Biochemistry of Plasma Membrane Calcium Transporting Systems

  • Ernesto Carafoli


Plasma membranes contain three Ca2+-transporting systems, a specific channel, a pumping ATPase, and a Na+-Ca2+ exchanger. The first system, which mediates the downhill influx of Ca2+ into cells, has been known since 1958, when Ca2+ action potentials, implying a Ca2+ component in plasma membrane, were first recorded by Fatt and Ginsborg (1958) in crayfish muscle fiber membranes. In the years that followed, the observation was extended to several other excitable plasma membranes, and is now commonly attributed to the existence of a specific Ca2+-conducting channel, different from the well-known Na channel. The traditional tool for studying the Ca2+ channel has been the recording of Ca2+-dependent electrical currents in intact, or nearly intact, tissue preparations. It has emerged from a large number of electrophysiological studies of this type that the density of Ca2+ channels in most plasma membranes is vanishingly low, much lower, for example, than that of the Na+ or K+ channels. As a result, biochemical studies of the Ca2+ channel are faced with almost insurmountable difficulties, and are very scarce. Recent developments, particularly on isolated vesicles of heart sarcolemma (see for example Rinaldi et al., 1981), hold some promises, but it will certainly be a while before a reasonably detailed report on the biochemistry of the Ca2+ channel can be written.


Erythrocyte Ghost Acidic Phospholipid Human Erythrocyte Membrane Squid Axon Calcium Efflux 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adunyah, E. S., Niggli, V., and Carafoli, E., 1982, The anticalmodulin drugs trifluoperazine and R24571 remove the activation of purified erythrocyte Ca’ ATPase by acidic phospholipids and by controlled proteolysis, FEBS Lett., 143: 65–68.PubMedCrossRefGoogle Scholar
  2. Baker, P. F., and Glitsch, H. G., 1973, Does metabolic energy participate directly in the sodium-dependent extrusion of calcium from squid giant axons? J. Physiol. (London) 233: 44 P.Google Scholar
  3. Baker, P. F., Blaustein, M. P., Manil, J., and Steinhardt, R. A., 1967a, A ouabain-insensitive, calcium-sensitive sodium efflux from giant axons of Loligo, J. Physiol., (London) 191: 100 P.Google Scholar
  4. Baker, P. F., Blaustein, M. P., Hodgkin, A. L., and Steinhardt, R. A., 1967b, The effect of sodium concentration on calcium movements in giant axons of Loligo forbesi, J. Physiol. (London) 192: 43 P.Google Scholar
  5. Barrabin, H., Garrahan, P. J., and Rega, A. F., 1980, Vanadate inhibition of the Ca’-ATPase of human red cell membranes, Biochim. Biophys. Acta 600: 796–804.PubMedCrossRefGoogle Scholar
  6. Bers, D. M., Philipson, K. D., and Nishimoto, A. Y., 1980, Sodium-calcium exchange and sidedness of isolated cardiac sarcolemmal vesicles, Biochim. Biophys. Acta 601: 358–371.PubMedCrossRefGoogle Scholar
  7. Blaustein, M. P., 1974, The interrelationship between sodium and calcium fluxes across cell membranes, Rev. Physiol. Biochem. Pharmacol. 70: 33–82.PubMedCrossRefGoogle Scholar
  8. Blaustein, M. P., 1977, Effect of internal and external cations and of ATP on sodium—calcium and calcium—calcium exchange in squid axons, Biophys. J. 20: 79–111.PubMedCrossRefGoogle Scholar
  9. Blaustein, M. P., and Hodgkin, A. L., 1968, The effect of cyanide on calcium efflux in squid axons, J. Physiol. (London) 198: 46 P.Google Scholar
  10. Blaustein, M. P., and Hodgkin, A. L., 1969, The effect of cyanide on the efflux of calcium from squid axons, J. Physiol. (London) 200: 497–527.Google Scholar
  11. Blaustein, M. P., and Nelson, M., 1982, Na’—Ca’ exchange: Its role in the regulation of cell calcium, in: Membrane Transport of Calcium ( E. Carafoli, ed.), Academic Press, New York, pp. 217–236.Google Scholar
  12. Blaustein, M. P., and Russel, J. M., 1975, Sodium—calcium exchange and calcium—calcium exchange in internally dialyzed squid giant axons, J. Membr. Biol. 22: 285–312.PubMedCrossRefGoogle Scholar
  13. Bond, G. H., and Green, J. W., 1971, Effects of monovalent cations on the (Mgz+ + Ca’)-dependent ATPase of red cell membranes, Biochim. Biophys. Acta 241: 393–398.PubMedCrossRefGoogle Scholar
  14. Bürgin, H., and Schatzmann, H. J., 1979, The relation between net calcium, alkali cation, and chloride movements in red cells exposed to salicylate, J. Physiol. (London) 287: 15–32.Google Scholar
  15. Carafoli, E., and Zurini, M., 1982, The calcium pumping ATPase of plasma membranes. Purification, reconstitution, and properties, BBA Rev. Bioenerg. 683: 279–301.Google Scholar
  16. Caroni, P., and Carafoli, E., 1981a, Regulation of the Ca’-pumping ATPase of heart sarcolemma by a phosphorylation—dephosphorylation process, J. Biol. Chem. 253: 9371–9373.Google Scholar
  17. Caroni, P., and Carafoli, E., 1981b, The Ca’-pumping ATPase of heart sarcolemma: Characterization, calmodulin dependence, and partial purification, J. Biol. Chem. 256: 3263–3270.PubMedGoogle Scholar
  18. Caroni, P., and Carafoli, E., 1984, The regulation of the Na’/Ca’ exchanger of heart sarcolemma, Eur. J. Biochem.,in press.Google Scholar
  19. Caroni, P., Reinlib, L., and Carafoli, E., 1980, Charge movements during Na*—Ca’ exchange in heart sarcolemmal vesicles, Proc. Natl. Acad. Sci. USA 77: 6354–6358.PubMedCrossRefGoogle Scholar
  20. Caroni, P., Zurini, M., and Clark, A., 1982, The calcium pumping ATPase of heart sarcolemma, Ann. N.Y. Acad. Sci. 402: 402–421.PubMedCrossRefGoogle Scholar
  21. Caroni, P., Zurini, M., Clark, A., and Carafoli, E., 1984, Further characterization and reconstitution of the purified Ca’-pumping ATPase of heart sarcolemma, J. Biol. Chem.,in press.Google Scholar
  22. Chapman, R. A., and Ellis, D., 1977, The effects of manganese ions on the concentration of the frog’s heart, J. Physiol. (London) 272: 331–354.Google Scholar
  23. Clark, A., and Carafoli, E., 1984, The stoichiometry of the Ca’ -pumping ATPase of erythrocytes, Cell Calcium,in press.Google Scholar
  24. Davis, P. J., and Blas, S. D., 1981, In vitro stimulation of human red blood cell Ca“ ATPase by thyroid hormone, Biochem. Biophys. Res. Commun. 99: 1073–1080.PubMedCrossRefGoogle Scholar
  25. Davis, P. J., Davis, F. B., and Blas, S. D., 1982, Studies on the mechanism of thyroid hormone stimulation in vitro of human red cell Ca’ ATPase activity, Life Sci. 30: 675–682.PubMedCrossRefGoogle Scholar
  26. Di Polo, R., 1974, Effect of ATP on the calcium efflux in dialyzed squid giant axons, J. Gen. Physiol. 64: 503–517.CrossRefGoogle Scholar
  27. Di Polo, R., 1977, Characterization of the ATP-dependent calcium efflux in dialyzed squid giant axons, J. Gen. Physiol. 69: 795–813.CrossRefGoogle Scholar
  28. Dunham, E. T., and Glynn, L. M., 1961, Adenosine triphosphatase activity and the active movements of alkali metal ions, J. Physiol. (London) 156: 274–293.Google Scholar
  29. Famulski, K., and Carafoli, E., 1982, Calcium transporting activities of membrane functions isolated from the post-mitochondrial supernatant of rat liver, Cell Calcium 3: 263–281.PubMedCrossRefGoogle Scholar
  30. Fatt, P., and Ginsborg, B. L., 1958, The ionic requirements for the production of action potentials in crustacean muscle fibers, J. Physiol. (London) 142: 516–543.Google Scholar
  31. Galo, M. G., Urrates, L. E., and Farias, R. N., 1981, Effect of membrane fatty acid composition on the action of thyroid hormones on (Ca’ + Mg’)-adenosine triphosphatase from rat erythrocyte, J. Biol. Chem. 256: 7113–7114.PubMedGoogle Scholar
  32. Garrahan, P. J., and Rega, A. F., 1978, Activation of partial reactions of the Ca’-ATPase from human red cells by Mg’ and ATP, Biochim. Biophys. Acta 513: 59–65.PubMedCrossRefGoogle Scholar
  33. Ghiisen, W. E. J. M., and Van Os, C. H., 1982, la, 25-Dihydroxy-vitamin D3 regulates ATP-dependent calcium transport in basolateral plasma membranes of rat enterocytes, Biochim. Biophys. Acta 689:170–172.Google Scholar
  34. Gietzen, K., Tejcka, M., and Wolf, H. U., 1980, Calmodulin affinity chromatography yields a functional purified erythrocyte (Ca’ + Mg’)-dependent adenosine triphosphatase, Biochem. J. 189: 81–88.PubMedGoogle Scholar
  35. Glitsch, H. G., Reuter, H., and Scholz, H., 1970, The effect of the internal sodium concentration on calcium fluxes in isolated guinea-pig auricles, J. Physiol. (London) 209: 25–43.Google Scholar
  36. Gopinath, R. M., and Vincenzi, F. F., 1977, Phosphodiesterase protein activator mimics red blood cell cytoplasmic activator of (Ca’-Mg’) ATPase, Biochem. Biophys. Res. Commun. 77: 1203–1209.PubMedCrossRefGoogle Scholar
  37. Graf, E., Verma, A. K., Gorski, J. P., Lopaschuk, G., Niggli, V., Zurini, M., Carafoli, E., and Penniston, J. T., 1982, Molecular properties of calcium pumping ATPase from human erythrocytes, Biochemistry 21: 4511–4516.PubMedCrossRefGoogle Scholar
  38. Hakim, G., Itano, T., Verma, A. K., and Penniston, J. T., 1982, Purification of the Ca’ and MgZ’requiring ATPase from rat brain synaptic plasma membrane, Biochem. J. 207: 225–231.PubMedGoogle Scholar
  39. Jarrett, H. W., and Penniston, J. T., 1977, Partial purification of the Ca’-Mg’ ATPase activator from human erythrocytes: Its similarity to the activator of 3’: 5’-cyclic nucleotide phosphodiesterase, Biochem. Biophys. Res. Commun. 77: 1210–1216.PubMedCrossRefGoogle Scholar
  40. Jones, L. R., Besch, H. R., Jr., Fleming, J. W., McConnaughey, M. M., and Watanabe, A. M., 1979, Separation of vesicles of cardiac sarcolemma from vesicles of cardiac sarcoplasmic reticulum, J. Biol. Chem. 254: 530–539.PubMedGoogle Scholar
  41. Jundt, H., Portzig, H., Reuter, H., and Stucki, J. W., 1975, The effect of substances releasing intracellular calcium ions on sodium-dependent calcium efflux from guinea-pig auricles, J. Physiol. (London) 246: 229–253.Google Scholar
  42. Knauf, P. A., Proverbio, F., and Hoffmann, J. F., 1974, Electrophoretic separation of different phosphoproteins associated with Ca-ATPase and Na, K-ATPase in human red cell ghosts, J. Gen. Physiol. 63: 324–336.PubMedCrossRefGoogle Scholar
  43. Kraus-Friedmann, N., Biber, J., Murer, H., and Carafoli, E., 1982, Calcium uptake in isolated hepatic plasma membrane vesicles, Eur. J. Biochem. 129: 7–12.PubMedCrossRefGoogle Scholar
  44. Lotersztain, S., Hanoune, J., and Pecker, F., 1981, A high affinity calcium-stimulated magnesium-dependent ATPase in rat liver plasma membranes: Dependence on an endogenous protein activator distinct from calmodulin, J. Biol. Chem. 256: 11209–11215.Google Scholar
  45. Lüttgau, H. C., and Niedergerke, R., 1958, The antagonism between Ca and Na ions in frog’s heart, J. Physiol. (London) 143: 486–505.Google Scholar
  46. Lynch, Th. J., and Cheung, W. J., 1979, Human erythrocyte Ca’ -Mg’-ATPase: Mechanism of stimulation by Ca’, Arch. Biochem. Biophys. 194: 165–170.PubMedCrossRefGoogle Scholar
  47. Mualem, S., and Karlish, S. J. D., 1979, Is the red cell calcium pump regulated by ATP? Nature 277:238–240. Mualem, S., and Karlish, S. J. D., 1980, Regulatory interaction between calmodulin and ATP on the red cell Ca’ pump, Biochim. Biophys. Acta 597: 631–636.Google Scholar
  48. Niggli, V., Ronner, P., Carafoli, E., and Penniston, J. T., 1979a, Effects of calmodulin on the (Caz+Mgz+) ATPase partially purified from erythrocyte membranes, Arch. Biochem. Biophys. 198: 124–130.PubMedCrossRefGoogle Scholar
  49. Niggli, V., Penniston, J. T., and Carafoli, E., 1979b, Purification of the (Caz+ + Mg’)-ATPase from human erythrocyte membranes using a calmodulin affinity column, J. Biol. Chem. 254: 9955–9958.PubMedGoogle Scholar
  50. Niggli, V., Adunyah, E. S., Penniston, J. T., and Carafoli, E., 1981a, Purified (Caz+ + Mg’) ATPase of the erythrocyte membrane. Reconstitution and effect of calmodulin and phospholipids, J. Biol. Chem. 256: 395–401.PubMedGoogle Scholar
  51. Niggli, V., Adunyah, E. S., and Carafoli, E., 1981b, Acidic phospholipids, unsaturated fatty acids, and limited proteolysis mimic the effect of calmodulin on the purified erythrocyte Ca’-ATPase, J. Biol. Chem. 256: 8588–8592.PubMedGoogle Scholar
  52. Niggli, V., Sigel, E., and Carafoli, E., 1982, The purified Ca’ pump of human erythrocyte membranes catalyzes an electroneutral Ca’: H* exchange in reconstituted liposomal systems, J. Biol. Chem. 257: 2350–2356.PubMedGoogle Scholar
  53. Penniston, J. T., 1983, Plasma membrane Ca’ ATPases as active Ca’ pumps, in: Calcium and Cell Function, Vol. 4 ( W. Y. Cheung, ed.), Academic Press, New York, pp. 100–149.Google Scholar
  54. Pershadsingh, H. A., and McDonald, J. M., 1979, Direct addition of insulin inhibits a high affinity Ca’ -ATPase in isolated adipocyte plasma membranes, Nature 281: 495–497.PubMedCrossRefGoogle Scholar
  55. Philipson, K. D., and Nishimoto, A. Y., 1980, Na+—Caz+-exchange is affected by membrane potential in cardiac sarcolemmal vesicles, J. Biol. Chem. 255: 6880–6882.PubMedGoogle Scholar
  56. Philipson, K. D., and Nishimoto, A. Y., 1982, Stimulation of Na’—Ca’ exchange in cardiac sarcolemmal vesicles by proteinase pretreatment, Am. J. Physiol. 243: c191 — c195.PubMedGoogle Scholar
  57. Pitts, B. J. R., 1979, Stoichiometry of sodium—calcium exchange in cardiac sarcolemmal vesicles, J. Biol. Chem. 254: 6232–6235.PubMedGoogle Scholar
  58. Quist, E. E., and Roufogalis, B. D., 1975, Determination of the stoichiometry of the calcium pump in human erythrocytes using lanthanum as a selective inhibitor, FEBS Lett. 50: 135–139.PubMedCrossRefGoogle Scholar
  59. Quist, E. E., and Roufogalis, B. D., 1977, Association of (Ca* Mg)-ATPase activity with ATP-dependent Ca uptake in vesicles prepared from human erythrocytes, J. Supramol. Struct. 6: 375–381.PubMedCrossRefGoogle Scholar
  60. Reeves, J. P., and Sutko, J. L., 1979, Sodium—calcium exchange in cardiac membrane vesicles, Proc. Natl. Acad. Sci. USA 76: 590–594.PubMedCrossRefGoogle Scholar
  61. Reeves, J. P., and Sutko, J. L., 1980, Sodium—calcium exchange activity generates a current in cardiac membrane vesicles, Science 208: 1461–1464.PubMedCrossRefGoogle Scholar
  62. Rega, A. F., and Garrahan, P. J., 1975, Calcium ion-dependent phosphorylation of human erythrocyte membranes, J. Membr. Biol. 22: 313–327.PubMedCrossRefGoogle Scholar
  63. Rega, A. F., and Garrahan, P. J., 1980, Effects of calmodulin on the phosphoenzyme of the Ca’ -ATPase of human red cell membranes, Biochim. Biophys. Acta 596: 487–489.PubMedCrossRefGoogle Scholar
  64. Reuter, H., and Seitz, N., 1968, The dependence of Ca’ efflux from cardiac muscle on temperature and external ion composition, J. Physiol. (London) 195: 451–470.Google Scholar
  65. Richards, D. E., Rega, A. F., and Garrahan, P. J., 1978, Two classes of site for ATP in the Ca’ -ATPase from human red cell membranes, Biochim. Biophys. Acta 511: 194–201.PubMedCrossRefGoogle Scholar
  66. Rinaldi, M. L., Le Peuch, C. J., and Demaille, J. G., 1981, The epinephrine-induced activation of the cardiac slow Ca’ channel is mediated by the cAMP-dependent phosphorylation of calciductin, a 23,000 M, sarcolemmal protein, FEBS Lett. 129: 277–281.PubMedCrossRefGoogle Scholar
  67. Romero, P. J., 1981, Active calcium transport in red cell ghosts resealed in dextran solutions, Biochim. Biophys. Acta 649: 404–418.PubMedCrossRefGoogle Scholar
  68. Ronner, P., Gazzotti, P., and Carafoli, E., 1977, A lipid requirement for the (Ca’ + Mg’)-activated ATPase of erythrocyte membranes, Arch. Biochem. Biophys. 179: 578–583.PubMedCrossRefGoogle Scholar
  69. Rossi, J. P. F. C., Garrahan, P. J., and Rega, A. F., 1981, Vanadate inhibition of active calcium transport across red cell membranes, Biochim. Biophys. Acta 648: 145–150.PubMedCrossRefGoogle Scholar
  70. Roufogalis, B. D., 1979, Regulation of calcium translocation across the red blood cell membrane, Can. J. Physiol. Pharmacol. 57: 1331–1339.CrossRefGoogle Scholar
  71. Russel, J. M., and Blaustein, M. P., 1974, Calcium efflux from barnacle muscle fibers: Dependence on external cations, J. Gen. Physiol. 63: 144–167.CrossRefGoogle Scholar
  72. Sarkadi, B., 1980, Active transport of calcium in human red cells, BBA Rev. Biomembr. 604: 159–190.CrossRefGoogle Scholar
  73. Sarkadi, B., Szasz, I., Gerloczy, A., and Gardos, G., 1977, Transport parameters and stoichiometry of active calcium ion extrusion in intact human red cells, Biochim. Biophys. Acta 464: 93–107.PubMedCrossRefGoogle Scholar
  74. Sarkadi, B., Schubert, A., and Gardos, G., 1979, Effects of calcium-EGTA buffers on active calcium transport in inside-out red cell membrane vesicles, Experientia 35: 1045–1047.PubMedCrossRefGoogle Scholar
  75. Scharff, O., 1972, The influence of calcium ions on the preparation of the (CaZ’ + Mg’)-activated membrane ATPase in human red cells, Scand. J. Clin. Lab. Invest. 30: 313–320.PubMedCrossRefGoogle Scholar
  76. Scharff, O., 1976, Ca’ activation of membrane-bound (Ca’ + Mg’)-dependent ATPase from human erythrocytes prepared in the presence or absence of Ca’, Biochim. Biophys. Acta 443: 206–218.PubMedCrossRefGoogle Scholar
  77. Scharff, O., 1978, Stimulating effects of monovalent cations on activator-dissociated and activator-associated states of Ca’ -ATPase in human erythrocytes, Biochim. Biophys. Acta 512: 309–317.PubMedCrossRefGoogle Scholar
  78. Scharff, O., and Foder, B., 1978, Reversible shift between two states of Ca’ ATPase in human erythrocytes mediated by Ca’ and a membrane-bound activator, Biochim. Biophys. Acta 50: 67–77.Google Scholar
  79. Schatzmann, H. J., 1966, ATP-dependent Ca“ extrusion from human red cells, Experientia 22: 364–368.PubMedCrossRefGoogle Scholar
  80. Schatzmann, H. J., 1982, The plasma membrane calcium pump of erythrocytes and other animal cells, in: Membrane Transport of Calcium ( E. Carafoli, ed.), Academic Press, New York, pp. 41–108.Google Scholar
  81. Schatzmann, H. J., and Burgin, H., 1978, Calcium in human blood red cells, Ann. N.Y. Acad. Sci. 307: 125–147.PubMedCrossRefGoogle Scholar
  82. Schatzmann, H. J., and Rossi, G. L., 1971, (Ca+ + Mg+)-activated membrane ATPases in human red cells and their possible relations to cation transport, Biochim. Biophys. Acta 241:379–392.Google Scholar
  83. Soloft, M. S., and Sweet, P., 1982, Oxytocin inhibition of (Ca’ + Mg’)-ATPase activity in rat my-ometrial plasma membranes, J. Biol. Chem. 257: 10687–10693.Google Scholar
  84. Stieger, J., and Luterbacher, S., 1981, Some properties of the purified (Ca’ + Mg’) ATPase from human red cell membranes, Biochim. Biophys. Acta 641: 270–275.PubMedCrossRefGoogle Scholar
  85. Szasz, I., Hasitz, M., Sarkadi, B., and Gardos, G., 1978, Phosphorylation of the calcium pump intermediate in intact red cells, isolated membranes, and inside-out vesicles, Mol. Cell. Biochem. 22: 147–152.PubMedCrossRefGoogle Scholar
  86. Taverna, R. D., and Hanahan, D. J., 1980, Modulation of human erythrocyte Ca’ /Mg’ ATPase activity by phospholipase A2 and proteases. A comparison with calmodulin, Biochem. Biophys. Res. Commun. 94: 652–659.PubMedCrossRefGoogle Scholar
  87. Verma, A. K., and Penniston, J. T., 1981, A high affinity Ca’-stimulated and Mg“-dependent ATPase in rat corpus luteum plasma membrane fractions, J. Biol. Chem. 256: 1269–1275.PubMedGoogle Scholar
  88. Vincenzi, F. F., and Larsen, F. L., 1980, The plasma membrane calcium pump: Regulation by a soluble CaZ’-binding protein, Fed. Proc. 39: 2427–2431.PubMedGoogle Scholar
  89. Wilbrandt, W., and Koller, H., 1948, Die Calciumwirkung an Froschherzen als Funktion des lonengleich-gewichts zwischen Zellmembrane und Umgebung, Heiv. Physiol. Pharmacol. Acta 6: 208–221.Google Scholar
  90. Zurini, M., Krebs, J., Penniston, J. T., and Carafoli, E., 1983, Controlled proteolysis of the purified Ca2+-ATPase of the erythroenzyme, submitted.Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Ernesto Carafoli
    • 1
  1. 1.Laboratory of BiochemistrySwiss Federal Institute of Technology (ETH)ZurichSwitzerland

Personalised recommendations