Advertisement

The Calcium Carriers of Mitochondria

  • Martin Crompton

Abstract

Until quite recently, the phenomenon of mitochondrial Ca2+ transport was enigmatic. The generally held belief that mitochondria may provide an intracellular sink for Ca2+ evolved naturally from extensive work in the early 1960’s (Lehninger et al., 1967; Carafoli and Lehninger, 1971), which established that mitochondria from very nearly all sources examined accumulate massive amounts of Ca2+ under appropriate in vitro conditions. Indeed, more recent studies have demonstrated that mitochondria in situ do sequester Ca2+ introduced into the cytoplasm by microinjection (salivary gland cells; Rose and Lowenstein, 1975) or by electrical stimulation (nerve cells; Brinley et al., 1977). Subsequent studies concentrated on the kinetic properties of the transport system responsible for Ca2+ uptake and its relation to the general features of mitochondrial energy transduction (Bygrave, 1977). These studies interpreted the profound capacity for Ca2+ uptake in chemiosomotic terms, whereby the mitochondrial inner membrane potential (Δψ)* provides the driving force for Ca2+ accumulation, and revealed the relatively low affinity of the transport system for external Ca2+. These features in themselves, i.e., massive capacity and low affinity, favored the sink concept in implying that the capacity for Ca2+ uptake would be largely unused except in the event of some cellular emergency involving a rise in cytoplasmic Ca2+. Moreover, intramitochondrial Ca2+ was considered inert biochemically. Consequently, mitochondrial Ca2+ transport was frequently viewed as a mere appendix of mainstream Ca2+ metabolism, apparent only when something went wrong.

Keywords

Liver Mitochondrion Heart Mitochondrion Independent System Pyridine Nucleotide Efflux System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Affolter, H., and Carafoli, E., 1980, The Ca+Na+ antiporter of heart mitochondria operates electroneutrally, Biochem. Biophys. Res. Commun. 95: 193–196.PubMedGoogle Scholar
  2. Åkerman, K. E. O., 1978a, Charge transfer during valinomycin-induced Ca’ uptake in rat liver mitochondria, FEBS Lett. 93: 293–296.PubMedGoogle Scholar
  3. Åkerman, K. E. O., 1978b, Changes in membrane potential during calcium ion influx and efflux across the mitochondrial membrane, Biochim. Biophys. Acta 502: 359.PubMedGoogle Scholar
  4. Åkerman, K. E. O., 1978c, Effect of pH and Ca’ on the retention of Ca’ by rat liver mitochondria, Arch. Biochem. Biophys. 189: 256–262.PubMedGoogle Scholar
  5. Allen, D. G., and Kurihara, S., 1980, Calcium transients in mammalian ventricular muscle, Eur. Heart J. 1 (Suppl. A): 5–15.Google Scholar
  6. Al-Shaikhaly, M. H. M., Nedergaard, J., and Cannon, B., 1975, Sodium induced calcium release from mitochondria in brown adipose tissue, Proc. Natl. Acad. Sci. USA 76: 2350–2352.Google Scholar
  7. Arshad, J. H., and Holdsworth, E. S., 1980, Stimulation of calcium efflux from rat liver mitochondria by adenosine 3’, 5’-cyclic monophosphate, J. Membr. Biol. 57: 207–212.PubMedGoogle Scholar
  8. Azzone, G. F., Pozzan, T., Massari, S., Bragadin, M., and Dell’Antone, P., 1976, Proton electrochemical potential in steady state rat liver mitochondria, Biochim. Biophys. Acta 459: 96–109.Google Scholar
  9. Babcock, D. F., Chen, J. J., Yip, B. P., and Lardy, H. A., 1979, Evidence for mitochondrial localization of the hormone-responsive pool of Ca’ in isolated hepatocytes, J. Biol. Chem. 254: 8117–8120.PubMedGoogle Scholar
  10. Baddams, H. M., Chang, L. B. F., and Barritt, G. J., 1983, Evidence that glucagon acts on the liver to decrease mitochondrial calcium stores, Biochem. J. 210: 73–77.PubMedGoogle Scholar
  11. Baker, P. F., 1972, Transport and metabolism of calcium ions in nerve, Prog. Biophys. Mol. Biol. 24: 177–233.PubMedGoogle Scholar
  12. Barritt, G. J., Parker, J. C., and Wadsworth, J. C., 1981, A kinetic analysis of the effects of adrenalin on calcium distribution in isolated rat liver parenchymal cells, J. Physiol. (London) 312: 29–55.Google Scholar
  13. Beatrice, M. C., Palmer, J. W., and Pfeiffer, D. R., 1980, The relationship between mitochondrial membrane permeability, membrane potential and the retention of Ca’ by mitochondria, J. Biol. Chem. 255: 8663–8671.PubMedGoogle Scholar
  14. Becker, G. L., 1980, Steady state regulation of extramitochondrial Ca’ by rat liver mitochondria, Biochim. Biophys. Acta 591: 234–239.PubMedGoogle Scholar
  15. Becker, G. L., Fiskum, G., and Lehninger, A. L., 1980, Regulation of free Ca’ by liver mitochondria and endoplasmic reticulum, J. Biol. Chem. 255: 9009–9012.PubMedGoogle Scholar
  16. Bernardi, P., and Azzone, G. F., 1979, ApH Induced calcium fluxes in rat liver mitochondria, Eur. J. Biochem. 102: 555–562.PubMedGoogle Scholar
  17. Blackmore, P. F., Dehaye, J., and Exton, J. H., 1979, Studies on the a-adrenergic activation of hepatic glucose output. The role of mitochondrial Ca“ release in a-adrenergic activation of phosphorylase in perfused rat liver, J. Biol. Chem. 254: 6945–6950.PubMedGoogle Scholar
  18. Blackmore, P. F., El-Refai, M. F., Dehaye, J. P., Strickland, W. G., Hughes, B. P., and Exton, J. H., 1981, Blockade of hepatic a-adrenergic receptors and responses by chlorpromazine and trifluoperazine, FEBS Lett. 123: 245–248.PubMedGoogle Scholar
  19. Blaustein, M. P., 1974, The interrelationship between sodium and calcium fluxes across cell membranes, Rev. Physiol. Biochem. Pharmacol. 70: 33–82.PubMedGoogle Scholar
  20. Borie, A. B., 1974, Cyclic AMP stimulation of calcium efflux from kidney, liver and heart mitochondria, J. Membr. Biot. 16: 221–236.Google Scholar
  21. Bragadin, M., Pozzan, T., and Azzone, G. F., 1979, Kinetics of Ca’ carrier in rat liver mitochondria, Biochemistry 18: 5972–5978.PubMedGoogle Scholar
  22. Brand, M. D., and DeSelincourt, C., 1980, Effects of glucagon and Na on the control of extramitochondrial free Ca’ concentration by mitochondria from liver and heart, Biochem. Biophys. Res. Commun. 92: 1377–1382.PubMedGoogle Scholar
  23. Brierley, G. P., 1976, The uptake and extrusion of monovalent cations by isolated heart mitochondria, Mol. Cell. Biochem. 10: 41–63.PubMedGoogle Scholar
  24. Brinley, F. J., Tiffert, T., Scarpa, A., and Mullins, L. J., 1977, Intracellular calcium buffering capacity in isolated squid axons, J. Gen. Physiol. 70: 355–384.PubMedGoogle Scholar
  25. Bygrave, F. L., 1977, Mitochondrial calcium transport, in: Current Topics in Bioenergetics ( D. R. Sanadi, ed.), Academic Press, New York, pp. 260–318.Google Scholar
  26. Carafoli, E., and Lehninger, A. L., 1971, A survey of the interaction of calcium ions with mitochondria from different tissues and species, Biochem. J. 122: 681–690.PubMedGoogle Scholar
  27. Carafoli, E., and Sottocasa, G., 1974, The Ca’ transport system of the mitochondrial membrane and the problem of the Ca’ carrier, in: Dynamics of Energy-Transducing Membranes ( L. Ernster, R. W. Estabrook, and Slater, eds.), Elsevier, Amsterdam, pp. 455–469.Google Scholar
  28. Carafoli, E., Tiozzo, R., Lugli, G., Crovetti, F., and Kratzing, C., 1974, The release of calcium from heart mitochondria by sodium, J. Mol. Cell. Cardiol. 6: 361–371.PubMedGoogle Scholar
  29. Caroni, P., Reinlib, L., and Carafoli, E., 1980, Charge movements during the Na’—Ca2+ exchange in heart sarcolemmal vesicles, Proc. Natl. Acad. Sci. USA 77: 6354–6358.PubMedGoogle Scholar
  30. Chappell, J. B., Cohn, M., and Greville, G. D., 1963, The accumulation of divalent cations by isolated mitochondria, in: Energy-Linked Functions of Mitochondria ( B. Chance, ed.), Academic Press, New York, pp. 219–231.Google Scholar
  31. Coelho, R. L. C., and Vercesi, A. E., 1980, Retention of Ca2+ by rat liver and rat heart mitochondria. Effect of phosphate, Mg’ and NAD(P) redox state, Arch. Biochem. Biophys. 204: 141–147.PubMedGoogle Scholar
  32. Coll, K. E., Joseph, S. K., Corkey, B. E., and Williamson, J. R., 1982, Determination of the matrix free Ca’ concentration and kinetics of Ca’ efflux in liver and heart mitochondria, J. Biol. Chem. 257: 8696–8704.PubMedGoogle Scholar
  33. Crompton, M., 1980, The sodium ion/calcium ion cycle of cardiac mitochondria, Biochem. Soc. Trans. 8: 261–262.PubMedGoogle Scholar
  34. Crompton, M., and Heid, I., 1978, The cycling of calcium, sodium and protons across the inner membrane of cardiac mitochondria, Eur. J. Biochem. 91: 599–608.PubMedGoogle Scholar
  35. Crompton, M., and Kessar, P., 1981, The activation of the calcium uniporter of cardiac mitochondria by a-adrenergic agonists, in: Vectorial Reactions in Electron and Ion Transport in Mitochondria and Bacteria ( F. Palmieri, ed.), Elsevier, Amsterdam, pp. 261–264.Google Scholar
  36. Crompton, M., Capano, M. and Carafoli, E., 1976a, The sodium-induced efflux of calcium from heart mitochondria. A possible mechanism for the regulation of mitochondrial calcium, Eur. J. Biochem. 69: 453–462.Google Scholar
  37. Crompton, M., Sigel, E., Salzman, M., and Carafoli, E., 1976b, A kinetic study of the energy-linked influx of Caz+ into heart mitochondria, Eur. J. Biochem. 69: 429–434.Google Scholar
  38. Crompton, M., Capano, M., and Carafoli, E., 1976c, Respiration dependent efflux of Mgz+ from heart mitochondria, Biochem. J. 154: 735–742.PubMedGoogle Scholar
  39. Crompton, M., Kunzi, M., and.Carafoli, E., 1977, The calcium induced and sodium induced effluxes of calcium from heart mitochondria. Evidence for a sodium-calcium carrier, Eur. J. Biochem. 79: 549–558.PubMedGoogle Scholar
  40. Crompton, M., Moser, R., Ludi, H., and Carafoli, E., 1978a, The interrelations between the transport of sodium and calcium in mitochondria of various mammalian tissues, Eur. J. Biochem. 82: 25–31.PubMedGoogle Scholar
  41. Crompton, M., Hediger, M., and Carafoli, E., 1978b, The effect of inorganic phosphate on calcium influx into rat heart mitochondria, Biochem. Biophys. Res. Commun. 80:540–546.Google Scholar
  42. Crompton, M., Heid, I., Baschera, C., and Carafoli, E., 1979, The resolution of calcium fluxes in heart and liver mitochondria using the lanthanide series, FEBS Lett. 104: 352–354.PubMedGoogle Scholar
  43. Crompton, M., Heid, I., and Carafoli, E., 1980, The activation by potassium of the sodium-calcium carrier of cardiac mitochondria, FEBS Lett. 115: 257–259.PubMedGoogle Scholar
  44. Denton, R. M., and McCormack, J. G., 1980, On the role of the calcium transport cycle in heart and other mammalian mitochondria, FEBS Lett. 119: 1–8.PubMedGoogle Scholar
  45. Denton, R. M., and McCormack, J. G., 1981, Calcium ions, hormones and mitochondrial metabolism, Clin. Sci. 61: 135–140.PubMedGoogle Scholar
  46. Denton, R. M., McCormack, J. G., and Edgell, N. J., 1980, Role of calcium ions in the regulation of intramitochondrial metabolism. Effects of Na*, Mg’ and ruthenium red on the Caz+ stimulated oxidation of oxoglutarate and on pyruvate dehydrogenase activity in intact rat heart mitochondria, Biochem. J. 190: 107–117.PubMedGoogle Scholar
  47. Di Polo, R., 1974, Effect of ATP on the calcium efflux in dialyzed squid axons, J. Gen. Physiol. 64: 503–517.Google Scholar
  48. Dubinsky, W., Kandrack, A., and Racker, E., 1979, Resolution and reconstitution of a calcium transporter from bovine heart mitochondria, in: Membrane Bioenergetics ( C. P. Lee, G. Schatz, and L. Ernster, eds.), Addison-Wesley, Reading, Massachusetts, pp. 267–280.Google Scholar
  49. Erecinska, M., and Wilson, M., 1982, Regulation of cellular energy metabolism, J. Membr. Biol. 70: 1–16.PubMedGoogle Scholar
  50. Exton, J. H., 1980, Mechanisms involved in a-adrenergic phenomena. Role of calcium ions in the actions of catecholamines in liver and other tissues, Am. J. Physiol. 238: E3 - E12.PubMedGoogle Scholar
  51. Fabiato, A., 1981, Myoplasmic free calcium concentration reached during the twitch of an intact isolated cardiac cell and during calcium-induced release of calcium from the sarcoplasmic reticulum of a skinned cardiac cell from the adult rat or rabbit ventricle, J. Gen. Physiol. 78: 447–497.Google Scholar
  52. Fiskum, G., and Cockrell, R. S., 1978, Ruthenium red sensitive and insensitive calcium transport in rat liver and Ehrlich ascites tumour cell mitochondria, FEBS Lett. 92: 125–128.PubMedGoogle Scholar
  53. Fiskum, G., and Lehninger, A. L., 1979, Regulated release of Ca’ from respiring mitochondria by Caz+/2H+ antiport, J. Biol. Chem. 254: 6236–6239.PubMedGoogle Scholar
  54. Fiskum, G., Reynafarje, B., and Lehninger, A. L., 1979, The electric charge stoichiometry of respiration-dependent Caz+ uptake by mitochondria, J. Biol. Chem. 254: 6288–6295.PubMedGoogle Scholar
  55. Foden, S., and Randle, P. J., 1978, Calcium metabolism in rat hepatocytes, Biochem. J. 170:615–625. Friedman, N., 1980, Studies on the mechanism of the glucagon elicited changes in mitochondria] Ca’ uptake, J. Supramol. Struct. 13 (Suppl. 4): 107.Google Scholar
  56. Goldstone, T. P., and Crompton, M., 1982, Evidence for 3-adrenergic activation of Na`-dependent efflux of Ca’ from isolated liver mitochondria, Biochem. J. 204: 369–371.PubMedGoogle Scholar
  57. Goldstone, T. P., Duddridge, R. J., and Crompton, M., 1983, The activation of Na*-dependent efflux of Ca’ from liver mitochondria by glucagon and 3-adrenergic agonists, Biochem. J. 210: 463–472.PubMedGoogle Scholar
  58. Gomez-Puyou, A., Tuena de Gomez-Puyou, M., Becker, G., and Lehninger, A. L., 1972, An insoluble Ca’ binding factor from rat liver mitochondria, Biochem. Biophys. Res. Commun. 47: 814–819.Google Scholar
  59. Greenawalt, J. W., Rossi, C. S., and Lehninger, A. L., 1964, Effect of active accumulation of calcium and phosphate ions on the structure of rat liver mitochondria, J. Cell. Biol. 23: 21–38.PubMedGoogle Scholar
  60. Gunter, T. E., Gunter, K. K., Puskin, J. S., and Russell, P. R., 1978, Efflux of Ca’ and Mn’ from rat liver mitochondria, Biochemistry 17: 339–345.PubMedGoogle Scholar
  61. Halestrap, A. P., 1978, Stimulation of the respiratory chain of rat liver mitochondria between cytochrome c, and cytochrome c by glucagon treatment of rats, Biochem. J. 172: 399–405.PubMedGoogle Scholar
  62. Hansford, R. G., 1981, Effect of micromolar concentrations of free Ca“ ions on pyruvate dehydrogenase interconversion in intact rat heart mitochondria, Biochem. J. 194: 721–732.PubMedGoogle Scholar
  63. Hansford, R. G., and Castro, F., 1981, Effect of micromolar concentrations of free calcium ions on the reduction of heart mitochondrial NAD(P) by 2-oxoglutarate, Biochem. J. 198: 525–533.PubMedGoogle Scholar
  64. Hansford, R. G., and Castro, F., 1982, Intramitochondrial and extramitochondrial free calcium ion concentration of suspensions of heart mitochondria with low, plausibly physiological contents of total calcium, J. Bioenerg. Biomembr. 14: 361–376.PubMedGoogle Scholar
  65. Harris, E. J., 1979, Modulation of Ca’ efflux from heart mitochondria, Biochem. J. 178: 673–680.PubMedGoogle Scholar
  66. Harris, E. J., and Heffron, J. J. A., 1982, The stimulation of the release of Ca’ from mitochondria by sodium ions and its inhibition, Arch. Biochem. Biophys. 218: 513–520.Google Scholar
  67. Haworth, R. A., Hunter, D. R., and Berkoff, H. A., 1980, Na’ releases Ca’ from liver, kidney and lung mitochondria, FEBS Lett. 110: 216–218.PubMedGoogle Scholar
  68. Hayat, L. H., and Crompton, M., 1982, Evidence for the existence of regulatory sites for Ca’ on the Na’/Ca“ carrier of cardiac mitochondria, Biochem. J. 202: 509–518.PubMedGoogle Scholar
  69. Heaton, G. M., and Nicholls, D. G., 1976, The calcium conductance of the inner membrane of rat liver mitochondria and the determination of the calcium electrochemical gradient, Biochem. J. 156: 635–646.PubMedGoogle Scholar
  70. Heffron, J. J. A., and Harris, E. J., 1981, Stimulation of calcium ion efflux from liver mitochondria by sodium ions and its response to ADP and energy state, Biochem. J. 194: 925–929.PubMedGoogle Scholar
  71. Hofstetter, W., Mühleback, T., Lötscher, H. R., Winterhalter, K., and Richter, C., 1981, ATP prevents both hydroperoxide induced hydrolysis of pyridine nucleotides and release of calcium in rat liver mitochondria, Eur. J. Biochem. 117: 361–367.PubMedGoogle Scholar
  72. Hughes, B. P., and Barritt, G. J., 1978, Effects of glucagon and N6, 02-dibutyryladenosine 3’: 5’-cyclic monophosphate on calcium transport in isolated rat liver mitochondria, Biochem. J. 176: 295–304.PubMedGoogle Scholar
  73. Hunter, P. R., and Haworth, R. A., 1979, The Ca“-induced membrane transitions in mitochondria. III Transitional Ca’ release, Arch. Biochem. Biophys. 195: 468–477.PubMedGoogle Scholar
  74. Jeng, A. Y., and Shamoo, A. E., 1980, The electrophoretic properties of a Ca’ carrier isolated from calf heart inner mitochondrial membranes, J. Biol. Chem. 255: 6904–6912.PubMedGoogle Scholar
  75. Keely, S. L., Corbin, J. D., and Lincoln, T., 1977, Alpha adrenergic involvement in heart metabolism: Effects on adenosine cyclic 3’,5-monophosphate, adenosine cyclic 3’,5’-monophosphate dependent protein kinase, guanosine cyclic 3’,5’-monophosphate and glucose transport, Mol. Pharmacol. 13: 964–975.Google Scholar
  76. Kessar, P., and Crompton, M., 1981, The a-adrenergic-mediated activation of Ca’ influx into cardiac mitochondria, Biochem. J. 200: 379–388.PubMedGoogle Scholar
  77. Kun, E., Kearney, E. B., Wiedemann, I., and Lee, N. M., 1969, Regulation of mitochondrial metabolism by specific cellular substances. II. The nature of stimulation of mitochondrial glutamate metabolism by a cytoplasmic component, Biochemistry 8: 4443–4449.PubMedGoogle Scholar
  78. Leblanc, P., and Clauser, H., 1974, ADP and Mg’ requirement for Ca’ accumulation by hog heart mitochondria, Biochim. Biophys. Acta 347: 87–101.PubMedGoogle Scholar
  79. Lee, C. O., and Armstrong, W. McD. 1974, State and distribution of potassium and sodium ions in frog skeletal muscle, J. Membr. Biol. 15: 331–362.PubMedGoogle Scholar
  80. Lee, C. O., and Fozzard, H. A., 1975, Activities of potassium and sodium ions in rabbit heart muscle, J. Gen. Phvsiol. 65: 695–708.Google Scholar
  81. Lehninger, A. L., Carafoli, E., and Rossi, C. S., 1967, Energy linked ion movements in mitochondrial systems, Adv. Enzymol. 29: 259–320.PubMedGoogle Scholar
  82. Lehninger, A. L., Vercesi, A., and Bababunmi, E. A., 1978, Regulation of Ca’ release from mitochondria by the oxidation-reduction state of pyridine nucleotides, Proc. Natl. Acad. Sci. USA 75: 1690–1694.PubMedGoogle Scholar
  83. Lötscher, H.-R., Schwerzmann, K., and Carafoli, E., 1979, The transport of Ca’ in a purified population of inside-out vesicles from rat liver mitochondria, FEBS Lett. 99: 194–198.PubMedGoogle Scholar
  84. Lötscher, H.-R., Winterhalter, K. H., Carafoli, E., and Richter, C., 1980a, The energy state of mitochondria during the transport of Ca’, Eur. J. Biochem. 110: 211–216.PubMedGoogle Scholar
  85. Lötscher, H.-R., Winterhalter, K. H., Carafoli, E., and Richter, C., 1980b, Hydroperoxide induced loss of pyridine nucleotides and release of Ca’ from rat liver mitochondria, J. Biol. Chem. 255: 9325–9330.PubMedGoogle Scholar
  86. Matlib, A., and O’Brien, J. P., 1974, Adenosine 3’: 5’-cyclic monophosphate stimulation of calcium efflux, Biochem. Soc. Trans. 2: 997–1000.Google Scholar
  87. McCormack, J. G., and Denton, R. M., 1980, The role of calcium ions in the regulation of intramitochondrial metabolism. Properties of the Ca’-sensitive dehydrogenases within intact uncoupled mitochondria from the white and brown adipose tissue of the rat, Biochem. J. 190: 95–105.PubMedGoogle Scholar
  88. McCormack, J. G., and Denton, R. M., 1981, The activation of pyruvate dehydrogenase in the perfused rat heart by adrenaline and other inotropic agents, Biochem. J. 194: 639–643.PubMedGoogle Scholar
  89. McMillin-Wood, J., Wolkowicz, P. E., Chu, A., Tate, C. A., Goldstone, M. A., and Entman, M. L., 1980, Calcium uptake by two preparations of mitochondria from heart, Biochim. Biophys. Acta 591: 251–265.PubMedGoogle Scholar
  90. Mela, L., 1969, Inhibition and activation of calcium transport in mitochondria. Effect of lanthanides and local anaesthetic drugs, Biochemistry 8: 2481–2486.PubMedGoogle Scholar
  91. Mela, L., and Chance, B., 1969, Calcium carrier and the “high affinity calcium binding site” in mitochondria, Biochem. Biophys. Res. Commun. 35: 556–669.PubMedGoogle Scholar
  92. Miranova, G. D., Tutjana, V. S., Pronevitch, L. A., Trofimenko, N. T., Miranov, G. P., Grigorjev, P. A., and Kondrashora, M., 1982, Isolation and properties of Ca’ transporting glycoprotein and peptide from beef heart mitochondria, J. Bioenerg. Biomembr. 14: 213–219.Google Scholar
  93. Mitchell, P., 1966, Chemiosmotic Coupling in Oxidative and Photosynthetic Phosphorylation, Glynn Research, Bodmin, U.K.Google Scholar
  94. Mitchell, P., and Moyle, J., 1967, Respiration-driven proton translocation in rat liver mitochondria, Biochem. J. 105: 1147–1162.PubMedGoogle Scholar
  95. Mitchell. P., and Moyle. J., 1969, Estimation of membrane potential and pH difference across the cristae membrane of rat liver mitochondria, Eur. J. Biochem. 7: 471–484.PubMedGoogle Scholar
  96. Moore, C. L., 1971, Specific inhibition of mitochondrial Ca’ transport by ruthenium red, Biochem. Biophys. Res. Commun. 42: 298–305.PubMedGoogle Scholar
  97. Moyle, J., and Mitchell, P., 1977, The lanthanum sensitive calcium phosphate porter of rat liver mitochondria, FEBS Lett. 77: 136–145.PubMedGoogle Scholar
  98. Murphy, E., Coll, K. E., Rich, T. L., and Williamson, J. R., 1980, Hormonal effects on calcium homeostasis in isolated hepatocytes, J. Biol. Chem. 255: 6600–6608.PubMedGoogle Scholar
  99. Nachbaur, J., Colbeau, A., and Vignais, P. M., 1972, Distribution of membrane confined phospholipases in the rat hepatocyte. Biochem. Biophys. Res. Commun. 274: 426–446.Google Scholar
  100. Nedergaard, J., and Cannon, B., 1980, Effects of monovalent cations on Ca’ transport in mitochondria; a comparison between brown fat and liver mitochondria, Acta Chem. Scand. B34: 149–151.Google Scholar
  101. Nicholls, D. G., 1974, The influence of respiration and ATP hydrolysis on the proton-electrochemical gradient across the inner membrane of rat liver mitochondria as determined by ion distribution, Eur. J. Biochem. 50: 305–315.PubMedGoogle Scholar
  102. Nicholls, D. G., 1978a, The regulation of extramitochondrial free Ca’ ion concentration by rat liver mitochondria, Biochem. J. 176: 463–474.PubMedGoogle Scholar
  103. Nicholls, D. G., 1978b, Calcium transport and proton electrochemical gradient in mitochondria from guinea pig cerebral cortex and rat heart, Biochem. J. 170: 511–522.PubMedGoogle Scholar
  104. Nicholls, D. G., and;skerman, K. E. O., 1982, Mitochondrial calcium transport, Biochim. Biophys. Acta 683: 57–88.PubMedGoogle Scholar
  105. Nicholls, D. G., and Brand, M. D., 1980, The nature of the calcium ion efflux induced in rat liver mitochondria by the oxidation of endogenous nicotinamide nucleotides, Biochem. J. 188: 113–118.PubMedGoogle Scholar
  106. Nicholls, D. G., and Crompton, M., 1980, Mitochondria(calcium transport, FEBS Lett. 111: 261–268.PubMedGoogle Scholar
  107. Nicholls, D. G., and Scott, L. D., 1980, The regulation of brain mitochondrial calcium-ion transport, Biochem. J. 186: 833–839.PubMedGoogle Scholar
  108. Nishiki, K., Erecinska, M., and Wilson, D. F., 1978, Energy relationships between cytosolic metabolism and mitochondrial respiration in rat heart, Am. J. Physiol. 234: c73 - c81.PubMedGoogle Scholar
  109. Packer, L., Utsumi, K., and Mustafa, M. G., 1966, Oscillatory states of mitochondria 1. Electron and energy transfer pathways, Arch. Biochem. Biophys. 117: 381–393.PubMedGoogle Scholar
  110. Palmer, J. W., and Pfeiffer, D. R., 1981, The control of Ca’ release from heart mitochondria, J. Biol. Chem. 256: 6742–6750.PubMedGoogle Scholar
  111. Panfili, E., Sandri, G., Sottocasa, G. L., Lunazzi, G., and Liut, G., 1976, Specific inhibition of mitochondrial CaZ+ transport by antibodies directed to the Ca’ -binding glycoprotein, Nature 264: 185–186.PubMedGoogle Scholar
  112. Panfili, E., Sottocasa, G. L., Sandri, G., and Liut, G., 1980, The Ca’ binding glycoprotein as the site of metabolic regulation of mitochondrial Ca’ movements, Eur. J. Biochem. 105: 205–210.PubMedGoogle Scholar
  113. Panfili, E., Crompton, M., and Sottocasa, G. L., 1981, Immunochemical evidence of the independence of the CaZ+/Na+ antiporter and the electrophoretic Ca’ uniporter in heart mitochondria, FEBS Lett. 123: 30–32.PubMedGoogle Scholar
  114. Patten, G. S., Filsell, O. H., and Clark, M. G., 1982, Epinephrine regulation of phosphofructokinase in perfused rat heart. A calcium-ion dependent mechanism mediated via a-receptors, J. Biol. Chem. 257: 9480–9486.PubMedGoogle Scholar
  115. Pfeiffer, D. R., Kaufman, R. F., and Lardy, H. A., 1978, Effects of N-ethylmaleimide on the limited uptake of Ca’, Mn’ and Sr“ by rat liver mitochondria, J. Biol. Chem. 253: 4165–4171.PubMedGoogle Scholar
  116. Pfeiffer, D. R., Schmid, P. C., Beatrice, M. C., and Schmid, H. O., 1979, Intramitochondrial phospholipase activity and the effects of Ca’ plus N-ethylamaleimide on mitochondrial function, J. Biol. Chem. 254: 11485–11494.PubMedGoogle Scholar
  117. Philipson, K. O., and Nishimoto, A. Y., 1980, Na+—Ca“ exchange is affected by membrane potential in cardiac sarcolemmal vesicles, J. Biol. Chem. 255: 6880–6882.PubMedGoogle Scholar
  118. Pitts, I. R., 1979, Stoichiometry of sodium—calcium exchange in cardiac sarcolemmal vesicles, J. Biol. Chem. 254: 6232–6235.PubMedGoogle Scholar
  119. Pozzan, T., Bragadin, M., and Azzone, G. F., 1977, Disequilibrium between steady-state Ca’ accumulation ratio and membrane potential in mitochondria: Pathway and role of Ca’ efflux, Biochemistry 16: 5618–5625.PubMedGoogle Scholar
  120. Puskin, J. S., Gunter, T. E., Gunter, K. K., and Russell, P. R., 1976, Evidence for more than one Ca’ transport mechanism in mitochondria, Biochemistry 15: 3834–3842.PubMedGoogle Scholar
  121. Reed, K. C., and Bygrave, F. L., 1974, Inhibition of mitochondrial calcium transport by lanthanides and ruthenium red, Biochem. J. 140: 143–153.PubMedGoogle Scholar
  122. Reeves, J. P., and Sutko, J. L., 1980, Sodium—calcium exchange activity generates a current in cardiac membrane vesicles, Science 208: 1461–1463.PubMedGoogle Scholar
  123. Reinhardt, P. H., Taylor, W. M., and Bygrave, F. L., 1982, A procedure for the rapid preparation of mitochondria from rat liver, Biochem. J. 204: 731–735.Google Scholar
  124. Reinlib, L., Caroni, P., and Carafoli, E., 1981, Studies on heart sarcolemmal vesicles of opposite orientation and the effect of ATP on the Na+/CaZ+ exchange, FEBS Lett. 126: 74–76.PubMedGoogle Scholar
  125. Rigoni, F., Mathien-Shire, Y., and Deana, R., 1980, Effect of ruthenium red on calcium efflux from rat liver mitochondria, FEBS Lett. 120: 255–258.PubMedGoogle Scholar
  126. Robertson, S. P., Potter, J. P., and Rouslin, W., 1982, The Ca" and Mg'+ dependence of Ca' uptake and respiratory function of porcine heart mitochondria. Probable physiological significance during the cardiac contractionrelaxation cycle, J. Biol. Chem. 257:1743–1751.Google Scholar
  127. Roman, I., Gmaj, P., Nowicka, C., and Angielski, S., 1979, Regulation of Ca’ efflux from kidney and liver mitochondria by unsaturated fatty acids and Na’ ions, Eur. J. Biochem. 102: 615–623.PubMedGoogle Scholar
  128. Roos, I., Crompton, M., and Carafoli, E., 1978, The effect of phosphoenol pyruvate on the retention of Ca’ by liver mitochondria, FEBS Len. 94: 418–421.Google Scholar
  129. Roos, I., Crompton, M., and Carafoli, E., 1980, The role of inorganic phosphate in the release of Ca’ from rat liver mitochondria, Eur. J. Biochem. 110: 319–325.PubMedGoogle Scholar
  130. Rose, B., and Lowenstein, W. R., 1975, Calcium ion distribution in cytoplasm visualized by aequorin: Diffusion in cytosol restricted by energised sequestering, Science 190: 1204–1206.PubMedGoogle Scholar
  131. Rossi, C. S., and Lehninger, A. L., 1964, Stoichiometry of respiratory stimulation, accumulation of Ca“ and phosphate and oxidative phosphorylation in rat liver mitochondria, J. Biol. Chem. 239: 3971–3980.PubMedGoogle Scholar
  132. Rottenberg, H., 1975, Measurement of transmembrane electrochemical proton gradients, Bioenergetics 7: 61–74.Google Scholar
  133. Rugolo, M., Siliprandi, D., Siliprandi, N., and Toninello, A., 1981, Parallel efflux of Ca+ and Pi in energised rat liver mitochondria, Biochem. J. 200:48l– 486.Google Scholar
  134. Sandri, G., Sottocasa, G., Panfili, E., and Liut, G., 1979, The ability of the mitochondrial Cat’-binding glycoprotein to restore Ca’ transport in glycoprotein depleted rat liver mitochondria, Biochim. Biophys. Acta 558: 214–220.PubMedGoogle Scholar
  135. Saris, N., and A.kerman, K. E. O., 1980, Uptake and release of bivalent cations in mitochondria, in: Current Topics in Bioenergetics, Vol. 10 ( D. R. Sanadi, ed.), Academic Press, New York, pp. 103–179.Google Scholar
  136. Scarpa, A., and Azzone, G. F., 1970, The mechanism of ion translocation in mitochondria, Eur. J. Biochem. 12: 328–335.PubMedGoogle Scholar
  137. Scarpa, A., and Graziotti, P., 1973, Mechanisms for intracellular calcium regulation in heart, J. Gen. Physiol. 62: 756–772.PubMedGoogle Scholar
  138. Scarpa, A., Malmström, K., Chiesi, M., and Carafoli, E., 1976, On the problem of the release of mitochondrial calcium by cyclic AMP, J. Membr. Biol. 29: 205–206.PubMedGoogle Scholar
  139. Scholz, FI., 1980, Effects of beta and alpha-adrenergic activators and adrenergic transmitter releasing agents on the mechanical activity of the heart, in: Adrenergic Activators and Inhibitors, Part 1 ( L. Szekeres, ed.), Springer-Verlag, Heidelberg, pp. 651–733.Google Scholar
  140. Schotland, J., and Mela, L., 1977, Role of cyclic nucleotides in the regulation of mitochondrial calcium uptake and efflux kinetics, Biochem. Biophys. Res. Commun. 75: 920–924.PubMedGoogle Scholar
  141. Selwyn, H. J., Dawson, A. P., and Dunnett, S. J., 1970, Calcium transport in mitochondria, FEBS Lett. 10: 1–5.PubMedGoogle Scholar
  142. Settlemire, C. T., Hunter, G. R., and Brierley, G. P., 1968, Ion transport in heart mitochondria XIII. The effect of ethylenediaminetetraacetate on monovalent ion uptake, Biochim. Biophys. Acta 162: 487–499.PubMedGoogle Scholar
  143. Siliprandi, D., Toninello, A., Zoccarato, F., Rugolo, M., and Siliprandi, N., 1975, Synergic action of calcium ions and diamide on mitochondrial swelling, Biochem. Biophys. Res. Commun. 66: 956–961.PubMedGoogle Scholar
  144. Sjödin, R. A., and Abercrombie, R. F., 1978, The influence of external cations and membrane potential on Ca-activated Na efflux in Myxicola giant axons, J. Gen. Physiol. 71: 453–466.PubMedGoogle Scholar
  145. Sordahl, L. A., 1974, Effects of magnesium, ruthenium red and the antibiotic ionophore A-23187 on initial rates of calcium uptake and release by heart mitochondria, Arch. Biochem. Biophys. 167:104–115.Google Scholar
  146. Sottocasa, G. L., Sandri, G., Panfili, E., de Bernard, B., Gazzotti, P., Vasington, F., and Carafoli, E., 1972, Isolation of a soluble Ca’ binding glycoprotein from ox-liver mitochondria, Biochem. Biophys. Res. Commun. 47: 808–813.PubMedGoogle Scholar
  147. Stucki, J. W., and Ineichen, E. A., 1974, Energy dissipation by calcium recycling and the efficiency of calcium transport in rat liver mitochondria, Eur. J. Biochem. 48: 365–375.PubMedGoogle Scholar
  148. Taylor, W. M., Prpic, V., Exton, J. H., and Bygrave, F. L., 1980, Stable changes to calcium fluxes in mitochondria isolated from rat livers perfused with a-adrenergic agonists and with glucagon, Biochem. J. 188: 443–450.PubMedGoogle Scholar
  149. Tew, W. P., 1977, Use of the coulombic interactions of the lanthanide series to identify two classes of Ca’ binding sites in mitochondria, Biochem. Biophys. Res. Commun. 78: 624–630.PubMedGoogle Scholar
  150. Tew, W. P., Mahle, C., Benavides, J., Howard, J. E., and Lehninger, A. L., 1980, Synthesis and characterisation of phosphocitric acid, a potent inhibitor of hydroxyapatite crystal growth, Biochemistry 19: 1983–1988.PubMedGoogle Scholar
  151. Thorn, N. A., Russel, J. T., and Robinson, I. C. A. F., 1975, Factors affecting intracellular concentrations of free calcium ions in neurosecretory nerve endings, in: Calcium Transport in Contraction and Secretion ( E. Carafoli, F. Clementi, W. Drabikowski, and A. Margreth, eds.), North-Holland/Elsevier, Amsterdam, pp. 261–270.Google Scholar
  152. Titheradge, M. A., and Coore, H. G., 1976, Hormonal regulation of liver mitochondrial pyruvate carrier in relation to glucoenogenesis and lipogenesis, FEBS Lett. 72: 73–78.PubMedGoogle Scholar
  153. Tsien, R. W., 1977, Cyclic AMP and contractile activity in heart, in: Advances in Cyclic Nucleotide Research ( P. Greengard and G. A. Robison, eds.), Raven Press, New York, pp. 363–421.Google Scholar
  154. Vaghy, P. L., Johnson, D. J., Matlib, M., Wang, T., and Schwartz, A., 1982, Selective inhibition of Na’-induced Ca’ release from heart mitochondria by diltiazem and Caz’ antagonist drugs, J. Biol. Chem. 257: 6000–6002.PubMedGoogle Scholar
  155. Vasington, F. D., Gazzotti, P., Tiozzo, R., and Carafoli, E., 1972, The effect of ruthenium red on Ca“ transport and respiration in rat liver mitochondria, Biochim. Biophys. Acta 256: 43–54.PubMedGoogle Scholar
  156. Vercesi, A., Reynafarje, B., and Lehninger, A. L., 1978, Stoichiometry of H’ ejection and Ca’ uptake coupled to electron transfer in rat heart mitochondria, J. Biol. Chem. 253: 6379–6385.PubMedGoogle Scholar
  157. Vinogradov, A., and Sarpa, A., 1973, The initial velocities of calcium uptake by rat liver mitochondria, J. Biol. Chem. 248: 5527–5531.PubMedGoogle Scholar
  158. Waite, M., and Sisson, P., 1971, Partial purification and characterisation of the phospholipase A2 from rat liver mitochondria, Biochemistry 10: 2377–2383.PubMedGoogle Scholar
  159. Wehrle, J. P., and Pedersen, P. L., 1979, Phosphate transport in rat liver mitochondria, J. Biol. Chem. 254: 7265–7295.Google Scholar
  160. Wikström, M., and Krab, K., 1980, Respiration-linked H’ translocation in mitochondria: Stoichiometry and mechanism, in, Current Topics in Bioenergetics, Vol. 10 ( D. R. Sanadi, ed.), Academic Press, New York, pp. 51–101.Google Scholar
  161. Williams, J. N., 1968, A comparative study of cytochrome ratios in mitochondria from organs of the rat, chicken and guinea pig, Biochim. Biophys. Acta 162:175–181.Google Scholar
  162. Williams, A. J., and Fry, C. H., 1978, Calcium—proton exchange in cardiac and liver mitochondria, FEBS Lett. 97: 288–292.Google Scholar
  163. Williams, R. S., and Lefkowitz, R. J., 1978,.Alpha adrenergic receptors in rat myocardium. Identification by binding [3H]-dehydro ergocryptine, Circ. Res. 43:721–727.Google Scholar
  164. Williamson, J. R., Cooper, R. H., and Hoek, J. B., 1981, Role of calcium in the hormonal regulation of liver metabolism, Biochim. Biophys. Acta 639: 243–295.PubMedGoogle Scholar
  165. Wolkowicz, P. E., and McMillin-Wood, J. M., 1980, Dissociation between mitochondria] calcium ion release and pyridine nucleotide oxidation, J. Biol. Chem. 255: 10348–10353.PubMedGoogle Scholar
  166. Yamada, E. W., Shiffman, F. H., and Huzel, N. J., 1980, Ca’-regulated release of an ATPase inhibitor protein from submitochondrial particles derived from skeletal muscle of the rat, J. Biol. Chem. 255: 267–273.PubMedGoogle Scholar
  167. Yamada, E. W., Huzel, N. J., and Dickison, J. C., 1981, Reversal by uncouplers of oxidative phosphorylation and by Ca’ of the inhibition of mitochondrial ATPase activity by the ATPase inhibition protein of rat skeletal muscle, J. Biol. Chem. 256: 10203–10207.PubMedGoogle Scholar
  168. Yamazaki, R. K., Mickey, D. L., and Storey, M., 1980, Rapid action of glucagon on hepatic mitochondrial calcium metabolism and respiratory rates, Biochim. Biophys. Acta 592: 1–12.PubMedGoogle Scholar
  169. Zoccarato, F., and Nicholls, D. G., 1982, The role of phosphate in the regulation of the independent Ca’ efflux pathway of liver mitochondria, Eur. J. Biochem. 127: 333–338.PubMedGoogle Scholar
  170. Zoccarato, F., Rugolo, M., Siliprandi, D., and Siliprandi, N., 1981, Correlated effluxes of adenine nucleotides, Mg’ and Ca’ induced in rat liver mitochondria by external Ca’ and phosphate, Eur. J. Biochem. 114: 195–199.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Martin Crompton
    • 1
  1. 1.Department of BiochemistryUniversity College LondonLondonEngland

Personalised recommendations