Advertisement

Ion Transport in Nerve Membrane

  • Lorin J. Mullins

Abstract

It has been recognized that since the Na electrochemical gradient in nerve is the energy source for flow of bioelectric currents, some restorative process is necessary to maintain the Na gradient. This entity, the Na pump, is primarily responsible for the conversion of the chemical free energy of the ATP molecule into an alternate store of free energy, the electrochemical gradient of Na+ ions.

Keywords

Giant Axon Squid Giant Axon Nerve Membrane Squid Axon Calcium Efflux 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abercrombie, R. F., and DeWeer, P., 1978, The electric current generated by the sodium pump of squid giant axons: Effects of external potassium and internal ADP, Am. J. Physiol. 4: C63–68.Google Scholar
  2. Abercrombie, R. F., and Sjodin, R. A., 1980, Calcium efflux from Myxicola giant axons: Effects of extracellular calcium and intracellular EGTA, J. Physiol. (London) 306: 175–191.Google Scholar
  3. Ahmed, Z., and Connor, J. A., 1980, Intracellular pH changes induced by calcium influx during electrical activity in molluscan neurons, J. Gen. Physiol. 75: 403–426.PubMedCrossRefGoogle Scholar
  4. Baker, P. F., 1970, Sodium—calcium exchange across nerve cell membrane, in: Calcium and Cellular Function ( A. W. Cuthbert, ed.), Macmillan, London, pp. 96–107.Google Scholar
  5. Baker, P. F., 1972, Transport and metabolism of calcium ions in nerve, Prog. Biophys. Mol. Biol. 24: 179–223.CrossRefGoogle Scholar
  6. Baker, P. F., and Crawford, A. C., 1972, Mobility and transport of magnesium in squid giant axons, J. Physiol. (London) 227: 855–874.Google Scholar
  7. Baker, P. F., and McNaughton, P. A., 1976, Kinetics and energetics of calcium efflux from intact squid giant axons, J. Physiol. (London) 259: 103–144.Google Scholar
  8. Baker, P. F., Blaustein, M. P., Hodgkin, A. L., and Steinhardt, R. A., 1969a, The influence of calcium on sodium efflux in squid axons, J. Physiol. (London) 200: 431–458.Google Scholar
  9. Baker, P. F., Blaustein, M. P., Keynes, R. D., Manil, J., Shaw, T. I., and Steinhardt, R. A., 1969b, The ouabain-sensitive fluxes of sodium and potassium in squid giant axons, J. Physiol. (London) 200: 459–496.Google Scholar
  10. Baker, P. F., Hodgkin, A. L., and Ridgway, E. B., 1971, Depolarization and calcium entry in squid axons, J. Physiol. (London) 218: 709–755.Google Scholar
  11. Beaugé, L. A., and Mullins, L. J., 1976, Strophanthidin-induced sodium efflux, Proc. R. Soc. Lond. B. 194: 279–284.PubMedCrossRefGoogle Scholar
  12. Boron, W. F., and DeWeer, P., 1976, Intracellular pH transients in squid giant axons caused by CO2, NH3, and metabolic inhibitors, J. Gen. Physiol. 67: 91–112.PubMedCrossRefGoogle Scholar
  13. Brinley, F. J., Jr., and Mullins, L. J., 1965, Ion fluxes and transference numbers in squid axons, J. Neurophysiol. 28: 526–544.PubMedGoogle Scholar
  14. Brinley, F. J., Jr., and Mullins, L. J., 1967, Sodium extrusion by internally dialyzed squid axons, J. Gen. Physiol. 50: 2303–2331.PubMedCrossRefGoogle Scholar
  15. Brinley, F. J., Jr., and Mullins, L. J., 1968, Sodium fluxes in internally dialyzed squid axons, J. Gen. Physiol. 52: 181–211.PubMedCrossRefGoogle Scholar
  16. Brinley, F. J., Jr., and Mullins, L. J., 1971, The fluxes of sodium and potassium across the squid axon membrane under conditions of altered membrane potential, Fed. Proc. 30: 255.Google Scholar
  17. Brinley, F. J., Jr., Spangler, S. G., and Mullins, L. J., 1975, Calcium and EDTA fluxes in dialyzed squid axons, J. Gen. Physiol. 66: 223–250.PubMedCrossRefGoogle Scholar
  18. Caldwell, P. C., 1958, Studies on the internal pH of large muscle and nerve fibres, J. Physiol. (London) 142: 22–62.Google Scholar
  19. Deffner, G. G. J., 1961, The dialyzable free organic constituents of squid blood; a comparison with nerve axoplasm, Biochim. Biophys. Acta 47: 378–388.PubMedCrossRefGoogle Scholar
  20. DeWeer, P., 1970, Effects of intracellular adenosine-5’-diphosphate and orthophosphate on the sensitivity of sodium efflux from squid axons to external sodium and potassium, J. Gen. Physiol. 56: 583–620.CrossRefGoogle Scholar
  21. DeWeer, P., 1975, Aspects of the recovery processes in nerve, in: Physiology, Vol. 3: Neurophysiology ( C. C. Hunt, ed.), University Park Press, Baltimore, pp. 232–278.Google Scholar
  22. DeWeer, P., 1976, Axoplasmic free Mg levels and Mg extrusion from squid axons, J. Gen. Physiol. 68: 159–178.CrossRefGoogle Scholar
  23. DeWeer, P., 1978, Intracellular pH transients induced by CO2 or NH312, Resp. Physiol. 33:41–50. DeWeer, P., and Geduldig, D., 1978, Contribution of sodium pump to resting potential of squid giant axon, Am. J. Physiol. Soc. 235: C55 - C62.Google Scholar
  24. DiPolo, R., 1973a, Sodium dependent calcium influx in dialyzed barnacle muscle fibers, Biochim. Biophys. Acta 298: 279–283.PubMedCrossRefGoogle Scholar
  25. DiPolo, R., 1973b, Calcium efflux from internally dialyzed squid giant axons, J. Gen. Physiol. 62: 575–589.PubMedCrossRefGoogle Scholar
  26. DiPolo, R., 1974, Effect of ATP on the calcium efflux in dialyzed squid axons, J. Gen. Physiol. 64: 503–517.PubMedCrossRefGoogle Scholar
  27. DiPolo, R., 1977, Characterization of the ATP-dependent calcium efflux in dialyzed squid giant axons, J. Gen. Physiol. 69: 795–814.CrossRefGoogle Scholar
  28. DiPolo, R., 1979a, Calcium influx in internally dialyzed squid giant axons, J. Gen. Physiol. 73: 91–113.PubMedCrossRefGoogle Scholar
  29. DiPolo, R., 19796, Physiological role of ATP-driven calcium pump in squid axon, Nature 278: 271–273.Google Scholar
  30. DiPolo, R., and Beaugé, L., 1983, Annu. Rev. Physiol.,vol. 45.Google Scholar
  31. DiPolo, R., and Beaugé, L., 1980, Mechanisms of calcium transport in the giant axon of the squid and their physiological role, Cell Calcium 1: 147–169.CrossRefGoogle Scholar
  32. DiPolo, R., and Beaugé, L., 1981, The effects of vanadate on calcium transport in dialyzed squid axons. Sidedness of vanadate-cation interactions, Biochim. Biophys. Acta 645: 229–236.PubMedCrossRefGoogle Scholar
  33. DiPolo, R., and Beaugé, L., 1982, The effect of pH on Ca’ extrusion mechanisms in dialyzed squid axons, Biochim. Biophys. Acta 688: 237–245.PubMedCrossRefGoogle Scholar
  34. DiPolo, R., Requena, J., Brinley, F. J., Jr., Mullins, L. J., Scarpa, A., and Tiffert, T., 1976. Ionized calcium concentrations in squid axons, J. Gen. Physiol. 67: 433–467.PubMedCrossRefGoogle Scholar
  35. DiPolo, R., Rojas, H., and Beauge, L., 1982, Ca entry at rest and during prolonged depolarization in dialyzed squid axons, Cell Calcium 3: 19–41.PubMedCrossRefGoogle Scholar
  36. Hodgkin, A. L., and Keynes, R. D., 1955, Active transport of cations in giant axons from Sepia and Loligo, J. Physiol. (London) 128: 28–60.Google Scholar
  37. Hodgkin, A. L., and Keynes, R. D., 1957, Movements of labelled calcium in squid giant axons, J. Physiol. (London) 138: 253–281.Google Scholar
  38. Kernan, R. P., 1962, Membrane potential changes during sodium transport in frog sartorius muscle, Nature 193: 986–987.PubMedCrossRefGoogle Scholar
  39. Keynes, R. D., 1963, Chloride in the giant squid axon, J. Physiol. (London) 169: 690–705.Google Scholar
  40. Mullins, L. J., 1979, Transport across axon membranes, in: Membrane Transport in Biology, Vol. II ( D. C. Tosteson, ed.), Springer-Verlag, New York, pp. 161–210.Google Scholar
  41. Mullins, L. J., and Brinley, F. J., Jr., 1975, Sensitivity of calcium efflux from squid axons to changes in membrane potential, J. Gen. Physiol. 65: 135–152.PubMedCrossRefGoogle Scholar
  42. Mullins, L. J., and Brinley, F. J., Jr., 1978, Magnesium influx in dialyzed squid axons, J. Membr. Biol. 43: 243–250.PubMedCrossRefGoogle Scholar
  43. Mullins, L. J., and Requena, J., 1981, The “late” Ca channel, J. Gen. Physiol. 78: 683–700.PubMedCrossRefGoogle Scholar
  44. Mullins, L. J., Brinley, F. J., Jr., Spangler, S. G., and Abercrombie, R. F., 1977, Magnesium efflux in dialyzed squid axons, J. Gen. Physiol. 69: 389–400.PubMedCrossRefGoogle Scholar
  45. Mullins, L. J., Tiffert, T., Vassort, G., and Whittembury, J., 1983, Effects of internal sodium and hydrogen ions and of external calcium ions and membrane potential on calcium entry in squid axons, J. Physiol. (London) 338: 319.Google Scholar
  46. Requena, J., 1983, Ca transport and regulation in nerve fibers. Annu. Rev. Biophys. 12: 237–258.CrossRefGoogle Scholar
  47. Requena, J., and Mullins, L. J., 1979, Calcium movement in nerve fibres, Quart. Rev. Biophys. 12: 371–460.CrossRefGoogle Scholar
  48. Requena, J., Mullins, L. J., and Brinley, F. J., Jr., 1979, Calcium content and net fluxes in squid giant axons, J. Gen. Physiol. 73: 327–342.PubMedCrossRefGoogle Scholar
  49. Rojas, E., and Taylor, R. E., 1975, Simultaneous measurements of magnesium, calcium and sodium influxes in perfused squid giant axons under membrane potential control, J. Physiol. (London) 252: 1–27.Google Scholar
  50. Roos, A., and Boron, W. F., 1981, Intracellular pH, Physiol. Rev. 61: 296–434.PubMedGoogle Scholar
  51. Russell, J. M., 1976, ATP-dependent chloride influx into internally dialyzed squid giant axons, J. Membr. Biol. 28: 335.PubMedCrossRefGoogle Scholar
  52. Russell, J. M., 1983, Cation coupled chloride influx in squid axon, J. Gen. Physiol. 81: 909–925.PubMedCrossRefGoogle Scholar
  53. Steinbach, H. B., 1941, Chloride in the giant axons of the squid, J. Cell. Comp. Physiol. 17: 57.CrossRefGoogle Scholar
  54. Thomas, R. C., 1971, Na microelectrodes with sensitive glass inside the tip, in: Ion Selective Microelectrodes ( N. C. Herbert and R. Khuri, eds.), Marcel Dekker, New York.Google Scholar
  55. Thomas, R. C., 1972, Intracellular sodium activity and the sodium pump in snail neurons, J. Physiol. (London) 220: 55–71.Google Scholar
  56. Thomas, R. C., 1974, Intracellular pH of snail neurones measured with a new pH-sensitive glass microelectrode, J. Physiol. (London) 238: 159–180.Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Lorin J. Mullins
    • 1
  1. 1.Department of BiophysicsUniversity of Maryland at BaltimoreBaltimoreUSA

Personalised recommendations