Advertisement

The Enzymes and the Enzyme Complexes of the Mitochondrial Oxidative Phosphorylation System

  • Youssef Hatefi
  • C. Ian Ragan
  • Yves M. Galante

Abstract

This is an introductory chapter for the section of this series concerned with the membrane-bound enzymes of mitochondria. A similar chapter appeared in the first edition of this book (Hatefi, 1976). The assigned task is confined to the enzymes of the mammalian mitochondrial oxidative phosphorylation system, and as an introductory article this chapter is intended to cover only the principal structural and functional features of these enzymes.* Details will appear in other chapters dealing with specific aspects.

Keywords

Bovine Heart Proton Translocation Beef Heart Submitochondrial Particle ATPase Complex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ackrell, B. A. C., Kearney, E. B., and Coles, C. J., 1977, Isolation of reconstitutively active succinate dehydrogenase in highly purified state, J. Biol. Chem. 252:6963–6965.PubMedGoogle Scholar
  2. Ackrell, B. A. C., Ball, M. B., and Kearney, E. B., 1980, Peptides from complex II active in reconstitution of succinate-ubiquinone reductase, J. Biol. Chem. 255:2761–2769.PubMedGoogle Scholar
  3. Albracht, S. P. J., and Subramanian, J., 1977, The number of Fe atoms in the iron-sulfur centers of the respiratory chain, Biochim. Biophys. Acta 462:36–48.PubMedCrossRefGoogle Scholar
  4. Albracht, S. P. J., Dooijewaard, G., Leeuwerik, F. J., and Van Swol, B., 1977, Epr signals of NADH: Q oxidoreductase. Shape and intensity, Biochim. Biophys. Acta 459:300–317.PubMedCrossRefGoogle Scholar
  5. Albracht, S. P. J., Leeuwerik, F. J., and Van Swol, B., 1979, The stoichiometry of the iron-sulfur clusters la, lb and 2 of NADH: Q oxidoreductase as present in beef heart submitochondrial particles, FEBS Lett. 104:197–200.PubMedCrossRefGoogle Scholar
  6. Alexandre, A., Galiazzo, F., and Lehninger, A. L., 1980, On the location of the H+-extruding steps in site 2 of the mitochondrial electron transport chain, J. Biol. Chem. 255:10721–10730.PubMedGoogle Scholar
  7. Alfonzo, M., Kandrack, M. A., and Racker, E., 1981, Isolation, characterization, and reconstitution of a solubilized fraction containing the hydrophobic sector of the mitochondrial proton pump, J. Bioenerg. Biomembr. 13:375–391.PubMedCrossRefGoogle Scholar
  8. Al-Shawi, M. K., and Brand, M. D., 1981, Steady-state H+/O stoichiometry of liver mitochondria, Biochem. J. 200:539–546.PubMedGoogle Scholar
  9. Amzel, L. M., and Pedersen, P. L., 1978, Adenosine triphosphatase from rat liver mitochondria. Crystallization and X-ray diffraction studies of the F1-component of the enzyme, J. Biol. Chem. 253:2067–2069.PubMedGoogle Scholar
  10. Amzel, L. M, McKinney, M., Narayanan, P., and Pedersen, P. L., 1982, Structure of the mitochondrial F1 ATPase at 9-Å resolution, Proc. Natl. Acad. Sci. USA 79:5852–5856.PubMedCrossRefGoogle Scholar
  11. Anderson, J. M., and Anderson, B., 1982, The architecture of photosynthetic membranes: Lateral and transverse organization, Trends Biochem. Sci. 7:288–292.CrossRefGoogle Scholar
  12. Anderson, S., Bankier, A. T., Barrell, B. G., De Bruijn, M. H. L., Coulson, A. R., Drouin, J., Eperon, I. C., Nierlich, D. P., Roe, B. A., Sanger, F., Schreier, P. H., Smith, A. J. H., Staden, R., and Young, I. G., 1981, Sequence and organization of the human mitochondrial genome, Nature (London) 290:457–465.CrossRefGoogle Scholar
  13. Anderson, S., De Bruijn, H. L., Coulson, A. R., Eperon, I. C., Sanger, F., and Young, I. G., 1982, Complete sequence of bovine mitochondrial DNA. Conserved features of mammalian mitochondrial genome, J. Mol. Biol. 156:683–717.PubMedCrossRefGoogle Scholar
  14. Baginsky, M. L., and Hatefi, Y., 1969, Reconstitution of succinate-coenzyme Q reductase (complex II) and succinate oxidase activities by a highly purified, reactivated succinate dehydrogenase, J. Biol. Chem. 244:5313–5319.PubMedGoogle Scholar
  15. Baugh, R. F., and King, T. E., 1972, Purification, properties and reconstitutive activity of a DPNH dehydrogenase, Biochem. Biophys. Res. Commun. 49:1165–1173.PubMedCrossRefGoogle Scholar
  16. Beattie, D. S., and Villalobo, A., 1982, Energy transduction by the reconstituted b-c 1 complex from yeast mitochondria: Inhibitory effects of dicyclohexylcarbodiimide, J. Biol. Chem. 257:14745–14752.PubMedGoogle Scholar
  17. Beattie, D. S., Clejan, L., Chen, Y.-S., Lin, C.-I. P., and Sidhu, A., 1981, Orientation of complex III in the yeast mitochondrial membrane: Labeling with [125I]diazobenzenesulfonate and functional studies with the decyl analogue of coenzyme Q as substrate, J. Bioenerg. Biomembr. 13:357–373.PubMedCrossRefGoogle Scholar
  18. Becker, W. F., von Jagow, G., Anke, T., and Steglich, W., 1981, Oudemansin, strobilurin A, strobilurin B, and myxothiazol: New inhibitors of the bc 1 segment of the respiratory chain with E-β-methoxyacrylate system as common structural element, FEBS Lett. 132:329–333.PubMedCrossRefGoogle Scholar
  19. Beechey, R. B., Roberton, A. M., Holloway, C. T., and Knight, I. G., 1967, The properties of dicyclohexylcarbodiimide as an inhibitor of oxidative phosphorylation, Biochemistry 6:3867–3879.PubMedCrossRefGoogle Scholar
  20. Beinert, H., and Albracht, S. P. J., 1982, New insights, ideas and unanswered questions concerning iron-sulfur clusters in mitochondria, Biochim. Biophys. Acta 683:245–277.PubMedCrossRefGoogle Scholar
  21. Bell, R. L., Sweetland, J., Ludwig, B., and Capaldi, R. A., 1979, Labeling of complex III with [35S]diazobenzenesulfonate: Orientation of this electron transfer segment in the mitochondrial inner membrane, Proc. Natl. Acad. Sci. USA 76:741–745.PubMedCrossRefGoogle Scholar
  22. Bengis-Garber, C., and Gromet-Elhanan, Z., 1979, Purification of the energy-transducing adenosine triphosphatase complex from Rhodospirillum rubrum, Biochemistry 18:3577–3581.PubMedCrossRefGoogle Scholar
  23. Berden, J. A., and Henneke, M. A. C., 1981, The uncoupler-binding protein in the proton-pump ATPase from beef-heart mitochondria, FEBS Lett. 126:211–214.PubMedCrossRefGoogle Scholar
  24. Bisson, R., Montecucco, C., Gutweniger, H., and Azzi, A., 1979, Cytochrome c oxidase subunits in contact with phospholipids, J. Biol. Chem. 254:9962–9965.PubMedGoogle Scholar
  25. Boekema, E. J., Van Breemen, J. F. L., Keegstra, W., Van Bruggen, E. F. J., and Albracht, S. P. J., 1982, Structure of NADH:Q oxidoreductase from bovine heart mitochondria studied by electron microscopy, Biochim. Biophys. Acta 679:7–11.PubMedCrossRefGoogle Scholar
  26. Bomstein, R., Goldberger, R., and Tisdale, H., 1961, Studies on the electron transport system XXXIV. Isolation and properties of mammalian cytochrome c 1, Biochim. Biophys. Acta 50:527–543.CrossRefGoogle Scholar
  27. Bonomi, F., Pagani, S., Cerletti, P., and Cannella, C., 1977, Rhodanese-mediated sulfur transfer to succinate dehydrogenase, Eur. J. Biochem. 72:17–24.PubMedCrossRefGoogle Scholar
  28. Bossard, M. J., Vik, T. A., and Schuster, S., 1980, Beef heart mitochondrial adenosine triphosphatasecatalyzed formation of a transition state analog in ATP synthesis, J. Biol. Chem. 255:5342–5346.PubMedGoogle Scholar
  29. Bowyer, J. R., and Trumpower, B. L., 1981, Rapid reduction of cytochrome c 1 in the presence of antimycin and its implication for the mechanism of electron transfer in the cytochrome b-c 1 segment of the mitochondrial respiratory chain, J. Biol. Chem. 256:2245–2251.PubMedGoogle Scholar
  30. Bowyer, J. R., Edwards, C. A., Ohnishi, T., and Trumpower, B. L., 1982, An analogue of ubiquinone which inhibits respiration by binding to the iron-sulfur protein of the cytochrome b-c 1 segment of the mitochondrial respiratory chain, J. Biol. Chem. 257:8321–8330.PubMedGoogle Scholar
  31. Boyer, P. D., 1979, The binding-change mechanism of ATP synthesis, in: Membrane Bioenergetics (C.P. Lee, G. Schatz, and L. Ernster, eds.), Addison-Wesley, Reading, Massachusetts, pp. 461–479.Google Scholar
  32. Boyer, P. D., Cross, R. L., and Momsen, W., 1973, A new concept for energy coupling in oxidative phosphorylation based on a molecular explanation of the oxygen exchange reactions, Proc. Natl. Acad. Sci. USA 70:2837–2839.PubMedCrossRefGoogle Scholar
  33. Briquet, M., Purnelle, B., Faber, A. M., and Goffeau, A., 1981, Identification of three distinct species of yeast mitochondrial cytochrome b using a combination of respiratory inhibitors, Biochim. Biophys. Acta 638:116–119.CrossRefGoogle Scholar
  34. Budker, V. G., Kozlov, I. A., Kurbatov, V. A., and Milgrom, Y. M., 1977, The interaction of mitochondrial ATPase with an alkylating ATP-analog, FEBS Lett. 83:11–14.PubMedCrossRefGoogle Scholar
  35. Capaldi, R. A., 1982, Arrangement of proteins in the mitochondrial inner membrane, Biochim. Biophys. Acta 694:291–306.PubMedCrossRefGoogle Scholar
  36. Casey, R. P., Thelen, M., and Azzi, A., 1980, Dicyclohexylcarbodiimide binds specifically and covalently to cytochrome c oxidase while inhibiting its H+-translocating activity, J. Biol. Chem. 255:3994–4000.PubMedGoogle Scholar
  37. Chance, B., 1958, The kinetics and inhibition of cytochrome components of the succinic oxidase system HI. Cytochrome b, J. Biol. Chem. 233:1223–1229.PubMedGoogle Scholar
  38. Chang, T.-M., and Penefsky, H. S., 1973, Aurovertin, a fluorescent probe of conformational change in beef heart mitochondrial adenosine triphosphatase, J. Biol. Chem. 248:2746–2754.PubMedGoogle Scholar
  39. Chen, S., and Guillory, R. J., 1981, Studies on the interaction of arylazido-β-alanyl NAD+ with the mitochondrial NADH dehydrogenase, J. Biol. Chem. 256:8318–8323.PubMedGoogle Scholar
  40. Cleland, W. W., 1970, Steady state kinetics, in: The Enzymes, Vol. H, (P.D. Boyer, ed.), Academic Press, New York, pp. 1–65.Google Scholar
  41. Coles, C. J., Holm, R. H., Kurtz, D. M., Jr., Orme-Johnson, W. H., Rawling, J., Singer, T. P., and Wong, G. B., 1979, Characterization of the iron-sulfur centers in succinate dehydrogenase, Proc. Natl. Acad. Sci. USA 76:3805–3808.PubMedCrossRefGoogle Scholar
  42. Cottingham, I. R., and Ragan, C. I., 1980, Purification and properties of L-3-glycerophosphate dehydrogenase from pig brain, Biochem. J. 192:9–18.PubMedGoogle Scholar
  43. Cremona, T., Kearney, E. B., Villavicencio, M., and Singer, T. P., 1963, Studies on the respiratory chainlinked DPNH dehydrogenase V. Transformation of DPNH dehydrogenase to DPNH-cytochrome c reductase and diaphorase under the influence of heat, proteolytic enzymes, and urea, Biochem. Z. 338:407–442.PubMedGoogle Scholar
  44. Cross, R. L., and Kohlbrenner, W. E., 1978, The mode of inhibition of oxidative phosphorylation by efrapeptin (A 23871), J. Biol. Chem. 253:4865–4873.PubMedGoogle Scholar
  45. Cross, R. L., and Nalin, C. M., 1982, Adenine nucleotide binding sites on beef heart F1ATPase. Evidence for three exchangeable sites that are distinct from three noncatalytic sites, J. Biol. Chem. 257:2874–2881.PubMedGoogle Scholar
  46. Cross, R. L., Grubmeyer, C., and Penefsky, H. S., 1982, Mechanism of ATP hydrolysis by beef heart mitochondrial ATPase. Rate enhancements resulting from cooperative interactions between multiple catalytic sites, J. Biol. Chem. 257:12101–12105.PubMedGoogle Scholar
  47. Davenport, J. W., and McCarty, R. E., 1981, Quantitative aspects of adenosine triphosphate-driven proton translocation in spinach chloroplast thylakoids, J. Biol. Chem. 256:8947–8954.PubMedGoogle Scholar
  48. Davis, K. A., and Hatefi, Y., 1969, Kinetics of the resolution of complex I (reduced diphosphopyridine nucleotide-coenzyme Q reductase) of the mitochondrial electron transport system by chaotropic agents, Biochemistry 9:3355–3361.CrossRefGoogle Scholar
  49. Davis, K. A., and Hatefi, Y., 1971, Succinate dehydrogenase. I. Purification, molecular properties and substructure, Biochemistry 10:2509–2516.PubMedCrossRefGoogle Scholar
  50. Davis, K. A., and Hatefi, Y., 1972, Resolution and reconstitution of complex II (succinate-ubiquinone reductase) by salts, Arch. Biochem. Biophys. 149:505–512.PubMedCrossRefGoogle Scholar
  51. Davis, K. A., Hatefi, Y., Poff, K. L., and Butler, W. L., 1973, The b-type cytochromes of bovine heart mitochondria: Absorption spectra, enzymatic properties, and distribution in the electron transfer complexes, Biochim. Biophys. Acta 325:341–356.PubMedCrossRefGoogle Scholar
  52. Decker, S. J., and Lang, D. R., 1977, Mutants of Bacillus megaterium resistant to uncouplers of oxidative phosphorylation, J. Biol. Chem. 252:5936–5938.PubMedGoogle Scholar
  53. Decker, S. J., and Lang, D. R., 1978, Membrane bioenergetics parameters in uncoupler-resistant mutants of Bacillus megaterium, J. Biol. Chem. 253:6738–6743.PubMedGoogle Scholar
  54. Devault, D., 1976, Theory of iron-sulfur center N-2 oxidation and reduction by ATP, J. Theoret. Biol. 62:115–139.CrossRefGoogle Scholar
  55. Devlin, R. B., 1982, Biogenesis of the mitochondrial ATPase from sea urchin embryos, J. Biol. Chem. 257:9711–9716.PubMedGoogle Scholar
  56. De Vries, S., Berden, J. A., and Slater, E. C., 1980, Properties of a semiquinone anion located in the QH2: Cytochrome c oxidoreductase segment of the mitochondrial respiratory chain, FEBS Lett. 122:143–148.PubMedCrossRefGoogle Scholar
  57. De Vries, S., Albracht, S. P. J., Berden, J. A., and Slater, E. C., 1981, A new species of bound ubisemiquinone anion in QH2: Cytochrome c oxidoreductase, J. Biol. Chem. 256: 11996–11998.PubMedGoogle Scholar
  58. De Vries, S., Albracht, S. P. J., Berden, J. A., and Slater, E. C., 1982, The pathway of electrons through QH2: Cytochrome c oxidoreductase studied by pre-steady-state kinetics, Biochim. Biophys. Acta 681:41–53.PubMedCrossRefGoogle Scholar
  59. Diggens, R. J., and Ragan, C. I., 1982, Properties of ubiquinol oxidase reconstituted from ubiquinol-cytochrome c reductase, cytochrome c and cytochrome c oxidase, Biochem. J. 202:527–534.PubMedGoogle Scholar
  60. Di Pietro, A., Godinot, C., and Gautheron, D. C., 1983, Use of trypsin to monitor conformational changes of mitochondrial adenosinetriphosphatase induced by nucleotides and phosphate, Biochemistry 22:785–792.PubMedCrossRefGoogle Scholar
  61. Dooijewaard, G., and Slater, E. C., 1976, Steady-state kinetics of high molecular weight (type-I) NADH dehydrogenase, Biochim. Biophys. Acta 440:1–15, 16-35.PubMedCrossRefGoogle Scholar
  62. Downie, J. A., Gibson, F., and Cox, G. R. 1979, Membrane adenosine triphosphatases of prokaryotic cells, Annu. Rev. Biochem. 48:103–131.PubMedCrossRefGoogle Scholar
  63. Dreyfus, G., and Satre, M., 1984, The ε subunit as an ATPase Inhibitor of the F1-ATPase in Escherichia coli, Arch. Biochem. Biophys. 229:212–219.PubMedCrossRefGoogle Scholar
  64. Drusta, V. L., Kozlov, I. A., Milgrom, Y. M., Shabarova, Z. A., and Sokolova, N. I., 1979, An activesite-directed adenosine triphosphate analogue binds to the β-subunit of factor F1 mitochondrial adenosine triphosphatase with its triphosphate moiety, Biochem. J. 182:617–619.Google Scholar
  65. Dunn, S. D., and Heppel, L. A., 1981, Properties and functions of the subunits of the Escherichia coli coupling factor ATPase, Arch. Biochem. Biophys. 210:421–436.PubMedCrossRefGoogle Scholar
  66. Earle, S. R., and Fisher, R. R., 1980, A direct demonstration of proton translocation coupled to transhydrogenation in reconstituted vesicles, J. Biol. Chem. 255:827–830.PubMedGoogle Scholar
  67. Earley, F. G. P., and Ragan, C. I., 1980, Identification of the subunits of bovine heart mitochondrial NADH dehydrogenase that are exposed to the phospholipid bilayer by photolabelling with 5-iodonaphthyl azide, Biochem. J. 191:429–436.PubMedGoogle Scholar
  68. Earley, F. G. P., and Ragan, C. I., 1981, Photolabelling of mitochondrial NADH dehydrogenase with arylazidophosphatidylcholine, FEBS Lett. 127:45–47.CrossRefGoogle Scholar
  69. Eisenhardt, R. H., and Rosenthal, O., 1968, Studies on energy transfer in mitochondrial oxidative phosphorylation III. On the interaction of adenosine diphosphate with high-energy intermediates, Biochemistry 7:1327–1333.PubMedCrossRefGoogle Scholar
  70. Erecinska, M., Chance, B., Wilson, D. F., and Dutton, P. L., 1972, Aerobic reduction of cytochrome b 566 in pigeon-heart mitochondria, Proc. Natl. Acad. Sci. USA 69:50–54.PubMedCrossRefGoogle Scholar
  71. Ernster, L., and Schatz, G., 1981, Mitochondria: A historical review, J. Cell Biol. 91:227s–255s.PubMedCrossRefGoogle Scholar
  72. Esch, F. S., and Allison, W. S., 1978, Identification of a tyrosine residue at the nucleotide binding site in the β subunit of the mitochondrial ATPase with p-fluorosulfonyl[14C]-benzoyl-5′-adenosine, J. Biol. Chem. 253:6100–6106.PubMedGoogle Scholar
  73. Esch, F. S., and Allison, W. S., 1979, On the subunit stoichiometry of the F1ATPase and the sites in it that react specifically with p-fluorosulfonylbenzoyl-5′-adenosine, J. Biol. Chem. 254:10740–10746.PubMedGoogle Scholar
  74. Esposti, M. D., and Lenaz, G., 1982, Effect of antimycin on the rapid reduction of cytochrome c 1 in the bc 1 region of the mitochondrial respiratory chain, FEBS Lett. 142:49–53.PubMedCrossRefGoogle Scholar
  75. Feldman, R. I., and Sigman, D. S., 1982, The synthesis of enzyme-bound ATP by soluble chloroplast coupling factor 1, J. Biol. Chem. 257:1676–1683.PubMedGoogle Scholar
  76. Ferguson, S. J., Lloyd, W. J., Lyons, M. H., and Radda, G. K., 1975, The mitochondrial ATPase. Evidence for a single essential tyrosine residue, Eur. J. Biochem. 54:117–126.PubMedCrossRefGoogle Scholar
  77. Fernandez-Moran, H., Oda, T., Blair, P. V., and Green, D. E., 1964, A macromolecular repeating unit of mitochondrial structure and function, J. Cell Biol. 22:63–100.PubMedCrossRefGoogle Scholar
  78. Fillingame, R. H., 1980, The proton-translocating pumps of oxidative phosphorylation, Annu. Rev. Biochem. 49:1079–1113.PubMedCrossRefGoogle Scholar
  79. Fillingame, R. H., 1981, Biochemistry and genetics of bacterial H+-translocating ATPases, in: Current Topics in Bioenergetics, Vol. 11 (D.R. Sanadi, ed.), Academic Press, New York, pp. 35–106.Google Scholar
  80. Fleischer, S., Brierley, G., and Klouwen, H., 1961, Studies on the electron transfer system XXXVIII. Lipid composition of purified enzyme preparations derived from beef heart mitochondria, J. Biol. Chem. 236:2936–2941.PubMedGoogle Scholar
  81. Fowler, L. R., and Richardson, S. H., 1963, Studies on the electron transfer system L. On the mechanism of reconstitution of the mitochondrial electron transfer system, J. Biol. Chem. 278:456–463.Google Scholar
  82. Frangione, B., Rosenwasser, E., Penefsky, H. S., and Pullman, M. E., 1981, Amino acid sequence of the protein inhibitor of mitochondrial adenosine triphosphatase, Proc. Natl. Acad. Sci. USA 78:7403–7407.PubMedCrossRefGoogle Scholar
  83. Friedl, P., Bienhaus, G., Hoppe, J., and Schairer, H. U., 1981, The dicyclohexylcarbodiimide-binding protein c of ATP synthase from Escherichia coli is not sufficient to express an efficient H+ conduction, Proc. Natl. Acad. Sci. USA 78:6643–6646.PubMedCrossRefGoogle Scholar
  84. Friedl, P., Hoppe, J., Gunsalus, R. P., Michelsen, O., von Meyenburg, K., and Schairer, H. U., 1983, Membrane integration and function of the three F0 subunits of the ATP synthase of Escherichia coli K12, EMBO J. 2:99–103.PubMedGoogle Scholar
  85. Frigeri, L., Galante, Y. M., Hanstein, W. G., and Hatefi, Y., 1977, Effect of arginine binding reagents on the ATPase and ATP-Pi exchange activities of the mitochondrial ATP synthetase complex (complex V), J. Biol. Chem. 252:3147–3152.PubMedGoogle Scholar
  86. Frigeri, L., Galante, Y. M., and Hatefi, Y., 1978, Interaction of complex V and F1-ATPase with [14C]phenylglyoxal, J. Biol. Chem. 253:8935–8940.PubMedGoogle Scholar
  87. Fry, M., and Green, D. E., 1981, Cardiolipin requirement for electron transfer in Complex I and III of the mitochondrial respiratory chain, J. Biol. Chem. 256:1874–1880.PubMedGoogle Scholar
  88. Futai, M., Hirano, M., Senda, M., Takeda, K., and Kanazawa, H., 1982, ATP-dependent conformational change of a and β subunits of F1 ATPase from Escherichia coli, 12th International Congress of Biochemistry Abstracts, p. 287.Google Scholar
  89. Gabellini, N., Bowyer, J. R., Hurt, E., Melandri, B. A., and Hauska, G., 1982, Acytochrome b/c 1 complex with ubiquinol-cytochrome c 2 oxidoreductase activity from Rhodopseudomonas sphaeroides GA, Eur. J.Biochem. 126:105–111.PubMedCrossRefGoogle Scholar
  90. Galante, Y. M., and Hatefi, Y., 1979, Purification and molecular and enzymic properties of mitochondrial NADH dehydrogenase, Arch. Biochem. Biophys. 192:559–568.PubMedCrossRefGoogle Scholar
  91. Galante, Y. M., Wong, S.-Y., and Hatefi, Y., 1979, Composition of complex V of the mitochondrial oxidative phosphorylation system, J. Biol. Chem. 254:12372–12378.PubMedGoogle Scholar
  92. Galante, Y. M., Wong, S.-Y., and Hatefi, Y., 1981a, Resolution and reconstitution of complex V of the mitochondrial oxidative phosphorylation system: Properties and composition of the membrane sector, Arch. Biochem. Biophys. 211:643–651.PubMedCrossRefGoogle Scholar
  93. Galante, Y. M., Wong, S.-Y., and Hatefi, Y., 1981b, Mitochondrial adenosine triphosphatase inhibitor protein: Reversible interaction with complex V (ATP synthetase complex), Biochemistry 20:2671–2678.PubMedCrossRefGoogle Scholar
  94. Galante, Y. M., Wong, S.-Y., and Hatefi, Y., 1982, Independent inhibitions of mitochondrial complex V by the adenosine triphosphatase inhibitor protein and active-site modifiers, Biochemistry 21:680–687.PubMedCrossRefGoogle Scholar
  95. Gellerfors, P., Johnsson, T., and Nelson, B. D., 1981, Isolation of the cytochrome-bc 1 complex from ratliver mitochondria, Eur. J. Biochem. 115:275–278.PubMedCrossRefGoogle Scholar
  96. Goldberger, R., and Green, D. E., 1963, Properties and function of mammalian cytochromes b and c 1, in: The Enzymes, Vol. 8, 2nd Ed. (P. D. Boyer, H. Lardy, and K. Myrback, eds.), Academic Press, New York, pp. 81–95.Google Scholar
  97. Gomez-Fernandez, J. C., and Harris, D. A., 1978, The thermodynamic analysis of the interaction between the mitochondrial coupling adenosine triphosphatase and its naturally occurring inhibitor protein, Biochem. J. 176:967–975.PubMedGoogle Scholar
  98. Gomez-Puyou, A., Gomez-Puyou, M. T., and Ernster, L., 1979, Inactive to active transitions of the mitochondrial ATPase complex as controlled by the ATPase inhibitor, Biochim. Biophys. Acta 547:252–257.PubMedCrossRefGoogle Scholar
  99. Graf, T., and Sebald, W., 1978, The dicyclohexylcarbodiimide-binding protein of the mitochondrial ATPase complex from beef heart, FEBS Lett. 94:218–222.PubMedCrossRefGoogle Scholar
  100. Gresser, M. J., Myers, J. A., and Boyer, P. D., 1982, Catalytic site cooperativity of beef heart mitochondrial F1 adenosine triphosphatase. Correlations of initial velocity, bound intermediate, and oxygen exchange measurements with an alternating three-site model, J. Biol. Chem. 257:12030–12038.PubMedGoogle Scholar
  101. Griffiths, D. E., 1976, Biochemical genetics of oxidative phosphorylation, in: The Structural Basis of Membrane function (Y. Hatefi and L. Djavadi-Ohaniance, eds.), Academic Press, New York, pp. 205–214.Google Scholar
  102. Grubmeyer, C., and Penefsky, H. S., 1981a, The presence of two hydrolytic sites on beef heart mitochondrial adenosine triphosphatase, J. Biol. Chem. 256:3718–3727.PubMedGoogle Scholar
  103. Grubmeyer, C., and Penefsky, H. S., 1981b, Cooperativity between catalytic sites in the mechanism of action of beef heart mitochondrial adenosine triphosphatase, J. Biol. Chem. 256:3728–3734.PubMedGoogle Scholar
  104. Grubmeyer, C., Cross, R. L., and Penefsky, H. S., 1982, Mechanism of ATP hydrolysis by beef heart mitochondrial ATPase. Rate constants for elementary steps in catalysis at a single site, J. Biol. Chem. 257:12092–12100.PubMedGoogle Scholar
  105. Guerrieri, F., Izzo, G., Maida, I, and Papa, S., 1981, Redox Bohr-effcts in isolated cytochrome bc 1 complex and cytochrome c oxidase from beef-heart mitochondria, FEBS Lett. 125:261–265.PubMedCrossRefGoogle Scholar
  106. Guffanti, A. A., Blumenfeld, H., and Krulwich, T., 1981, ATP synthesis by an uncoupler-resistant mutant of Bacillus megaterium, J. Bio. Chem. 256:8416–8421.Google Scholar
  107. Gutman, M., Beinert, H., and Singer, T. P., 1975, Coupling site I in relation to the Fe-S centers of NADH dehydrogenase and their topography in the membrane, in: Electron Transfer Chains and Oxidative Phosphorylation (E. Quagliariello, S. Papa, F. Palmieri, E. C. Slater, and N. Siliprandi, eds.), Elsevier/ North-Holland, Amsterdam, pp. 55–62.Google Scholar
  108. Gutweniger, H., Bisson, R., and Montecucco, C., 1981, Membrane topology of beef-heart ubiquinonecytochrome c reductase (complex III), J. Biol. Chem. 256:11132–11136.PubMedGoogle Scholar
  109. Hackenbrock, C. R., 1981, Lateral diffusion and electron transfer in the mitochondrial inner membrane, Trends Biochem. Sci. 6:151–154.CrossRefGoogle Scholar
  110. Hanstein, W. G., 1976, Uncoupling of oxidative phosphorylation, Biochim. Biophys. Acta 456:129–148.PubMedCrossRefGoogle Scholar
  111. Hanstein, W. G., and Hatefi, Y., 1974, Trinitrophenol: A membrane-impermeable uncoupler of oxidative phosphorylation, Proc. Natl. Acad. Sci. USA 71:288–292.PubMedCrossRefGoogle Scholar
  112. Hanstein, W. G., Davis, K. A., Ghalambor, M. A., and Hatefi, Y., 1971, Succinate dehydrogenase. II. Enzymatic properties, Biochemistry 10:2517–2524.PubMedCrossRefGoogle Scholar
  113. Hare, J. F., and Hodges, R., 1982, No unique mitochondrial translocation products in respiratory chainlinked NADH dehydrogenase, Biochem. Biophys. Res. Commun. 105:1250–1256.PubMedCrossRefGoogle Scholar
  114. Harris, D. A., Von Tscharner, V., and Radda, G. K., 1979, The ATPase inhibitor protein in oxidative phosphorylation. The rate-limiting factor to phosphorylation in submitochondrial particles, Biochim. Biophys. Acta 548:72–84.PubMedCrossRefGoogle Scholar
  115. Hatefi, Y., 1968, Flavoproteins of the electron transport system and the site of action of Amytal, rotenone and piericidin A, Proc. Natl. Acad. Sci. USA 60:733–740.PubMedCrossRefGoogle Scholar
  116. Hatefi, Y., 1975, Energy conservation and uncoupling in mitochondria, J. Supramol. Struct. 3:201–213.PubMedCrossRefGoogle Scholar
  117. Hatefi, Y., 1976, The enzymes and the enzyme complexes of the mitochondrial oxidative phosphorylation system, in: The Enzymes of Biological Membranes, Vol. 4 (A. Martonosi, ed.), Plenum Press, New York, pp. 3–41.Google Scholar
  118. Hatefi, Y., 1978, Preparation and properties of the enzymes and enzyme complexes of the mitochondrial oxidative phosphorylation system, in: Methods in Enzymology, Vol. 53 (S. Fleischer and L. Packer, eds.), Academic Press, New York, pp. 3–54.Google Scholar
  119. Hatefi, Y., and Galante, Y. M., 1980, Isolation of cytochrome b 560 form complex II (succinate.ubiquinone oxidoreductase) and its reconstitution with succinate dehydrogenase, J. Biol. Chem. 255: 5530–5537.PubMedGoogle Scholar
  120. Hatefi, Y., and Hanstein, W. G., 1969, Solubilization of particulate proteins and nonelectrolytes by chaotropic agents, Proc. Natl. Acad. Sci. USA 62:1129–1136.PubMedCrossRefGoogle Scholar
  121. Hatefi, Y., and Hanstein, W. G., 1974, Destabilization of membranes with chaotropic ions, in: Methods in Enzymology, Vol. 31 (S. Fleischer and L. Packer, eds.), Academic Press, New York, pp. 770–790.Google Scholar
  122. Hatefi, Y., and Stempel, K. E., 1967, Resolution of complex I (DPNH-coenzyme Q reductase) of the mitochondrial electron transfer system, Biochem. Biophys. Res. Commun. 26:301–308.PubMedCrossRefGoogle Scholar
  123. Hatefi, Y., and Stempel, K. E., 1969, Isolation and enzymic properties of the mitochondrial reduced diphosphopyridine nucleotide dehydrogenase, J. Biol. Chem. 244:2350–2357.PubMedGoogle Scholar
  124. Hatefi, Y., and Stiggall, D. L., 1976, Metal-containing flavoprotein dehydrogenases, in: The Enzymes, Vol. 13, 3rd Ed. (P.D. Boyer, ed.), Academic Press, New York, pp. 175–297.Google Scholar
  125. Hatefi, Y., and Yagi, T., 1982, Kinetics of cytochrome b oxidation in antimycin-treated submitochondrial particles, Biochemistry 21:6614–6618.PubMedCrossRefGoogle Scholar
  126. Hatefi, Y., Jurtshuk, P., and Haavik, A. G., 1961, Studies on the electron transport system XXXI. DPNH-cytochrome c reductase II, Biochim. Biophys. Acta 52:119–129.PubMedCrossRefGoogle Scholar
  127. Hatefi, Y., Haavik, A. G., Fowler, L. R., and Griffiths, D. E., 1962a, Studies on the electron transfer system XLII. Reconstitution of the electron transfer systems, J. Biol. Chem. 237:2661–2669.PubMedGoogle Scholar
  128. Hatefi, Y., Haavik, A. G., and Griffiths, D. E., 1962b, Studies on the electron transfer system XL. Preparation and properties of mitochondrial DPNH-Coenzyme Q reductase, J. Biol. Chem. 237:1676–1680.PubMedGoogle Scholar
  129. Hatefi, Y., Haavik, A. G., and Griffiths, D. E., 1962c, Studies on the electron transfer system XLI. Reduced coenzyme Q (QH2) cytochrome c reductase, J. Biol. Chem. 237:1681–1685.PubMedGoogle Scholar
  130. Hatefi, Y., Stempel, K. E., and Hanstein, W. G., 1969, Inhibitors and activators of the mitochondrial reduced diphosphopyridine nucleotide dehydrogenase, J. Biol. Chem. 244:2358–2365.PubMedGoogle Scholar
  131. Hatefi, Y., Stiggall, D. L., Galante, Y., and Hanstein, W. G., 1974, Mitochondrial ATP-Pi exchange complex, Biochem. Biophys. Res. Commun. 61:313–321.PubMedCrossRefGoogle Scholar
  132. Hatefi, Y., Galante, Y. M., Stiggall, D. L., and Ragan, C. I., 1979, Proteins, polypeptides, prosthetic groups and enzymic properties of complexes I, H, III, IV and V of the mitochondrial oxidative phosphorylation system, Methods in Enzymology, Vol. 56 (S. Fleischer and L. Packer, eds.), Academic Press, New York, pp. 577–602.Google Scholar
  133. Hatefi, Y., Yagi, T., Phelps, D. C., Wong, S.-Y., Vik, S. B., and Galante, Y. M., 1982, Substrate binding-affinity changes in mitochondrial energy-linked reactions, Proc. Natl. Acad. Sci. USA 79:1756–1760.PubMedCrossRefGoogle Scholar
  134. Hearschen, D. O., Dunham, W. R., Albracht, S. P. J., Ohnishi, T., and Beinert, H., 1981, Epr spectral simulation on cluster N-1b in NADH-ubiquinone oxidoreductase of bovine heart mitochondria, FEBS Lett. 133:287–290.CrossRefGoogle Scholar
  135. Hederstedt, L., Holmgren, E., and Rutberg, L., 1979, Characterization of a succinate dehydrogenase complex solubilized from the cytoplasmic membrane of Bacillus subtilis with the anionic detergent Triton X-100, J. Bacteriol. 138:370–376.PubMedGoogle Scholar
  136. Hederstedt, L., 1980, Cytochrome b reducible by succinate in an isolated succinate dehydrogenase-cyto-chrome b complex from Bacillus subtilis membranes, J. Bacteriol. 144:933–940.PubMedGoogle Scholar
  137. Hederstedt, L., and Rutberg, L., 1981, Succinate dehydrogenase—a comparative review, Microbiol. Rev. 45:542–555.PubMedGoogle Scholar
  138. Heron, C., Corina, D., and Ragan, C. I., 1977, The phospholipid annulus of mitochondrial NADH-ubiquinone reductase, FEBS Lett. 79:399–403.PubMedCrossRefGoogle Scholar
  139. Heron, C., Smith, S., and Ragan, C. I., 1979a, An analysis of the polypeptide composition of bovine heart mitochondrial NADH-ubiquinone oxidoreductase by two-dimensional polyacrylamide-gel electrophoresis, Biochem. J. 181:435–443.PubMedGoogle Scholar
  140. Heron, C., Gore, M. G., and Ragan, C. I., 1979b, The effect of lipid phase transitions on the interaction of mitochondrial NADH-ubiquinone oxidoreductase with ubiquinol-cytochrome c oxidoreductase, Biochem. J. 178:415–426.PubMedGoogle Scholar
  141. Hinkle, P. C., 1981, Coupling ratios of proton transport by mitochondria, in: Chemiosmotic Proton Circuits in Biological Membranes (V.P. Skulachev and P.C. Hinkle, eds.), Addison-Wesley, Reading, Massachusetts, pp. 49–58.Google Scholar
  142. Hochman, J. H., Schindler, M., Lee, J. G., and Ferguson-Miller, S., 1982, Lateral mobility of cytochrome c on intact mitochondrial membranes as determined by fluorescence redistribution after photobleaching, Proc. Natl. Acad. Sci. USA 79:6866–6870.PubMedCrossRefGoogle Scholar
  143. Holmgren, E., Hederstedt, L., and Rutberg, L., 1979, Role of heme in synthesis and membrane binding of succinate dehydrogenase in Bacillus subtilis, J. Bacteriol. 138:377–382.PubMedGoogle Scholar
  144. Hoppe, J., Schairer, H. U., and Sebald, W., 1980a, The proteolipid of a mutant ATPase from Escherichia coli defective in H+-conduction contains a glycine instead of the carbodiimide-reactive aspartyl residue, FEBS Lett. 109:107–111.PubMedCrossRefGoogle Scholar
  145. Hoppe, J., Schairer, H. U., and Sebald, W., 1980b, Identification of amino-acid substitutions in the proteolipid of the ATP synthase from dicyclohexylcarbodiimide-resistant mutants of Escherichia coli, Eur. J. Biochem. 112:17–24.PubMedCrossRefGoogle Scholar
  146. Hoppe, J., Schairer, H. U., Friedl, P., and Sebald, W., 1982, An Asp-Asn substitution in the proteolipid subunit of the ATP-synthase from Escherichia coli leads to a non-functional proton channel, FEBS Lett. 145:21–24.PubMedCrossRefGoogle Scholar
  147. Hoppe, J., Friedl, P., Shairer, H. U., Sebald, W., von Meyenburg, K., and Jorgensen, B. B., 1983, The topology of the proton translocating F0 component of the ATP synthase from E. coli K12: Studies with proteases, EMBO J. 2:105–110.PubMedGoogle Scholar
  148. Horgan, D. J., and Singer, T. P., 1968, Studies on the respiratory chain-linked reduced nicotinamide adenine dinucleotide dehydrogenase XIII. Binding sites of rotenone, piericidin A, and Amytal in the respiratory chain, J. Biol. Chem. 243:834–843.PubMedGoogle Scholar
  149. Horgan, D. J., Ohno, H., Singer, T. P., and Casida, J. E., 1968, Studies on the respiratory chain-linked reduced nicotinamide adenine dinucleotide dehydrogenase XV. Interactions of piericidin with the mitochondrial respiratory chain, J. Biol. Chem. 243:5967–5976.PubMedGoogle Scholar
  150. Hughes, J. B., Joshi, S. J., Murfitt, R. R., and Sanadi, D. R., 1979, Coupling factor B is a component of the mitochondrial energy transducing ATPase complex, in: Membrane Bioenergetics (C.P. Lee, G. Schatz, and L. Ernster, eds.), Addison-Wesley, Reading, Massachusetts, pp. 81–95.Google Scholar
  151. Hughes, J., Joshi, S., Torok, K., and Sanadi, D. R., 1982, Isolation of a highly active H+-ATPase from beef heart mitochondria, J. Bioenerg. Biomembr. 14:287–295.PubMedCrossRefGoogle Scholar
  152. Hurt, E., and Hauska, G., 1981, A cytochrome flb 6 complex of five polypeptides with plastoquinolplastocyanin oxidoreductase activity from spinach chloroplasts, Eur. J. Biochem. 117:591–599.PubMedCrossRefGoogle Scholar
  153. Ingledew, W. J., and Ohnishi, T., 1980, An analysis of some thermodynamic properties of iron-sulfur centers in site 1 of mitochondria, Biochem. J. 186:111–117.PubMedGoogle Scholar
  154. Jagendorf, A. T., and Uribe, E., 1966, ATP formation caused by acid-base transition of spinach chloroplasts, Proc. Natl. Acad. Sci. USA 55:170–177.PubMedCrossRefGoogle Scholar
  155. Jagow, G. V., Schagger, H., Engel, W. D., Hackenberg, H., and Kolb, H. J., 1978, Beef heart complex III: Isolation and characterization of the heme b-carrying subunit, in: Energy Conservation in Biological Membranes (G. Schafer and M. Klingenberg, eds.), Springer-Verlag, Berlin, pp. 43–52.CrossRefGoogle Scholar
  156. Jencks, W. P., 1980, The utilization of binding energy in coupled vectorial processes, Adv. Enzymol. 51:75–106.PubMedGoogle Scholar
  157. Joshi, S., and Hughes, J. B., 1981, Inhibition of coupling factor B activity by cadmium ion, arsenite-2,3-dimercaptopropanol, and phenylarsine oxide, and preferential reactivation by dithiols, J. Biol. Chem. 256:11112–11116.PubMedGoogle Scholar
  158. Kagawa, Y., and Racker, E., 1966a, Partial resolution of the enzymes catalyzing oxidative phosphorylation VIII. Properties of a factor conferring oligomycin sensitivity on mitochondrial adenosine triphosphatase, J. Biol. Chem. 241:2461–2466.PubMedGoogle Scholar
  159. Kagawa, Y., and Racker, E., 1966b, Partial resolution of the enzymes catalyzing oxidative phosphorylation IX. Reconstruction of oligomycin-sensitive adenosinetriphosphatase, J. Biol. Chem. 241: 2467–2474.PubMedGoogle Scholar
  160. Kagawa, Y., and Racker, E., 1971, Partial resolution of the enzymes catalyzing oxidative phosphorylation XXV. Reconstitution of vesicles catalyzing 32Pi-adenosine triphosphate exchange, J. Biol. Chem. 246:5477–5487.Google Scholar
  161. Kagawa, Y., and Nukiwa, N., 1981, Conversion of stable ATPase to labile ATPase by acetylation, and the αβ and αγ subunit complexes during its reconstitution, Biochem. Biophys. Res. Commun. 100:1370–1376.PubMedCrossRefGoogle Scholar
  162. Kagawa, Y., Sone, N., Hirata, H., and Yoshida, M., 1979, Structure and function of H+-ATPase, J. Bioenerg. Biomembr. 11:39–78.PubMedCrossRefGoogle Scholar
  163. Kawato, S., Sigel, E., Carafoli, E., and Cherry, R., 1980, Cytochrome oxidase rotates in the inner membrane of intact mitochondria and submitochondrial particles, J. Biol. Chem. 255:5508–5510.PubMedGoogle Scholar
  164. Kayalar, C., Rosing, J., and Boyer, P. D., 1976, 2,4,-Dinitrophenol causes a marked increase in the apparent K m of Pi and ADP for oxidative phosphorylation, Biochem. Biophys. Res. Commun. 72:1153–1159.PubMedCrossRefGoogle Scholar
  165. Kell, D. B., 1979, On the functional proton current pathway of electron transport phosphorylation. An electrodic view, Biochim. Biophys. Acta 549:55–99.PubMedCrossRefGoogle Scholar
  166. Kiehl, R., and Hatefi, Y., 1980, Interaction of [14C]dicyclohexylcarbodiimide with complex V (mitochondrial adenosine triphosphate synthetase complex), Biochemistry 19:541–548.PubMedCrossRefGoogle Scholar
  167. King, T. E., 1963, Reconstitution of respiratory chain enzyme systems XII. Some observations on the reconstitution of the succinate oxidase system from heart muscle, J. Biol. Chem. 238:4037–4051.PubMedGoogle Scholar
  168. King, T. E., 1978, Cytochrome c 1 from mammalian heart, in: Methods in Enzymology, Vol. 53 (S. Fleischer and L. Packer, eds.), Academic Press, New York, pp. 181–191.Google Scholar
  169. King, T. E., 1979, Mitochondrial hydrogen-electron transfer as a source of energy:—protein-protein and protein-lipid interactions, in: Structure and Function of Biomembranes (K. Yagi, ed.), Japan Scientific Societies Press, Tokyo, pp. 149–165.Google Scholar
  170. Klein, G., Satre, M., Dianoux, A.-C., and Vignais, P. V., 1981, Photoaffinity labeling of mitochondrial adenosine triphosphatase by an azido derivative of the natural adenosine triphosphatase inhibitor, Biochemistry 20:1339–1344.PubMedCrossRefGoogle Scholar
  171. Knowles, A. F., Guillory, R., and Racker, E., 1971, Partial resolution of the enzymes catalyzing oxidative phosphorylation XXIV. A factor required for the binding of mitochondrial adenosine triphosphatase to the inner mitochondrial membrane, J. Biol. Chem. 246:2672–2679.PubMedGoogle Scholar
  172. Kopecky, J., Glaser, E., Norling, B., and Ernster, L., 1981, Relationship between the binding of dicyclohexylcarbodiimide and the inhibition of H+-translocation in submitochondrial particles, FEBSLett. 131:208–212.CrossRefGoogle Scholar
  173. Lam, K. W., Warshaw, J. B., and Sanadi, D. R., 1967, The mechanism of oxidative phosphorylation XIV. Purification and properties of a second energy-transfer factor, Arch. Biochem. Biophys. 199:477–484.CrossRefGoogle Scholar
  174. Lam, K. W., Swann, D., and Elzinga, M., 1969, Studies on oxidative phosphorylation XVII. Physical and chemical properties of factor B, Arch. Biochem. Biophys. 130:175–182.PubMedCrossRefGoogle Scholar
  175. Lauquin, G., Pougeois, R., and Vignais, P. V., 1980, 4-Azido-2 nitrophenyl phosphate, a new photoaffinity derivative of inorganic phosphate. Study of its interaction with the inorganic phosphate binding site of beef heart mitochondrial adenosine triphosphatase, Biochemistry 19:4620–4626.PubMedCrossRefGoogle Scholar
  176. Lawford, H. G., and Garland, P. B., 1972, Proton translocation coupled to quinone reduction by reduced nicotinamide-adenine dinucleotide in rat liver and ox heart mitochondria, Biochem. J. 130:1029–1044.PubMedGoogle Scholar
  177. Leimgruber, R. M., Jensen, C., and Abrams, A., 1981, Purification and characterization of the membrane adenosine triphosphatase complex from wild type and N,N’-dicyclohexylcarbodiimide-resistant strains of Streptococcus faecalis, J. Bacteriol. 147:363–372.PubMedGoogle Scholar
  178. Leonard, K., Hovmoller, S., Karlsson, B., Wingfield, P., Li, Y., Perkins, S., and Weiss, H., 1981, The structure of mitochondrial cytochrome reductase, in: Vectorial Reactions in Electron and Ion Transport in Mitochondria and Bacteria (F. Palmieri, E. Quagliaritello, N. Siliprandi, and E. C. Slater, eds.), Elsevier/North-Holland, Amsterdam, pp. 127–137.Google Scholar
  179. Lin, L.-F. H., and Beattie, D. S., 1978, Purification and properties of a major cytochrome b peptide from baker’s yeast, J. Biol. Chem. 253:2412–2418.PubMedGoogle Scholar
  180. Lindsay, J. G., Dutton, P. L., and Wilson, D. F., 1972, Energy-dependent effects on the oxidation-reduction midpoint of potentials of the b and c cytochromes in phosphorylating submitochondrial particles from pigeon heart, Biochemistry 11:1937–1942.PubMedCrossRefGoogle Scholar
  181. Loo, T. W., and Bragg, P. D., 1981, The DCCD-binding polypeptide alone is insufficient for protein translocation through F0 in membranes of Escherichia coli, Biochem. Biophys. Res. Commun. 103:52–59.PubMedCrossRefGoogle Scholar
  182. Loo, T. W., and Bragg, P. D., 1982, The DCCD-binding polypeptide is close to the F1 ATPase-binding site on the cytoplasmic surface of the cell membrane of Escherichia coli, Biochem. Biophys. Res. Commun. 106:400–406.PubMedCrossRefGoogle Scholar
  183. Lowe, P. N., and Beechey, R. B., 1982, Interactions between the mitochondrial adenosinetriphosphatase and periodate-oxidized adenosine 5′-triphosphate, an affinity label for adenosine 5′-triphosphate binding sites, Biochemistry 21:4073–4082.PubMedCrossRefGoogle Scholar
  184. Lunardi, J., and Vignais, P. V., 1979, Adenine nucleotide binding sites in chemically modified F1ATPase. Inhibitory effect of 4-chloro-7-nitrobenzofurazan on photolabeling by arylazido nucleotides, FEBS Lett. 102:23–28.PubMedCrossRefGoogle Scholar
  185. Lusty, C. J., Machinist, J. M., and Singer, T. P., 1965, Studies on the respiratory chain-linked reduced nicotinamide adenine dinucleotide dehydrogenase, J. Biol. Chem. 240:1804–1810.PubMedGoogle Scholar
  186. Macino, G., and Tzagoloff, A., 1980, Assembly of the mitochondrial membrane system: Sequence analysis of a yeast mitochondrial ATPase gene containing the oli-2 and oli-4 loci, Cell 20:507–517.PubMedCrossRefGoogle Scholar
  187. MacLennan, D. H., and Tzagoloff, A., 1968, Studies on the mitochondrial adenosine triphosphatase system IV. Purification and characterization of the oligomycin sensitivity conferring protein, Biochemistry 7:1603–1610.PubMedCrossRefGoogle Scholar
  188. Marcus, F., Schuster, S., and Lardy, H. A., 1976, Essential arginyl residues in mitochondrial adenosine triphosphatase, J. Biol. Chem. 251:1775–1780.PubMedGoogle Scholar
  189. Matsuoka, I., Takeda, K., Futai, M., and Tonomura, Y., 1982, Reaction of a fluorescent ATP analog, 2′-(5-dimethyl-aminonaphthalene-l-sulfonyl) amino-2′-deoxy ATP, with E. coli F1ATPase and its subunits: The roles of the high affinity binding site in the a subunit and the low affinity binding site in the β subunit, J. Biochem. 92:1383–1398.PubMedGoogle Scholar
  190. Melandri, B. A., Baccarini Melandri, A., and Venturoli, G., 1981, Functional interaction between photosynthetic electron transport and ATP synthesis as revealed by inhibition studies of flash induced phosphorylation in bacterial chromatophores, in: Vectorial Reactions in Electron and Ion Transport in Mitochondria and Bacteria (F. Palmieri, E. Quagliariello, N. Siliprandi, and E. C. Slater, eds.), Elsevier/North Holland, Amsterdam, pp.381–388.Google Scholar
  191. Mitchell, P., 1966, Chemiosmotic Coupling in Oxidative and Photosynthetic Phosphorylation, Glynn Research, Bodmin.Google Scholar
  192. Mitchell, P., 1976, Possible molecular mechanisms of the protonmotive function of cytochrome systems, J. Theoret. Biol. 62:327–367.CrossRefGoogle Scholar
  193. Mitchell, P., and Moyle, J., 1982, Protonmotive mechanism of quinone function, in: Function of Quinones in Energy Conserving Systems (B.L. Trumpower, ed.), Academic Press, New York, pp. 553–573.Google Scholar
  194. Montecucco, C., Bisson, R., Zaccolin, G. P., Dabbenisala, F., and Galante, Y., 1981, A high resolution hydrophobic photolabelling study of the mitochondrial ATPase F0 sector, in: Vector Reactions in Electron and Ion Transport in Mitochondria and Bacteria (F. Palmieri, E. Quagliariello, N. Siliprandi, and E. C. Slater, eds.), Elsevier/North Holland, Amsterdam, pp. 227–230.Google Scholar
  195. Nelson, N., 1981, Proton ATPase of chloroplasts, in: Current Topics in Bioenergetics, Vol. 11 (D.R. Sanadi, ed.), Academic Press, New York, pp. 1–33.Google Scholar
  196. Nobrega, F. G., and Tzagoloff, A., 1980, Assembly of the mitochondrial membrane system: DNA sequence and organization of the cytochrome b gene in Saccharomyces cerevisiae D273-10B, J. Biol. Chem. 255:9828–9837.PubMedGoogle Scholar
  197. Ohnishi, T., 1976, Studies on the mechanisms of site 1 energy conservation, Eur. J. Biochem. 64:91–103.PubMedCrossRefGoogle Scholar
  198. Ohnishi, T., 1979, Mitochondrial iron-sulfur flavodehydrogenases, in: Membrane Proteins in Energy Transduction (R. A. Capaldi, ed), Marcel Dekker, New York, pp. 1–87.Google Scholar
  199. Ohnishi, T., and Salerno, J. C., 1982, Iron-sulfur clusters in the mitochondrial electron-transport chain, in: Iron-Sulfur Proteins, Vol. 4 (T. G. Spiro, ed.), John Wiley & Sons, New York, pp. 285–327.Google Scholar
  200. Ohnishi, T., and Trumpower, B. L., 1980, Differential effects of antimycin on ubisemiquinone bound in different environments in isolated succinate cytochrome c reductase complex, J. Biol. Chem. 255:3278–3284.PubMedGoogle Scholar
  201. Ohnishi, T., Leigh, J. S., Ragan, C. I., and Racker, E., 1974, Low temperature electron paramagnetic resonance studies on iron-sulfur centers in cardiac NADH dehydrogenase, Biochem. Biophys. Res. Commun. 56:775–782.CrossRefGoogle Scholar
  202. Ohnishi, T., Blum, H., Galante, Y. M., and Hatefi, Y., 1981a, Iron-sulfur clusters studied in NADH-ubiquinone oxidoreductase and in soluble NADH dehydrogenase, J. Biol. Chem., 256:9216–9220.PubMedGoogle Scholar
  203. Ohnishi, T., King, T. E., Salerno, J. C., Blum, H., Bowyer, J. R., and Maida, T., 1981b, Thermodynamic and electron paramagnetic resonance characterization of flavin in succinate dehydrogenase, J. Biol. Chem. 256: 5577–5582.PubMedGoogle Scholar
  204. Orme-Johnson, N. R., Hansen, R. E., and Beinert, H., 1974, Electron paramagnetic resonance-detectable electron acceptors in beef heart mitochondria, J. Biol. Chem. 249:1922–1927.PubMedGoogle Scholar
  205. Ovchinnikov, Y. A., Abdulaev, N. G., Feigina, M. Y., Kieselev, A. V., and Lobanov, N. A., 1979, The structural basis of the functioning of bacteriorhodopsin: An overview, FEBS Lett. 100:219–224.PubMedCrossRefGoogle Scholar
  206. Paech, C., 1982, Improved assay for NADH dehydrogenase of the respiratory chains, Biochem. Biophys. Res. Commun. 104:1454–1458.PubMedCrossRefGoogle Scholar
  207. Paech, C., Reynolds, J. G., Singer, T.P., and Holm, R. H., 1981, Structural identification of iron-sulfur clusters of the respiratory chain-linked NADH dehydrogenase, J. Biol. Chem. 256:3167–3170.PubMedGoogle Scholar
  208. Paech, C., Friend, A., and Singer, T. P., 1982, Simplified isolation and molecular composition of NADH dehydrogenase of the respiratory chain, Biochem. J. 203:477–481.PubMedGoogle Scholar
  209. Papa, S., Guerrieri, F., Lorusso, M., Izzo, G., Boffoli, D., and Maida, I., 1981, Redox Bohr effects in the cytochrome system of mitochondria and their role in oxido-reductions and proton translocation, in: Vectorial Reactions in Electron and Ion Transport in Mitochondria and Bacteria (F. Palmieri, E. Quagliariello, N. Siliprandi, and E. C. Slater, eds.), Elsevier/North-Holland, Amsterdam, pp. 57–69.Google Scholar
  210. Pedersen, P. L., 1982, H+-ATPases in biological systems—an overview of their function, Ann. N.Y. Acad. Sci., 402:1–20.PubMedCrossRefGoogle Scholar
  211. Pedersen, P. L., Schwerzmann, K., and Cintron, N., 1981, Regulation of the synthesis and hydrolysis of ATP in biological systems: Role of peptide inhibitors of H+-ATPases, in: Current Topics in Bioenergetics, Vol. 11 (D. R. Sanadi, ed.), Academic Press, New York, pp. 149–199.Google Scholar
  212. Penefsky, H. S., 1979, Mitochondrial ATPase, Adv. Enzymol. 49:223–280.PubMedGoogle Scholar
  213. Penin, F., Godinot, C., Comte, J., and Gautheron, D. C., 1982, Vesicular preparation of a highly coupled ATPase-ATP synthase complex from pig heart mitochondria, Biochim. Biophys. Acta 679:198–209.PubMedCrossRefGoogle Scholar
  214. Pennington, R. M., and Fisher, R. R., 1981, Dicyclohexylcarbodiimide modification of bovine heart mitochondrial transhydrogenase, J. Biol. Chem. 256:8963–8969.PubMedGoogle Scholar
  215. Phelps, D. C., and Hatefi, Y., 1981, Inhibition of the mitochondrial nicotinamide nucleotide transhydrogenase by dicyclohexylcarbodiimide and diethylpyrocarbonate, J. Biol. Chem. 256:8217–8221.PubMedGoogle Scholar
  216. Pick, U., and Racker, E., 1979, Purification and reconstitution of the N,N’-dicyclohexylcarbodiimidesensitive ATPase complex from spinach chloroplasts, J. Biol. Chem. 254:2793–2799.PubMedGoogle Scholar
  217. Poore, V. M., and Ragan, C. I., 1982, A spin-label study of the lipid boundary layer of mitochondrial NADH-ubiquinone oxidoreductase, Biochim. Biophys. Acta 693:105–112.PubMedCrossRefGoogle Scholar
  218. Pougeois, R., Satre, M., and Vignais, P. V., 1979, Reactivity of mitochondrial F1-ATPase to dicyclohexylcarbodiimide. Inactivation and binding studies, Biochemistry 18:1408–1413.PubMedCrossRefGoogle Scholar
  219. Price, B. D, and Brand, M. D., 1982, Proton translocation by the mitochondrial cytochrome b-c 1 complex is inhibited by N,N’-dicyclohexylcarbodiimide, Biochem. J. 206:419–421.PubMedGoogle Scholar
  220. Pullman, M. E., and Monroy, G. C., 1963, A naturally occurring inhibitor of mitochondrial adenosine triphosphatase, J. Biol. Chem. 238:3762–3769.PubMedGoogle Scholar
  221. Prince, R. C., and Dutton, P. L., 1976, Further studies on the Rieske iron-sulfur center in mitochondria and photosynthetic systems: a pK on the oxidized form, FEBS Lett. 65:117–119.PubMedCrossRefGoogle Scholar
  222. Racker, E., 1979, Preparation of coupling factor 6 (F6), in: Methods in Enzymology, Vol. 55 (S. Fleischer and L. Packer, eds.), Academic Press, New York, pp. 398–399.Google Scholar
  223. Racker, E., and Stoeckenius, W., 1974, Reconstitution of purple membrane vesicles catalyzing light-driven proton uptake and adenosine triphosphate formation, J. Biol. Chem. 249:662–663.PubMedGoogle Scholar
  224. Racker, E., Fessenden-Raden, J. M., Kandrach, M. A., Lam, K. W., and Sanadi, D. R., 1971, Identity of coupling factor 2 and factor B, Biochem. Biophys. Res. Commun. 41:1474–1479.CrossRefGoogle Scholar
  225. Ragan, C. I., 1976a, The structure and subunit composition of the paniculate NADH-ubiquinone reductase of bovine heart mitrochondria, Biochem. J. 154:295–305.PubMedGoogle Scholar
  226. Ragan, C. I., 1976b, NADH-ubiquinone oxidoreductase, Biochim. Biophys. Acta 456:249–290.PubMedCrossRefGoogle Scholar
  227. Ragan, C. I., 1978, The role of phospholipids in the reduction of ubiquinone analogues by the mitochrondrial reduced nicotinamide adenine dinucleotide-ubiquinone oxidoreductase complex, Biochem. J. 172:539–547.PubMedGoogle Scholar
  228. Ragan, C. I., 1980, The molecular organization of NADH dehydrogenase in: Subcellular Biochemistry, Vol.7 (D. B. Roodyn, ed.), Plenum Press, New York, pp. 267–307.CrossRefGoogle Scholar
  229. Ragan, C. I., 1984, Structure and function of respiratory chain complexes interacting with ubiquinone: Complex I, in: Coenzyme Q (G. Lenaz, ed.), J. Wiley & Sons, Chicheste.Google Scholar
  230. Ragan, C. I., and Hinkle, P. C., 1975, Ion transport and respiratory control in vesicles formed from reduced nicotinamide adenine dinucleotide coenzyme Q reductase and phospholipids, J. Biol. Chem. 250:8472–8476.PubMedGoogle Scholar
  231. Ragan, C. I., and Racker, E., 1973, Resolution and reconstitution of the mitochondrial electron transport system IV. The reconstitution of rotenone-sensitive reduced nicotinamide adenine dinucleotide-ubiquinone reductase from reduced nicotinamide adenine dinucleotide dehydrogenase and phospholipids, J. Biol. Chem. 248:6876–6884.PubMedGoogle Scholar
  232. Ragan, C. I., Galante, Y. M., and Hatefi, Y., 1982a, Purification of three iron-sulfur proteins from the iron-protein fragment of mitochondrial NADH-ubiquinone oxidoreductase, Biochemistry 21:2518–2524.PubMedCrossRefGoogle Scholar
  233. Ragan, C. I., Galante, Y. M., Hatefi, Y., and Ohnishi, T., 1982b, Resolution of mitochondrial NADH dehydrogenase and isolation of two iron-sulfur proteins, Biochemistry 21:590–594.PubMedCrossRefGoogle Scholar
  234. Reddy, T. L. P., and Hendler, R. W., 1978, Reconstitution of Escherichia coli succinoxidase from soluble components, J. Biol. Chem. 253:7972–7979.PubMedGoogle Scholar
  235. Reynafarje, B., Brand, M. D., and Lehninger, A. L., 1976, Evaluation of the H+/site ratio of mitochondrial electron transport from rate measurements, J. Biol. Chem. 251:7442–7451.PubMedGoogle Scholar
  236. Rich, P., and Bonner, W. D., 1978, The nature and location of cyanide and antimycin resistant respiration in higher plants, in: Functions of Alternative Terminal Oxidases (H. Degan, D. Lloyd, and G. C. Hill, eds.), Pergamon, New York, pp. 149–158.Google Scholar
  237. Rieske, J. S., 1965, Oxidation-reduction properties of an iron protein as isolated from the reduced coenzyme Q-cytochrome c reductase complex of beef heart mitochondria, in: Non-Heme Iron Proteins (A. San Pietro, ed.), Antioch Press, Yellow Springs, Ohio, pp. 461–468.Google Scholar
  238. Rieske, J. S., 1967a, Preparation and properties of reduced coenzyme Q-cytochrome c reductase (complex III of the respiratory chain), in: Methods in Enzymology, Vol. 10 (R. W. Estabrook and M. E. Pullman, eds.), Academic Press, New York, pp. 239–245.Google Scholar
  239. Rieske, J. S., 1967b, Antimycin A, in: Antibiotics, Volume I: Mechanism of Action (D. Gottlieb and P. D. Shaw, eds.), Springer-Verlag, Berlin, pp. 542–584.CrossRefGoogle Scholar
  240. Rieske, J. S., 1971, Changes in oxidation-reduction potential of cytochrome b observed in the presence of antimycin A, Arch. Biochem. Biophys. 145:179–193.PubMedCrossRefGoogle Scholar
  241. Rieske, J. S., 1976, Composition, structure, and function of complex III of the respiratory chain, Biochim. Biophys. Acta 456:195–247.PubMedCrossRefGoogle Scholar
  242. Robbins, B. A., Wong, S.-Y., Hatefi, Y., and Galante, Y. M., 1981, Studies on the immunological properties of complex V (mitochondrial ATP synthetase complex), Arch. Biochem. Biophys. 210:489–497.PubMedCrossRefGoogle Scholar
  243. Roberts, H., Smith, S. C., Marzuki, S., and Linnane, A. W., 1980, Evidence that cytochrome b is the antimycin-binding component of the yeast mitochondrial cytochrome bc 1 complex, Arch. Biochem. Biophys. 200:387–395.PubMedCrossRefGoogle Scholar
  244. Rosing, J., Kayalar, C., and Boyer, P. D., 1976, Probes of energy input in ATP formation by oxidative phosphorylation, in: The Structural Basis of Membrane function, (Y. Hatefi and L. Djavadi-Ohaniance, eds.), Academic Press, New York, pp. 189–204.Google Scholar
  245. Rottenberg, H., 1979, Non-equilibrium thermodynamics of energy conversion in bioenergetics, Biochim. Biophys. Acta 549:225–253.PubMedCrossRefGoogle Scholar
  246. Rottenberg, H., and Gutman, M., 1977, Control of the rate of reverse electron transport in submitochondria particles by the free energy, Biochemistry 16:3220–3227.PubMedCrossRefGoogle Scholar
  247. Russell, J., Jeng, S. J., and Guillory, R. J., 1976, Arylazido aminopropionyl ATP, an active site directed photoaffinity reagent for mitochondrial adenosine triphosphatase, Biochem. Biophys. Res. Commun. 70:1225–1234.PubMedCrossRefGoogle Scholar
  248. Ruzicka, F. J., and Beinert, H., 1977, A new iron-sulfur flavoprotein of the respiratory chain, J. Biol. Chem. 252:8440–8445.PubMedGoogle Scholar
  249. Ryrie, I. J., 1977, The yeast mitochondrial adenosine triphosphatase complex. Purification, subunit composition, and some effects of protease inhibitors, Arch. Biochem. Biophys. 184:464–475.PubMedCrossRefGoogle Scholar
  250. Salerno, J. C., Ohnishi, T., Blum, H., and Leigh, J. S., 1977, Determination of the exchange integral in binuclear iron-sulfur clusters in proteins of varying complexity, Biochim. Biophys. Acta 494:191–197.PubMedCrossRefGoogle Scholar
  251. Sanadi, D. R., 1982, Mitochondrial coupling factor B. Properties and role in ATP synthesis, Biochim. Biophys. Acta 683:39–56.CrossRefGoogle Scholar
  252. Sato, N., Wilson, D. F., and Chance, B., 1971, The spectral properties of the b cytochromes in intact mitochondria, Biochim. Biophys. Acta 253:88–97.PubMedCrossRefGoogle Scholar
  253. Schatz, G., and Mason, T. L., 1974, The biosynthesis of mitochondrial proteins, Annu. Rev. Biochem. 43:51–87.CrossRefGoogle Scholar
  254. Schneider, E., and Altendorf, K., 1982, ATP synthetase (F1F0) of Escherichia coli K-12. High-yield preparation of functional F0 by hydrophobic affinity chromatography, Eur. J. Biochem. 126:149–153.PubMedCrossRefGoogle Scholar
  255. Schneider, H., Lemasters, J. J., and Hackenbrock, C. R., 1982, Lateral diffusion of ubiquinone during electron transfer in phospholipid-and ubiquinone-enriched mitochondrial membranes, J. Biol. Chem. 257:10789–10793.PubMedGoogle Scholar
  256. Schuster, S., Ebel, R. E., and Lardy, H.A., 1975, Kinetic studies on rat liver and beef heart mitochondrial ATPase. Evidence for nucleotide binding at separate regulatory and catalytic sites, J. Biol. Chem. 250:7848–7853.PubMedGoogle Scholar
  257. Schwerzmann, K., and Pedersen, P. L., 1981, Proton-adenosinetriphosphatase complex of rat liver mitochondria: Effect of energy state on its interaction with the adenosinetriphosphatase inhibitory peptide, Biochemistry 20:6305–6311.PubMedCrossRefGoogle Scholar
  258. Schwerzmann, K., Hillihen, J., and Pedersen, P. L., 1982, Proton adenosine triphosphatase complex of rat liver mitochondria. Interaction with the ATPase inhibitor peptide covalently labeled with N-hydroxy-succinimidyl-p-azidobenzoate, J. Biol. Chem. 257:9555–9560.PubMedGoogle Scholar
  259. Sebald, W., and Hoppe, J., 1981, On the structure and genetics of the proteolipid subunit of the ATP synthase complex, in: Current Topics in Bioenergetics, Vol. 12 (D. R. Sanadi, ed.), Academic Press, New York, pp. 1–64.Google Scholar
  260. Sebald, W., and Wachter, E., 1978, Amino acid sequence of the putative protonophore of the energy-transducing ATPase complex, in: Energy Conservation in Biological Membranes (G. Schafer and M. Klingenberg, eds.), Springer-Verlag, Berlin, pp. 228–236.CrossRefGoogle Scholar
  261. Sebald, W., and Wild, G., 1979, Mitochondrial ATPase complex from Neurospora crassa in: Methods in Enzymology, Vol. 55 (S. Fleischer and L. Packer, eds.), Academic Press, New York, pp. 344–351.Google Scholar
  262. Sebald, W., Graf, T., and Lukins, H. B., 1979, The dicyclohexylcarbodiimide-binding protein of the mitochondrial ATPase complex from Neurospora crassa and Saccharomyces cerevisiae, Eur. J. Biochem. 93:587–599.PubMedCrossRefGoogle Scholar
  263. Sebald, W., Machleidt, W., and Wächter, E., 1980, N,N’-Dicyclohexylcarbodiimide binds specifically to a single glutamyl residue of the proteolipid subunit of the mitochondrial adenosinetriphosphatase from Neurospora crassa and Saccharomyces cerevisiae, Proc. Natl. Acad. Sci. USA 77:785–789.PubMedCrossRefGoogle Scholar
  264. Senda, M., Kanazawa, H., Tsuchiya, T., and Futai, M., 1983, Conformational change of the β subunit of Escherichia coli F1ATPase: ATP changes the trypsin sensitivity of the subunit, Arch. Biochem. Biophys. 220:398–404.PubMedCrossRefGoogle Scholar
  265. Senior, A. E., and Wise, J. G., 1983, The proton-ATPase of bacteria and mitochondria, J. Membr. Biol., 73:105–124.PubMedCrossRefGoogle Scholar
  266. Serrano, R., Kanner, B. I., and Racker, E., 1976, Purification and properties of the proton translocating adenosine triphosphatase complex of bovine heart mitochondria, J. Biol. Chem. 251:2453–2461.PubMedGoogle Scholar
  267. Shankaran, R., Sani, B. P., and Sanadi, D. R., 1975, Studies on oxidative phosphorylation: Evidence for multiple forms of factor B activity, Arch. Biochem. Biophys. 168:394–402.PubMedCrossRefGoogle Scholar
  268. Sidhu, A., and Beattie, D. S., 1982, Purification and polypeptide characterization of complex III from yeast mitochondria, J. Biol. Chem. 257:7879–7886.PubMedGoogle Scholar
  269. Siedow, J. N., Power, S., De la Rosa, F. F., and Palmer, G., 1978, The preparation and characterization of highly purified, enzymically active complex III from baker’s yeast, J. Biol. Chem. 253:2392–2399.PubMedGoogle Scholar
  270. Singer, T. P., and Kearney, E. B., 1954, Solubilization, assay, and purification of succinic dehydrogenase, Biochim. Biophys. Acta 15:151–153.PubMedCrossRefGoogle Scholar
  271. Singer, T. P., 1966, Flavoprotein dehydrogenases of the respiratory chain, in: Comprehensive Biochemistry, Vol. 14 (M. Florkin and E. H. Stotz, eds.), Elsevier, Amsterdam, pp. 127–198.Google Scholar
  272. Singer, T. P., Kearney, E. B., and Kenney, W. C., 1973, Succinate dehydrogenase, Adv. Enzymol. 37:189–272.PubMedGoogle Scholar
  273. Slater, E. C., 1949, A respiratory catalyst required for the reduction of cytochrome c by cytochrome b, Biochem. J. 45:14–30.PubMedGoogle Scholar
  274. Slater, E. C., 1980, Is there a significant metabolically dependent membrane potential in mitochondria?, Trends Biochem. Sci. 5:X–XI.Google Scholar
  275. Slater, E. C., 1981, Cytochrome b paradox, the BAL-labile factor and the Q cycle, in: Chemiosmotic Proton Circuits in Biological Membranes (V. P. Skulachev and P. C. Hinkle, eds.), Addison-Wesley, Reading, Massachusetts, pp. 69–104.Google Scholar
  276. Slater, E. C., and De Vries, S., 1980, Identification of the BAL-labile factor, Nature (London) 288:717–718.CrossRefGoogle Scholar
  277. Slater, E. C., Berden, J. A., De Vries, S., and Zhu, Q.-Z., 1981, Electron flow in QH2:c oxidoreductase, in: Vectorial Reactions in Electron and Ion Transport in Mitochondria and Bacteria (F. Palmieri, E. Quagliariello, N. Siliprandi, and E. C. Slater, eds.), Elsevier/North-Holland, Amsterdam, pp. 163–171.Google Scholar
  278. Smith, S., and Ragan, C. I., 1980, The organisation of NADH dehydrogenase polypeptides in the inner mitochondrial membrane, Biochem. J. 185:315–326.PubMedGoogle Scholar
  279. Smith, S., Cottingham, I. R., and Ragan, C. I., 1980, Immunological assays of the NADH dehydrogenase content of bovine heart mitochondria and submitochondrial particles, FEBS Lett. 110:279–282.PubMedCrossRefGoogle Scholar
  280. Soper, J. W., Decker, G. L., and Pedersen, P. L., 1979, Mitochondrial ATPase complex. A dispersed, cytochrome-deficient, oligomycin-sensitive preparation from rat liver containing molecules with a tripartite structural arrangement, J. Biol. Chem. 254:11170–11176.PubMedGoogle Scholar
  281. Sorgato, M. C., Branca, D., and Ferguson, S. J., 1980, The rate of ATP synthesis by submitochondrial particles can be independent of the magnitude of the protonmotive force, Biochem. J. 188:945–948.PubMedGoogle Scholar
  282. Stiggall, D. L., Galante, Y. M., and Hatefi, Y., 1978, Preparation and properties of an ATP-Pi exchange complex (complex V) from bovine heart mitochondria, J. Biol. Chem. 253:956–964.PubMedGoogle Scholar
  283. Stiggall, D., Galante, Y. M., and Hatefi, Y., 1979a, Preparation and properties of complex V, in: Methods in Enzymology, Vol 55 (S. Fleischer and L. Packer, eds.), Academic Press, New York, pp. 308–315 (see also addendum, pp. 819-821).Google Scholar
  284. Stiggall, D. L., Galante, Y. M., Kiehl, R., and Hatefi, Y., 1979b, Involvement of a dithiol protein in mitochondrial energy-linked functions and its relation to coupling factor B, Arch. Biochem. Biophys. 196:638–644.PubMedCrossRefGoogle Scholar
  285. Suzuki, H., and King, T. E., 1983, Evidence of an ubisemiquinone radical(s) from the NADH-ubiquinone reductase of the mitochondrial respiratory chain, J. Biol. Chem. 258:352–358.PubMedGoogle Scholar
  286. Tamara, J. K., and Wang, J. H., 1983, Changes in chemical properties of mitochondrial adenosine triphosphatase upon removal of tightly bound nucleotides, Biochemistry 22:1947–1954.CrossRefGoogle Scholar
  287. Thayer, W. S., and Hinkle, P. C., 1975a, Synthesis of adenosine triphosphate by an artificially imposed electrochemical proton gradient in bovine heart submitochondrial particles, J. Biol. Chem. 250:5330–5335.PubMedGoogle Scholar
  288. Thayer, W. S., and Hinkle, P. C., 1975b, Kinetics of adenosine triphosphate synthesis in bovine heart submitochondrial particles, J. Biol. Chem. 250:5336–5342.PubMedGoogle Scholar
  289. Ting, L. P., and Wang, J. H., 1980a, Effect of phosphate and adenine nucleotides on the rate of labeling of funtional groups at the catalytic site of BF1 adenosinetriphosphatase from Escherichia coli, Biochemistry 19:5665–5670.PubMedCrossRefGoogle Scholar
  290. Ting, L. P., and Wang, J. H., 1980b, Effect of phosphate and adenine nucleotides on the rate of labeling of functional groups at the catalytic site of F1-ATPase, J. Bioenerg. Biomembr. 12:79–93.PubMedCrossRefGoogle Scholar
  291. Ting, L.-P., and Wang, J. H., 1981, 2,4,6-Trinitrobenzenesulfonate labels an essential amino group near the bound phosphate at the catalytic site of mitochondrial F1-ATPase, Biochem. Biophys. Res. Commun. 101:934–938.PubMedCrossRefGoogle Scholar
  292. Ting, L. P., and Wang, J. H., 1982, Functional groups at the catalytic site of BF1 adenosinetriphosphatase from Escherichia coli, Biochemistry 21:269–275.PubMedCrossRefGoogle Scholar
  293. Todd, R., Griesenbeck, T. A., and Douglas, M. G., 1980, The yeast mitochondrial adenosine triphosphatase complex, J. Biol. Chem. 255:5461–5467.PubMedGoogle Scholar
  294. Tottmar, S. O. C., and Ragan, C. I., 1971, The purification and properties of the respiratory-chain reduced nicotinamide-adenine dinucleotide dehydrogenase of Torulopsis utilis, Biochem. J. 124:853–865.PubMedGoogle Scholar
  295. Trumpower, B. L., 1981, Function of the iron-sulfur proteins of the cytochrome b-c 1 segment of electron transfer and energy-conservation reactions of the mitochondrial respiratory chain, Biochim. Biophys. Acta 639:129–155.PubMedCrossRefGoogle Scholar
  296. Trumpower, B. L., and Edwards, C. A., 1979, Purification of a reconstituavely active iron-sulfur protein (oxidation factor) from succinate-cytochrome c reductase complex of bovine heart mitochondria, J. Biol. Chem. 254:8697–8706.PubMedGoogle Scholar
  297. Tzagoloff, A., Byington, K. H., and MacLennan, D. H., 1968, Studies on the mitochondrial adenosine triphosphatase system II. The isolation and characterization of oligomycin-sensitive adenosine triphosphatase from bovine heart mitochondria, J. Biol. Chem. 243:2405–2412.PubMedGoogle Scholar
  298. Unden, G., Hackenberg, H., and Kroger, A., 1980, Isolation and functional aspects of the fumarate reductase involved in the phosphorylative electron transport of Vibrio succinogenes, Biochim. Biophys. Acta 591:275–288.PubMedCrossRefGoogle Scholar
  299. Van Ark, G., Raap, A. K., Berden, J. A., and Slater, E. C., 1981, Kinetics of cytochrome b reduction in submitochondrial particles, Biochim. Biophys. Acta 637:34–42.PubMedCrossRefGoogle Scholar
  300. Vik, S.B., and Hatefi, Y., 1981, Possible occurrence and role of an essential histidyl residue in succinate dehydrogenase, Proc. Natl. Acad. Sci. USA 78:6749–6753.PubMedCrossRefGoogle Scholar
  301. Vik, S. B., Georgevich, G., and Capaldi, R. A., 1981, Diphosphatidylglycerol is required for optimum activity of beef heart cytochrome c oxidase, Proc. Natl. Acad. Sci. USA 78:1456–1460.PubMedCrossRefGoogle Scholar
  302. Vinkler, C., 1981, Opposite modulation by uncoupling and electron transport limitation of the K m app of ADP for photophosphorylation, Biochem. Biophys. Res. Commun. 99:1095–1100.PubMedCrossRefGoogle Scholar
  303. Vinkler, C., and Korenstein, R., 1982, Characterization of external electric field-driven ATP synthesis in chloroplasts, Proc. Natl. Acad. Sci. USA 79:3183–3187.PubMedCrossRefGoogle Scholar
  304. Von Jagow, G., and Sebald, W., 1980, b-Type cytochromes, Annu. Rev. Biochem. 49:281–314.CrossRefGoogle Scholar
  305. Von Jagow, G., Engel, W. D., and Schagger, H., 1981, On the mechanism of proton translocation linked to electron transfer at energy conservation site 2, in: Vectorial Reactions in Electron and Ion Transport in Mitochondria and Bacteria (F. Palmieri, E. Quagliariello, N. Siliprandi, and E. C. Slater, eds.), Elsevier/North-Holland, Amsterdam, pp. 149–161.Google Scholar
  306. Wächter, E., Schmid, R., Deckers, G., and Altendorf, K., 1980, Amino acid replacement in dicyclohexylcarbodiimide-reactive proteins from mutant strains of Escherichia coli defective in the energy-transducing ATPase complex, FEBS Lett. 113:265–270.PubMedCrossRefGoogle Scholar
  307. Wakabayashi, S., Takeda, H., Matsubara, H., Kim, H., and King, T. E., 1982a, Identity of heme-not-containing protein in bovine heart cytochrome C 1 preparation with the protein mediating c 1-c complex formation—a protein with high glutamic acid content, J. Biochem. 91:2077–2085.PubMedGoogle Scholar
  308. Wakabayashi, S., Matsubara, H., Kim, C. H., and King, T. E., 1982b, Structural studies of bovine heart cytochrome C 1, J. Biol. Chem. 257:9335–9344.PubMedGoogle Scholar
  309. Walker, J. E., Runswick, M. J., and Saraste, M., 1982, Subunit equivalence in Escherichia coli and bovine heart mitochondrial F1F0 ATPases, FEBS Lett. 146:393–396.PubMedCrossRefGoogle Scholar
  310. Webb, M. R., and Trentham, D. R., 1980, The stereochemical course of phosphoric residue transfer during the myosin ATPase reaction, J. Biol. Chem. 255:8629–8632.PubMedGoogle Scholar
  311. Webb, M. R., Grubmeyer, C., Penefsky, H. S., and Trentham, D. R., 1980, The stereochemical course of phosphoric residue transfer catalyzed by beef heart mitochondrial ATPase, J. Biol. Chem. 255:11637–11639.PubMedGoogle Scholar
  312. Weiss, H., and Kolb, H. J., 1979, Isolation of mitochondrial succinate-ubiquinone reductase, cytochrome c reductase, and cytochrome c oxidase from Neurospora crassa using nonionic detergent, Eur. J. Biochem. 99:139–149.PubMedCrossRefGoogle Scholar
  313. Weiss, H., and Wingfield, P., 1979, Enzymology of ubiquinone-utilizing electron transfer complexes in nonionic detergent, Eur. J. Biochem. 99:151–160.PubMedCrossRefGoogle Scholar
  314. Weiss, H., and Ziganke, B., 1974, Cytochrome b in Neurospora crassa mitochondria, Eur. J. Biochem. 41:63–71.PubMedCrossRefGoogle Scholar
  315. Wikström, M. K. F., and Krab, K., 1980, Respiration-linked H+ translocation in mitochondria: Stoichiometry and mechanism, Curr. Top. Bioenergetics 10:51–101.Google Scholar
  316. Wikström, M., Krab, K., and Saraste, M., 1981a, Cytochrome oxidase—a synthesis, Academic Press, New York.Google Scholar
  317. Wikström, M., Krab, K., and Saraste, M., 1981b, Proton translocating cytochrome complexes, Annu. Rev. Biochem. 50:623–655.PubMedCrossRefGoogle Scholar
  318. Williams, R. J. P., 1978, The multifarious couplings of energy transduction, Biochim. Biophys. Acta 505:1–44.PubMedCrossRefGoogle Scholar
  319. Williams, R. J. P., 1983, Mitochondrial compartments and chemi-osmosis, Trends Biochem. Sci. 8:48.CrossRefGoogle Scholar
  320. Williams, N., and Coleman, P. S., 1982, Exploring the adenine nucleotide binding sites on mitochondrial F1-ATPase with a new photoaffinity probe, 3′-O-(4-benzoyl)benzoyl adenosine 5′-triphosphate, J. Biol. Chem. 257:2834–2841.PubMedGoogle Scholar
  321. Wong, S.-Y., Galante, Y. M., and Hatefi, Y., 1982, Equilibrium binding of 125I-labeled adenosinetri-phosphatase inhibitor protein to complex V of the mitochondrial oxidative phosphorylation system, Biochemistry 21:5781–5787.PubMedCrossRefGoogle Scholar
  322. Yagi, T., Vik, S. B., and Hatefi, Y., 1982, Reversible inhibition of the mitochondrial ubiquinol-cytochrome c oxidoreductase complex (complex III) by ethoxyformic anhydride, Biochemistry 21:4777–4782.PubMedCrossRefGoogle Scholar
  323. You, K.-S., and Hatefi, Y., 1976, Purification and properties of a low molecular weight protein factor of mitochondrial energy-linked functions, Biochim. Biophys. Acta 423:398–412.PubMedCrossRefGoogle Scholar
  324. Yu, C.-A., and Yu, L., 1980, Isolation and properties of a mitochondrial protein that converts succinate dehydrogenase into succinate-ubiquinone oxidoreductase, Biochemistry 19:3579–3585.PubMedCrossRefGoogle Scholar
  325. Yu, L. and Yu, C.-A., 1982a, Quantitative resolution of succinate-cytochrome c reductase into succinate-ubiquinone and ubiquinol-cytochrome c reductases, J. Biol. Chem. 257:2016–2021.PubMedGoogle Scholar
  326. Yu, L., and Yu, C.-A., 1982b, Specific interaction between protein and ubiquinone in succinate-ubiquinone reductase, J. Biol. Chem. 257:6127–6131.PubMedGoogle Scholar
  327. Yu, L., and Yu, C.-A., 1982C., The interaction of arylazido ubiquinone derivative with mitochondrial ubiquinol-cytochrome c reductase, J. Biol. Chem. 257:10215–10221.PubMedGoogle Scholar
  328. Yu, L., and Yu, C.-A., 1982d, Isolation and properties of the cytochrome b-c 1 complex from Rhodopseudomonas sphaeroides, Biochem. Biophys. Res. Commun. 108:1285–1292.PubMedCrossRefGoogle Scholar
  329. Yu, C.-A., Yu, L., and King, T. E., 1977, The existence of an ubiquinone binding protein in the reconstitutively active cytochrome bc 1 complex, Biochem. Biophys. Res. Commun. 78:259–265.PubMedCrossRefGoogle Scholar
  330. Zoratti, M., Pietrobon, D., Conover, T., and Azzone, G. F., 1981, On the role of Δ∼μH+ as an intermediate in ATP synthesis, in: Vectorial Reactions in Electron and Ion Transport in Mitochondria and Bacteria (F. Palmieri, E. Quagliariello, N. Siliprandi, and E. C. Slater, eds.), Elsevier/North Holland, Amsterdam, pp. 331–338.Google Scholar
  331. Zoratti, M., Pietrobon, D., and Azzone, G. F., 1982, On the relationship between rate of ATP synthesis and H+ electrochemical gradient in rat-liver mitochondria, Eur. J. Biochem. 126:443–451.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1985

Authors and Affiliations

  • Youssef Hatefi
    • 1
  • C. Ian Ragan
    • 2
  • Yves M. Galante
    • 3
  1. 1.Division of Biochemistry, Department of Basic and Clinical ResearchScripps Clinic and Research FoundationLa JollaUSA
  2. 2.Department of BiochemistryUniversity of SouthamptonSouthamptonnUK
  3. 3.Recordati, SpAMilanItaly

Personalised recommendations