oxidase system, J. Biol. Chem. 233:1223–1229.PubMedGoogle Scholar
  25. Chen, Y. S., and Beattie, D. S., 1981, Two forms of cytochrome b in yeast mitochondria: Purification, characterization, and localization in the inner mitochondrial membrane, Biochemistry 20:7557–7565.PubMedCrossRefGoogle Scholar
  26. Cherry, R. J., 1975, Protein mobility in membranes, FEBS Lett. 55:1–7.PubMedCrossRefGoogle Scholar
  27. Cogdell, R. J., Jackson, J. B., and Crofts, A. R., 1972, The effect of redox potential on the coupling between rapid hydrogen-ion binding and electron transport in chromatophores from Rhodopseudomonas sphaeroides, Bioenergetics 4:211–227.CrossRefGoogle Scholar
  28. Cramer, W. A., and Crofts, A. R., 1982, Electron and proton transport, in: Photosynthesis: Energy Conservation by Plants and Bacteria, Vol. I (Govindjee, ed.), Academic Press, New York, pp. 387–467.Google Scholar
  29. Crofts, A. R., 1974, The electron transport system as a H+-pump in photosynthetic bacteria, in: Perspectives in Membrane Biology, (S. Estrada-O. and C. Gitler, eds.), Academic Press, New York, pp. 373–412.Google Scholar
  30. Crofts, A. R., and Bowyer, J. R., 1980, The cyclic electron transport chain of photosynthetic bacteria and its role as a proton pump, Ann. N.Y. Acad. Sci. 341:12–26.CrossRefGoogle Scholar
  31. Crofts, A. R., and Meinhardt, S. W., 1982, A Q-cycle mechanism for the cyclic electron-transfer chain of Rhodopseudomonas sphaeroides, Biochem. Soc. Trans. 10:201–203.PubMedGoogle Scholar
  32. Crofts, A. R., and Wood, P. M., 1978, Photosynthetic electron-transport chains of plants and bacteria and their role as proton pumps, in: Current Topics in Bioenergetics, Vol. 7 (D. R. Sanadi, ed.), Academic Press, New York, pp. 175–244.Google Scholar
  33. Crofts, A. R., and Wraight, C. A., 1983, The electrochemical domain of photosynthesis, Biochim. Biophys. Acta 726:149–186.CrossRefGoogle Scholar
  34. Crofts, A. R., Crowther, D., and Tiemey, G. V., 1975, Electrogenic electron transport in photosynthetic bacteria, in: Electron Transfer Chains and Oxidative Phosphorylation (E. Quagliariello, S. Papa, F. Palmieri, E. C. Slater, and N. Siliprandi, eds.), Elsevier Biomédical Press, Amsterdam, pp. 233–241.Google Scholar
  35. Crofts, A. R., Crowther, D., Bowyer, J. R., and Tiemey, G. V., 1977, Electron transport through the antimycin sensitive site in Rhodopseudomonas capsulata, in: Structure and Function of Energy-Transducing Systems (K. van Dam and B. F. van Gelder, eds.), Elsevier Biomédical Press, Amsterdam, pp. 139–155.Google Scholar
  36. Crofts, A. R., Bowyer, J. F., Meinhardt, S. W., and Rutherford, A. W., 1980, Photosynthetic electron transport in Rhodopseudomonas sphaeroides and Rhodopseudomonas capsulata, 1st EBEC Short Rep. 1980:29–30.Google Scholar
  37. Crofts, A. R., Meinhardt, S. W., Snozzi, M., and Jones, K. R., 1982a, A Q-cycle mechanism for cyclic electron transport in Rps. sphaeroides, 2nd EBEC Short Rep. 1982:327–328.Google Scholar
  38. Crofts, A. R., Meinhardt, S. W., and Bowyer, J. R., 1982b, The electron transport chain of Rhodopseu-domonas sphaeroides, in: Function of Quinones in Energy Conserving Systems B. L. Trumpower, ed.), Academic Press, New York, pp. 477–498.Google Scholar
  39. Crofts, A. R., Meinhardt, S. W., Jones, K. R., and Snozzi, M., 1983, The role of the quinone pool in the cyclic electron transfer chain of Rps. sphaeroides: A modified Q-cycle mechanism, Biochim. Biophys. Acta, 723:202–218.PubMedCrossRefGoogle Scholar
  40. Crowther, D., and Hind, G., 1981, Plastoquinone function and a possible Q-cycle in photosynthetic electron transport, in: Chemiosmotic Proton Circuits in Biological Membranes (V. P. Skulachev and P. C. Hinkle, eds.), Addison-Wesley Publishing, Reading, Massachusetts, pp. 245–257.Google Scholar
  41. DegliEsposti M., and Lenaz, G., 1982, Effect of antimycin on the rapid reduction of cytochrome c 1 in the b c 1 region of the mitochondrial respiratory chain, FEBS Lett. 142:49–53.CrossRefGoogle Scholar
  42. DeGrooth, B. G., van Grondelle, R., Romijn, J. C., and Pulles, M. P. J., 1978, The mechanism of reduction of the ubiquinone pool in photosynthetic bacteria at different redox potentials, Biochim. Biophys. Acta 503:480–490.CrossRefGoogle Scholar
  43. Dencher, N. A., 1983, The five retinal-protein pigments of Halobacteria, Photochem. Photobiol. 38:753–767.CrossRefGoogle Scholar
  44. Deul, D. H., and Thorn, M. B., 1962, Effects of 2,3-dimercaptopropanol and antimycin on absorption of heart-muscle preparations, Biochim. Biophys. Acta 59:426–436.PubMedCrossRefGoogle Scholar
  45. DeVries, S., 1983, The pathway of electrons in QH2: cytochrome c oxidoreductase, Ph.D. thesis, University of Amsterdam.Google Scholar
  46. DeVries, S., Albracht, S. P. J., and Leuriwerik, F. J., 1979, The multiplicity and stoichiometry of the prosthetic groups in QH2: cytochrome c oxidoreductase as studied by EPR, Biochim. Biophys. Acta 546:316–333.CrossRefGoogle Scholar
  47. DeVries, S., Berden, J. A., and Slater, E. C., 1980, Properties of a semiquinone anion located in the QH2: cytochrome c oxidoreductase segment of the mitochondrial respiratory chain, FEBS Lett. 122:143–148.CrossRefGoogle Scholar
  48. DeVries, S., Albracht, S. P. J., Berden, J. A., and Slater, E. C., 1981, A new species of bound ubisemiquinone anion in QH2: cytochrome c oxidoreductase, J. Biol. Chem. 256:11996–11998.Google Scholar
  49. DeVries, S., Albracht, S. P. J., Berden, J. A., and Slater, E. C., 1982, The pathway of electrons through QH2: cytochrome c oxidoreductase studied by pre-steady-state kinetics, Biochim. Biophys. Acta 681:41–53.CrossRefGoogle Scholar
  50. Dutton, P. L., and Prince, R. C., 1978a, Equilibrium and disequilibrium in the ubiquinone-cytochrome b-c 2 oxidoreductase of Rhodopseudomonas sphaeroides, FEBS Lett. 91:15–20.PubMedCrossRefGoogle Scholar
  51. Dutton, P. L., and Prince, R. C., 1978b, Reaction-center-driven cytochrome interactions in electron and proton translocation and energy coupling, in: The Photosynthetic Bacteria, Chap. 28 (R. K. Clayton and W. R. Sistrom, eds.), Plenum Press, New York, pp. 525–570.Google Scholar
  52. Dutton, P. L., Gunner, M. R., Robertson, D. E., and Prince, R. C., 1983, The roles of quinones in bacterial photosynthetic electron and proton translocations: in vitro and in vivo studies, Photochem. Photobiol. 37:566–567.Google Scholar
  53. Dutton, P. L., Petty, K. M., Bonner, H. S., and Morse, S. D., 1975, Cytochrome c 2 and reaction center of Rhodopseudomonas sphaeroides Ga. membranes. Extinction coefficients, content, half-reduction potentials, kinetics and electric field alterations, Biochim. Biophys. Acta 387:536–556.PubMedCrossRefGoogle Scholar
  54. Edwards, C. A., Bowyer, J. R., and Trumpower, B. L., 1982, Function of the iron-sulfur protein of the cytochrome b-c 1 segment in electron transfer reactions of the mitochondrial respiratory chain, J. Biol. Chem. 257:3705–3713.PubMedGoogle Scholar
  55. Engel, W. D., and von Jagow, G., 1982, The “Rieske” iron-sulphur protein, a freely diffusable component of the mitochondrial respiratory chain?, 2nd EBEC Short Rep. 1982:199–200.Google Scholar
  56. Engel, W. D., Schragger, H., and von Jagow, G., 1980, Ubiquinol cytochrome c reductase (EC1.10.2.2). Isolation in Triton X-100 by hydroxyapatite and gel chromatography. Structural and functional properties, Biochim. Biophys. Acta 592:211–222.PubMedCrossRefGoogle Scholar
  57. Feher, G., and Okamura, M. Y., 1978, Chemical composition and properties of reaction centers, in: The Photosynthetic Bacteria, Chap. 19 (R. K. Clayton and W. R. Sistrom, eds.), Plenum Press, New York, pp. 349–386.Google Scholar
  58. Filiingame, R. H., 1980, The proton translocating pumps of oxidative phosphorylation, Annu. Rev. Biochem. 49:1079–1113.CrossRefGoogle Scholar
  59. Gabellini, N., and Hauska, G., 1983, Characterization of cytochrome b in the isolated ubiquinol-cytochrome c 2 oxidoreductase from Rps. sphaeroides, FEBS Lett. 153:146–150.PubMedCrossRefGoogle Scholar
  60. Gabellini, N., Bowyer, J. R., Hurt, E., Melandri, B. A., and Hauska, G., 1982, A cyt b/c 1 complex with UQ-cyt C 2 oxidoreductase activity from Rps. sphaeroides, Eur. J. Biochem. 126:105–110.PubMedCrossRefGoogle Scholar
  61. Garland, P. B., Clegg, R. A., Boxer, D., Douonic, J. A., and Haddock, B. A., 1975, Proton-translocating nitrate reductase of Escherichia coli, in: Electron Transfer Chains and Oxidative Phosphorylation (E. Quagliariello, S. Papa, F. Palmieri, E. C. Slater, and N. Siliprandi, eds.), Elsevier Biomedical Press, Amsterdam, pp. 351–358.Google Scholar
  62. Glaser, E. G., and Crofts, A. R., 1984, A new electrogenic step in the ubiquinol-cytochrome c 2 oxidoreductase complex of Rhodopseudomonas sphaeroides, Biochem. Biophys. Acta, in press.Google Scholar
  63. Gopher, A., and Gutman, M., 1982, Differentiation between C-and M-side reactions of ubiquinone using imposed electron-electrochemical potential gradient, in: Function of Quinones in Energy Conserving Systems (B. L. Trumpower, ed.), Academic Press, New York, pp. 511–526.Google Scholar
  64. Green, D. E., and Wharton, D. C., 1963, Stoichiometry of the fixed oxidation-reduction components of the electron transfer chain of beef heart mitochondria, Biochem. Z. 338:335–348.PubMedGoogle Scholar
  65. Hauska, G., Hurt, E., Gabellini, N., and Lockau, W., 1983, Comparative aspects of quinol-cytochrome c/plastocyanin oxidoreductases. Biochim. Biophys. Acta 726:97–133.PubMedCrossRefGoogle Scholar
  66. Hoff, A. J., 1981, Magnetic field effects on photosynthetic reactions, Quart. Rev. Biophys. 14:599–665.CrossRefGoogle Scholar
  67. Hoppe, J., and Sebald, W., 1981. An essential carboxyl group for H+-conduction in the proteolipid subunit of the ATP-synthase, in: Chemiosmotic Proton Circuits in Biological Membranes (V. P. Skulachev and P. C. Hinkle, eds.), Addison-Wesley Publishing, Reading, Massachusetts, pp. 449–458.Google Scholar
  68. Hurt, E., and Hauska, G., 1981, A cytochrome f/b 6 complex of five polypeptides with plastoquinol-plastocyanin oxidoreductase activity from spinach chloroplasts, Eur. J. Biochem. 117:591–599.PubMedCrossRefGoogle Scholar
  69. Jackson, J. B., and Crofts, A. R., 1969, The high energy state in chromatophores from Rhodopseudomonas sphaeroides, FEBS Lett. 4:185–189.PubMedCrossRefGoogle Scholar
  70. Jackson, J. B., and Dutton, P. L., 1973, The kinetic and redox potentiometric resolution of the carotenoid shifts in Rps. sphaeroides chromatophores: Their relationship to electric field alterations in electron transport and energy coupling, Biochim. Biophys. Acta 325:102–115.PubMedCrossRefGoogle Scholar
  71. Kadenbach, B., and Merle, P., 1982, The function of the extra subunits of cytochrome oxidase, FEBS Lett. 135:1–11.CrossRefGoogle Scholar
  72. Kagawa, Y., 1981, H+-ATP synthetase from a thermophilic bacterium, in: Chemiosmotic Proton Circuits in Biological Membranes (V. P. Skulachev and P. C. Hinkle, eds.), Addison-Wesley Publishing, Reading, Massachusetts, pp. 421–433.Google Scholar
  73. Kell, D. B., 1979, On the functional proton current pathway of electron transport phosphorylation—an electrodic view, Biochim. Biophys. Acta 549:55–99.PubMedCrossRefGoogle Scholar
  74. King, T. E., 1981, Constitution of “The b-c 1 Complex” in: Chemiosmotic Proton Circuits in Biological Membranes (V. P. Skulachev and P. C. Hinkle, eds.), Addison-Wesley Publishing, Reading, Massachusetts, pp. 147–159.Google Scholar
  75. König, B. W., Osheroff, N., Wilms, J., Muijsers, A. O., Dekker, H. L., and Margoliash, E., 1980, Mapping of the interaction domain for purified cytochrome c 1 on cytochrome c, FEBS Lett. 111:395–398.PubMedCrossRefGoogle Scholar
  76. Kröger, A., 1976, The interaction of the radical of ubiquinone in mitochondrial electron transport, FEBS Lett. 65:278–280.PubMedCrossRefGoogle Scholar
  77. Kröger, A., and Klingenberg, M., 1967, On the role of ubiquinone, in: Current Topics in Bioenergetics, Vol. 2 (D. R. Sanadi, ed.), Academic Press, New York, pp. 151–193.Google Scholar
  78. Lavergne, J., 1982, Interaction of exogenous benzoquinone with photosystem II in chloroplasts. The semiquinone form acts as a dichlorophenyldimethylurea insensitive secondary acceptor, Biochim. Biophys. Acta 679:12–18.CrossRefGoogle Scholar
  79. Leonard, K., Wingfield, P., Arad, T., and Weiss, H., 1981, Three dimensional structure of ubiquinol: cytochrome c reductase from Neurospora mitochondria determined by electron microscopy of membrane crystals, J. Mol. Biol. 149:259–274.PubMedCrossRefGoogle Scholar
  80. Malviya, A. N., Nicholls, P., and Elliot, W. B., 1980, Observations on the oxido-reduction of the two cytochromes b in cytochrome c-deficient mitochondria and submitochondrial particles, Biochim. Biophys. Acta 589:137–149.PubMedCrossRefGoogle Scholar
  81. Matsuura, K., and Dutton, P. L., 1981, Flash activated electron and proton translocation through the ubiquinone-cytochrome c oxidoreductase of mitochondria and photosynthetic bacteria, in: Chemiosmotic Proton Circuits in Biological Membranes (V. P. Skulachev and P. C. Hinkle, eds.), Addison-Wesley Publishing, Reading, Massachusetts, pp. 259–270.Google Scholar
  82. Matsuura, K., Packam, N. K., Tiede, D. M., Mueller, P., and Dutton, P. L., 1982, Quinones as prosthetic groups in membrane electron transfer, in: Function of Quinones in Energy Conserving Systems (B. L. Trumpower, ed.), Academic Press, New York, pp. 277–283.Google Scholar
  83. Matsuura, K., Bowyer, J. R., Ohnishi, T., and Dutton, P. L., 1983a, Inhibition of electron transfer by 3-alkyl-2-hydroxy-l,4-naphthoquinones in the ubiquinol-cytochrome c oxidoreductases of Rps. sphaeroides and mammalian mitochondria, J. Biol. Chem. 258:1571–1579.PubMedGoogle Scholar
  84. Matsuura, K., O’Keefe, D. P., and Dutton, P. L., 1983b, A réévaluation of the events leading to the electrogenic reaction and proton translocation in the ubiquinol-cytochrome c oxidoreductase of Rps. sphaeroides, Biochim. Biophys. Acta 722:12–22.CrossRefGoogle Scholar
  85. Meinhardt, S. W., and Crofts, A. R., 1982a, The site and mechanism of action of myxothiazol as an inhibitor of electron transfer in Rps. sphaeroides, FEBS Lett. 149:217–222.CrossRefGoogle Scholar
  86. Meinhardt, S. W., and Crofts, A. R., 1982b, Kinetic and thermodynamic resolution of cytochrome c 1 and cytochrome c 2 from Rhodopseudomonas sphaeroides, FEBS Lett. 149:223–227.CrossRefGoogle Scholar
  87. Meinhardt, S. W., and Crofts, A. R., 1983, The role of cytochrome b-566 in the electron transfer chain of Rps. sphaeroides, Biochim. Biophys. Acta, 723:219–230.CrossRefGoogle Scholar
  88. Meinhardt, S.W., and Crofts, A. R., 1984, A new effect of antimycin on the b cytochromes of Rhodopseudomonas sphaeroides, in Proc. 6th Internatl. Cong. Photosynthesis (C. Sybesma, ed.), in press.Google Scholar
  89. Mendel-Hartvig, I., and Nelson, B.D., 1978, Labeling of complex III peptides in beef heart mitochondria and submitochondrial particles by diazonium benzene [35S] sulfonate, FEBS Lett. 92:36–40.PubMedCrossRefGoogle Scholar
  90. Mendel-Hartvig, I., and Nelson, B. D., 1981, Studies on beef heart ubiquinol-cytochrome c reductase. Quantification and distribution of the core proteins as determined by radioimmunoassay, Biochim. Biophys. Acta 636:91–97.PubMedCrossRefGoogle Scholar
  91. Mendel-Hartvig, I., and Nelson, B.D., 1982, Topological arrangements of subunits I and II (core proteins) of beef heart complex III, 2nd EBEC Short Rep. 1982:213–214.Google Scholar
  92. Mitchell, P., 1966, Chemiosmotic Coupling in Oxidative and Photosynthetic Phosphorylation, Glynn Research, Bodmin, Cornwall.Google Scholar
  93. Mitchell, P., 1968, Chemiosmotic Coupling and Energy Transduction, Glynn Research, Bodmin, Cornwall.Google Scholar
  94. Mitchell, P., 1975a, Proton motive redox mechanism of the cytochrome b-c 1 complex in the respiratory chain: Proton motive ubiquinone cycle, FEBS Lett. 56:1–6.PubMedCrossRefGoogle Scholar
  95. Mitchell, P., 1975b, Proton motive function of cytochrome systems, in: Electron Transfer Chains and Oxidative Phosphorylation (E. Quagliariello, S. Papa, F. Palmieri, E. C. Slater, and N. Siliprandi, eds.), Elsevier Biomédical Press, Amsterdam, pp. 304–316.Google Scholar
  96. Mitchell, P., 1976, Possible molecular mechanisms of the proton motive function of cytochrome systems, J. Theoret. Biol. 62:327–367.CrossRefGoogle Scholar
  97. Mitchell, P., 1982a, A critique of ≥H+/2e and ≦e/2e measurements, in: Oxidases and Related Redox Systems (T. E. King et al., eds.), Pergamon Press, Oxford and New York, pp. 1247–1268.Google Scholar
  98. Mitchell, P., 1982b, Some comments on the proton motive Q-cycle, in: Oxidases and Related Redox Systems (T. E. King, H. S. Mason and M. Morrison, eds.), Pergamon Press, Oxford and New York, pp. 1225–1246.Google Scholar
  99. Mitchell, P., and Moyle, J., 1983, Alternative hypotheses of proton ejection in cytochrome oxidase vesicles, FEBS Lett. 151:167–178.PubMedCrossRefGoogle Scholar
  100. Nagle, J. F., and Mille, M., 1981, Molecular models of proton pumps, J. Chem. Phys. 74:1367–1372.CrossRefGoogle Scholar
  101. Nagle, J. F., and Morowitz, H. J., 1978, Molecular mechanisms for proton transport in membranes, Proc. Natl. Acad. Sci. USA 75:298–302.PubMedCrossRefGoogle Scholar
  102. Nagle, J. F., and Tristram-Nagle, S., 1983, Hydrogen-bonded chain mechanisms for proton conduction and proton pumping, J. Membr. Biol., in press.Google Scholar
  103. Nelson, N., 1981, Proton channels in ATP-synthetases, in: Chemiosmotic Proton Circuits in Biological Membranes (V. P. Skulachev and P. C. Hinkle, eds.), Addison-Wesley Publishing, Reading, Massachusetts, pp. 471–482.Google Scholar
  104. Nelson, N., and Neuman, J., 1972, Isolation of a cytochrome b6-f particle from chloroplasts, J. Biol. Chem. 247:1817–1824.PubMedGoogle Scholar
  105. Nobrega, F. G., and Tzagaloff, A., 1980, Assembly of the mitochondrial membrane system—DNA sequence and organization of the cytochrome b gene in Saccharomyce cerevisiae D273-10B, J. Biol. Chem. 255:9828–9837.PubMedGoogle Scholar
  106. Ohnishi, T., and Trumpower, B. L., 1980, Differential effects of antimycin on ubisemiquinone bound in different environments in isolated succinate: cytochrome c reductase complex, J. Biol. Chem. 225:3278–3284.Google Scholar
  107. Okamura, M. Y., Feher, G., and Nelson, N., 1982, Reaction centers, in: Photosynthesis, Vol. 1 (Govindjee, ed.), Academic Press, New York, pp. 195–272.Google Scholar
  108. O’Keefe, D. P., and Dutton, P. L., 1981, Cytochrome b oxidation and reduction reactions in the ubiquinone-cytochrome b/c 2 oxidoreductase from Rhodopseudomonas sphaeroides, Biochim. Biophys. Acta 635:149–166.PubMedCrossRefGoogle Scholar
  109. O’Keefe, D. P., Prince, R. C., and Dutton, P. L., 1981, The interaction of the reaction center secondary quinone with the ubiquinone-cytochrome c 2 oxidoreductase in Rhodopseudomonas sphaeroides chromatophores, Biochim. Biophys. Acta 637:512–522.CrossRefGoogle Scholar
  110. Osheroff, N., Brautigan, D. L., and Margoliash, E., 1980, Definition of enzymic interaction domains on cytochrome c, J. Biol. Chem. 255:8245–8251.PubMedGoogle Scholar
  111. Overfield, R. E., and Wraight, C. A., 1980a, Oxidation of cytochrome c and c 2 by bacterial photosynthetic reaction centers in phospholipid vesicles. 1. Studies with neutral membranes, Biochemistry 19:3322–3327.PubMedCrossRefGoogle Scholar
  112. Overfield, R. E., and Wraight, C. A., 1980b, Oxidation of cytochrome c and c 2 by bacterial photosynthetic reaction centers in phospholipid vesicles. 2. Studies with negative membranes, Biochemistry 19:3328–3334.PubMedCrossRefGoogle Scholar
  113. Overfield, R. E., Wraight, C. A., and DeVault, D., 1979, Microsecond photooxidation kinetics of cytochrome c 2 from Rhodopseudomonas sphaeroides; in vivo and solution studies, FEBS Lett. 105:137–142.PubMedCrossRefGoogle Scholar
  114. Papa, S., and Guerrieri, F., 1981, Proton conduction by H+-ATPase, in: Chemiosmotic Proton Circuits in Biological Membranes (V. P. Skulachev and P. C. Hinkle, eds.), Addison-Wesley Publishing, Reading, Massachusetts, pp. 459–469.Google Scholar
  115. Parson, W. W., 1982, Photosynthetic bacterial reaction centers: Interactions among the bacteriochlorophylls and bacteriopheophytins, Annu. Rev. Biophys. Bioeng. 11:57–80.PubMedCrossRefGoogle Scholar
  116. Parson, W. W., and Ke, B., 1982, Primary photochemical reactions, in: Photosynthesis: Energy Conversion by Plants and Bacteria, Vol. I (Govindjee, ed.), Academic Press, New York, pp. 331–386.Google Scholar
  117. Petty, K. M., Jackson, J. B., and Dutton, P. L., 1979, Factors controlling the binding of two protons per electron transferred through the ubiquinone and cytochrome b/c2 segment of Rhodopseudomonas sphaeroides chromatophores, Biochim. Biophys. Acta 546:17–42.PubMedCrossRefGoogle Scholar
  118. Prince, R. C., Cogdell, R. J., and Crofts, A. R., 1974, The photooxidation of horse heart cyt c and native cyt c 2 by reaction centers from Rps. sphaeroides R26, Biochim. Biophys. Acta 347:1–13.PubMedCrossRefGoogle Scholar
  119. Prince, R. C., Bashford, C. L., Takamiya, K., van den Berg, W. H., and Dutton, P. L., 1978, Second order kinetics of the reduction of cytochrome c 2 by the ubiquinone cytochrome b-c 2 oxidoreductase of Rps. sphaeroides, J. Biol. Chem. 253:4137–4142.PubMedGoogle Scholar
  120. Prince, R. C., O’Keefe, D., and Dutton, P. L., 1982, The organization of the cyclic electron transfer system in photosynthetic bacterial membranes. Is this the hardware of a chemiosmotic system, in: Electron Transport and Photophosphorylation (J. Barber, ed.), Elsevier Biomedical Press, Amsterdam, pp. 197–248.Google Scholar
  121. Rich, P. R., 1981, A generalized model for the equilibration of quinone pools with their biological donors and acceptors in membrane-bound electron transfer chains, FEBS Lett. 130:173–178.PubMedCrossRefGoogle Scholar
  122. Rich, P. R., 1983, Electron transfer through the isolated mitochondrial cytochrome b-c1 complex, Biochim. Biophys. Acta 722:271–280.PubMedCrossRefGoogle Scholar
  123. Rich, P. R., and Bendall, D. S., 1981, Electron and proton transfer in the plastoquinol-plastocyanin oxidoreductase, Vectorial Reactions in Electron and Ion Transport (F. Palmieri, E. Quagliariello, N. Siliprandi, and E. C. Slater, eds.), Elsevier Biomédical Press, Amsterdam, pp. 187–190.Google Scholar
  124. Rieder, R., and Bosshard, H. R., 1980, Comparison of the binding sites on cytochrome c for cytochrome c oxidase, cytochrome bc1, and cytochrome c1, J. Biol. Chem. 255:4732–4739.PubMedGoogle Scholar
  125. Rieske, J. S., 1976, Composition, structure, and function of complex III of the respiratory chain, Biochim. Biophys. Acta 456:195–247.PubMedCrossRefGoogle Scholar
  126. Rieske, J. S., MacLennan, D. H., and Coleman, R., 1964, Isolation and properties of an iron-protein from the reduced coenzyme Q-cytochrome c reductase complex of the respiratory chain, Biochem. Biophys. Res. Commun. 15:338–344.CrossRefGoogle Scholar
  127. Rydström, J., Lee, C. P., and Ernster, L., 1981, Energy linked nicotinamide nucleotide transhydrogenase, in Chemiosmatic proton circuits in Biological Membranes (V. P. Skulachev, and P. C. Hinkle, eds.), Addison-Wesley Publishing, Reading, Massachusetts, pp. 483–508.Google Scholar
  128. Sauer, K., 1979, Photosynthesis—the light reactions, Annu. Rev. Phys. Chem. 30:155–178.CrossRefGoogle Scholar
  129. Schneider, H., LeMasters, J. J., Hoechli, M., and Hackenbrock, C. R., 1980, Lateral diffusion of ubiquinone during electron transfer in phospholipid and ubiquinone-enriched mitochondrial membranes, Proc Natl. Acad. Sci. USA 77:442–446.PubMedCrossRefGoogle Scholar
  130. Schneider, H., LeMasters, J. J., and Hackenbrock, C. R., 1982, Lateral diffusion of ubiquinone during electron transfer in phospholipid-and ubiquinone-enriched mitochondrial membranes, J. Biol. Chem. 257:10789–10793.PubMedGoogle Scholar
  131. Slater, E. C., 1981, The cytochrome b paradox, the BAL-labile factor and the Q-cycle, in: Chemiosmotic Proton Circuits in Biological Membranes (V. P. Skulachev and P. Hinkle, eds.), Addison-Wesley Publishing, Reading, Massachusetts, pp. 69–104.Google Scholar
  132. Sowers, A. E., and Hackenbrock, C. R., 1981, Rate of lateral diffusion of intermembrane particles: Measurement by electrophoretic displacement and rerandomization, Proc. Natl. Acad. Sci. USA 78:6246–6250.PubMedCrossRefGoogle Scholar
  133. Speck, S. H., Ferguson-Miller, S., Osheroff, N., and Margoliash, E., 1979, Definitions of cytochrome c binding domains by chemical modifications: kinetics of reaction with beef mitochondrial reductase and functional organization of the respiratory chain, Proc. Natl. Acad. Sci. USA 76:155–159.PubMedCrossRefGoogle Scholar
  134. Snozzi, M., and Crofts, A. R., 1984a, Diffusion controlled rates of bacterial photosynthetic electron transport as studied by fusion of chromatophores with liposomes, in Proc. 6th Internatl. Cong. Photosynthesis (C. Sybesma, ed.), in press.Google Scholar
  135. Snozzi, M. and Crofts, A. R., 1984b, Electron transport in chromatophores from Rhodopseudomonas sphaeroides Ga fused with liposomes, Biochim. Biophys. Acta, in press.Google Scholar
  136. Stoeckenius, W., Lozier, R. H., and Bogomolni, R., 1981, Bacteriorhodopsin photocycle and stoichiometry in Chemiosmotic Proton Circuits in Biological Membranes (V. P. Skulachev and P. C. Hinkle, eds.), Addison-Wesley Publishing, Reading, Massachusetts, pp. 283–310.Google Scholar
  137. Takamiya, K., and Dutton, P. L., 1979, Ubiquinone in Rhodopseudomonas sphaeroides. Some thermo-dynamic properties, Biochim. Biophys. Acta 546:1–16.PubMedCrossRefGoogle Scholar
  138. Takamiya, K., Prince, R. C., and Dutton, P. L., 1979, The recognition of a special ubiquinone functionally central in the ubiquinone-cytochrome b-c 2 oxidoreductase, J. Biol. Chem. 254:11307–11311.PubMedGoogle Scholar
  139. Taoka, S., Robinson, H. H., and Crofts, A. R., 1983, Kinetics of the reactions of the two-electron gate of photosystem II. Studies of the competition between plastoquinone and inhibitors, in: The Oxygen Evolving System of Photosynthesis (Y. Inoue, A. R. Crofts, Govindjee, N. Murata, G. Renger, and K. Satoh, eds.), Academic Press, New York, pp. 359–372.Google Scholar
  140. Thierbach, G., and Reichenbach, H., 1981, Myxothiazol, a new inhibitor of the cytochrome b-c 1 segment of the respiratory chain, Biochim. Biophys. Acta 638:282–289.PubMedCrossRefGoogle Scholar
  141. Trumpower, B. L., 1981, Function of the iron-sulfur protein of the cytochrome b-c 1 segment in electron transfer and energy conserving reactions of the mitochondrial respiratory chain, Biochim. Biophys. Acta 639:129–155.PubMedCrossRefGoogle Scholar
  142. Trumpower, B. L., and Haggerty, J. G., 1980, Inhibition of electron transfer in the cytochrome b-c 1 segment of the mitochondrial respiratory chain by a synthetic analogue of ubiquinone, itJ. Bioenerg. Biomembr. 12:151–164.CrossRefGoogle Scholar
  143. Trumpower, B. L., and Katki, A. G., 1979, Succinate-cytochrome c reductase complex of the mitochondrial electron transport chain, in: Membrane Proteins in Energy Transduction (R. A. Capaldi, ed.), Academic Press, New York, pp. 89–200.Google Scholar
  144. T’sai, A.-L., and Palmer, G., 1982a, Purified cytochrome b from yeast complex, 2nd EBEC Short Rep. 1982:205–206.Google Scholar
  145. T’sai, A.-L., and Palmer, G., 1982b, Purification and characterization of highly purified cytochrome b from complex III of baker’s yeast, Biochim. Biophys. Acta 681:484–495.CrossRefGoogle Scholar
  146. T’sai, A.-L., Olson, J. S., and Palmer, G., 1983, The oxidation of yeast complex III: Evidence for a very rapid electron equilibration between cytochrome c1 and the iron-sulfur center, J. Biol. Chem. 258:2122–2125.Google Scholar
  147. Tsou, C.-L., Tang, H.-L., Wang, D.-C., and Jin. Y.-Z., 1982, Multiphasic oxidation-reduction of cytochrome b in the succinate-cytochrome c reductase, Biochim. Biophys. Acta 682:315–321.PubMedCrossRefGoogle Scholar
  148. van Ark, G., Raap, A. K., Berden, J. A., and Slater, E. C., 1981, Kinetics of cytochrome b reduction in submitochondrial particles, Biochim. Biophys. Acta 637:35–42.Google Scholar
  149. van den Berg, W. H., Prince, R. C., Bashford, C. L., Takamiya, K.-L, Bonner, W. D., and Dutton, P. L., 1979, Electron and Proton Transport in the UQ-cyt b-C2 oxidoreductase of Rps. sphaeroides, J. Biol. Chem. 254:8594–8604.PubMedGoogle Scholar
  150. van den Berg, W. H., Bonner, W. D., and Dutton, P. L., 1983, Redox potential dependence of photo-phosphorylation and electron transfer in continuous illumination of Rps. sphaeroides chromatophores, Arch. Biochem. Biophys. 222:299–309.PubMedCrossRefGoogle Scholar
  151. van der Wal, H. N., and van Grondelle, R., 1982, Rash-induced cyclic electron transfer involving c-type and b-type cytochromes in chromatophores of Rhodospirillum rubrum, 2nd EBEC Short Rep. 1982:315–316.Google Scholar
  152. van der Wal, H. N., and van Grondelle, R., 1983, Rash-induced electron transport, in b-and c-type cytochromes in Rhodospirillum rubrum. Evidence for a Q-cycle, Biochim. Biophys. Acta, 725:94–103.CrossRefGoogle Scholar
  153. Velthuys, B. R., 1980, Mechanisms of electron flow in photosystem II and toward photosystem I, Annu. Rev. Plant Physiol. 31:545–567.CrossRefGoogle Scholar
  154. Velthuys, B. R., 1981, Electron-dependent competition between plastoquinone and inhibitors for binding to photosystem II, FEBS Lett. 126:277–281.CrossRefGoogle Scholar
  155. Velthuys, B. R., 1982, The function of plastoquinone in electron transfer, in: Function of Quinones in Energy Coupling Systems (B. L. Trumpower, ed.), Academic Press, New York, pp. 401–408.Google Scholar
  156. Vermeglio, A., 1977, Secondary electron transfer in reaction centers of Rhodopseudomonas sphaeroides. Out-of-phase periodicity of two for the formation of ubisemiquinone and fully reduced ubiquinones, Biochim. Biophys. Acta 459:516–524.PubMedCrossRefGoogle Scholar
  157. von Jagow, G., and Engel, W. D., 1981, Complete inhibition of electron transfer from ubiquinol to cytochrome b by the combined action of antimycin and myxothiazol, FEBS Lett. 136:19–24.CrossRefGoogle Scholar
  158. von Jagow, G., Engel, W. D., Schragger, H., Machleidt, W., and Machleidt, I., 1981, On the mechanism of proton translocation linked to electron transfer at energy conservation site 2, in: Vectorial Reactions in Electron and Ion Transport in Mitochondria and Bacteria, (F. Palmieri, E. Quagliarrielo, N. Siliprandi, and E. C. Slater, eds.), Elsevier Biomédical Press, Amsterdam, pp. 149–161.Google Scholar
  159. Weiss, H., Wingfield, P., and Leonard, K., 1979, Structure and biogenesis of succinate: ubiquinone reductase and ubiquinone: cytochrome c reductase in Neurospora crassa mitochondria, in: Membrane Bioenergetics (C.-P. Lee, G. Schatz, and L. Ernster, eds.), Addison-Wesley Publishing, Reading, Massachusetts, pp. 119–132.Google Scholar
  160. Widger, W. R., Cramer, W. A., Herman, R. G., and Trebst, A., 1984, Sequence homology and the structural similarity between cytochrome b of mitochondrial complex III and the chloroplast b6:f complex: position of the cytochrome b hemes in the membrane, Proc. Natl. Acad. Sci. USA (in press).Google Scholar
  161. Wikström, M. K. F., 1973, The different cytochrome b components in the respiratory chain of animal mitochondria, and their role in electron transport and energy conservations, Biochim. Biophys. Acta 301:155–193.PubMedCrossRefGoogle Scholar
  162. Wikström, M. K. F., 1981, The protonmotive function of cytochrome oxidase, in: Chemiosmotic Proton Circuits in Biological Membranes (V. P. Skulachev and P. C. Hinkle, eds.), Addison-Wesley Publishing, Reading, Massachusetts, pp. 171–180.Google Scholar
  163. Wikström, M. K. F., and Berden, J., 1972, Oxidoreduction of cytochrome b in the presence of antimycin, Biochim. Biophys. Acta 283:403–420.PubMedCrossRefGoogle Scholar
  164. Wikström, M. K. F., Krab, K., and Saraste, M., 1981, Proton translocating cytochrome complexes, Annu. Rev. Biochem. 50:623–655.PubMedCrossRefGoogle Scholar
  165. Wood, P. M., 1980, Do photosynthetic bacteria contain cytochrome C1?, Biochem. J. 189:385–391.PubMedGoogle Scholar
  166. Wraight, CA., 1977, Electron acceptors of photosynthetic bacterial reaction centers. Direct observation of oscillatory behavior suggesting two closely equivalent ubiquinones, Biochim. Biophys. Acta 459:525–531.PubMedCrossRefGoogle Scholar
  167. Wraight, C. A., 1981, Oxidation-reduction physical chemistry of the acceptor quinone complex in bacterial photosynthetic reaction centers: Evidence for a new model of herbicide activity, Israel J. Chem. 21:348–354.Google Scholar
  168. Wraight, C. A., 1982, The involvement of stable semiquinones in the two-electron gates of plant and bacterial photosynthesis, in: Functions of Quinone s in Energy Coupling Systems (B. L. Trumpower, ed.), Academic Press, New York, pp. 181–197.Google Scholar
  169. Wraight, C. A., Cogdell, R. J., and Chance, B., 1978, Ion transport and electrochemical gradients in photosynthetic bacteria, in: The Photosynthetic Bacteria Chap. 26 (R. K. Clayton and W. K. Sistrom, eds.), Plenum Press, New York, pp. 471–511.Google Scholar
  170. Yu, L., and Yu, C.-A., 1982, Isolation and purification of the cytochrome b-C1 complex from Rps. sphaeroides, Biochem. Biophys. Res. Commun. 108:1285–1292.PubMedCrossRefGoogle Scholar
  171. Yu, C A., Nagoaka, S., Yu, L., and King, T. E., 1980, Evidence of ubisemiquinone radicals in electron transfer at the cytochromes b and c 1 region of the cardiac respiratory chain, Arch. Biochem. Biophys. 204:59–70.PubMedCrossRefGoogle Scholar
  172. Zhu, Q. S., van der Wal, H. N., van Grondelle, R., and Berden, J. A., 1983, Kinetics of flash-induced electron transfer between bacterial reaction centers, mitochondrial ubiquinol: cytochrome c oxidore-ductase and cytochrome c, Biochim. Biophys. Acta 725:121–130.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1985

Authors and Affiliations

  • Antony R. Crofts
    • 1
  1. 1.Department of Physiology and BiophysicsUniversity of IllinoisUrbanaUSA

Personalised recommendations