Calcium-Induced Potassium Transport in Cell Membranes

  • B. Sarkadi
  • G. Gárdos

Abstract

Studies in the 1930–1940s, directed toward the elucidation of the connection between cell metabolism and ion—water content of human red cells, noted extreme alterations in K+ leakage under various experimental conditions. In lead-poisoned red cells (Ørskov, 1935), and in NaF-treated cells, Wilbrandt (1937, 1940) observed an increase in net K+ efflux and a concomitant cell shrinkage. It was first demonstrated by Gárdos (1956, 1958a,b, 1959) that, in metabolically depleted red cells, the enhanced K+ efflux took place only when Ca2+ ions were present in the suspending media. Since that time, it has been firmly established that rapid K+ transport in red cells is triggered by a specific interaction of Ca2+ ions with the intracellular membrane surface (see Section II-B), and the process, often noted in the literature as the “Gárdos phenomenon,” has become a model system to entertain numerous membrane physiologists, biochemists, and biophysicists. Training courses in membrane biology use this easily reproducible phenomenon to illustrate specificity, side-dependent activation, and selectivity of natural transport processes. Established research workers, deeply involved in the investigation of complex phenomena in complex cellular systems, from time to time return to the red-cell Ca2+ -induced K+ transport* to reveal new and important aspects of this process. The Ca2+ -induced K+ transport in red cells gave new insights into the coupling of ion movements to changes in membrane potential, and into the problem of side-dependent triggering and gating of ionic channels. In the meantime, as it generally occurs with red cell membrane phenomena, the phenomenon has turned out to be present in many animal cell membranes.

Keywords

Vanadium Catecholamine Theophylline Salicylate EGTA 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, P. R., Constanti, A., Brown, D. A., and Clark, R. B., 1982a, Intracellular Ca2+ activates a fast voltage-sensitive K+ current in vertebrate sympathetic neurons, Nature 296:746–749.Google Scholar
  2. Adams, P. R., Brown, D. A., and Constanti, A., 1982b, M-currents and other potassium currents in bullfrog sympathetic neurones, J. Physiol. (London) 330:537–572.Google Scholar
  3. Adams, W. B., and Levitan, I. B., 1982, Intracellular injection of protein kinase inhibitor blocks the serotonin-induced increase in K+ conductance in Aplysia neuron R 15, Proc. Natl. Acad. Sci. USA 79:3877–3880.PubMedGoogle Scholar
  4. Alger, B. E., and Nicoll, R. A., 1980, Epileptiform burst after-hyperpolarization: Calcium-induced potassium potential in hippocampal pyramidal cells, Science 210:1122–1124.PubMedGoogle Scholar
  5. Al-Jobore, A., and Roufogalis, B. D., 1981, Influence of EGTA on the apparent Ca2+-affinity of Mg2+- dependent, Ca2+-stimulated ATPase in the human erythrocyte membrane, Biochim. Biophys. Acta 645:1–9.PubMedGoogle Scholar
  6. Allan, D., and Michell, R. H., 1975, Accumulation of 1,2-diacylglycerol in the plasma membrane may lead to echinocyte transformation of erythrocytes, Nature 258:348–349.PubMedGoogle Scholar
  7. Allan, D., and Michell, R. H., 1977, Calcium ion-dependent diacylglycerol accumulation in erythrocytes is associated with microvesiculation but not with efflux of potassium ions, Biochem. J. 166:495–499.PubMedGoogle Scholar
  8. Allan, D., and Thomas, P., 1981a, Ca2+-induced biochemical changes in human erythrocytes and their relation to microvesiculation, Biochem. J. 198:433–440.Google Scholar
  9. Allan, D., and Thomas, P., 1981b, The effects of Ca2+ and se-on Ca2+-sensitive biochemical changes in human erythrocytes and their membranes, Biochem. J. 198:441–445.Google Scholar
  10. Armando-Hardy, M., Ellory, J. C., Ferreira, H. G., Fleminger, S., and Lew, V. L., 1975, Inhibition of the calcium-induced increase in the potassium permeability of human red blood cells by quinine, J. Physiol. (London) 250:32–33P.Google Scholar
  11. Atwater, I., and Biegelman, P. M., 1976, Dynamic characteristics of electrical activity in pancreatic 13 cells. Effects of calcium and magnesium, J. Physiol. (Paris) 72:769–786.Google Scholar
  12. Atwater, I., Dawson, C. M., Ribalet, B., and Rojas, E., 1979, Potassium permeability activated by intracellular calcium ion concentration in the pancreatic B-cell, J. Physiol. (London) 288:575–588.Google Scholar
  13. Baker, P. F., 1972, Transport and metabolism of calcium ions in nerve, Prog. Biophys. Mol. Biol. 24:177–223.PubMedGoogle Scholar
  14. Banks, B. E. C., Brown, C., Burgess, G. M., Bumstock, G., Claret, M., Cocks, T. M., and Jenkinson, D. H., 1979, Apamin blocks certain neurotransmitter induced increases in potassium permeability, Nature 282:417–419.Google Scholar
  15. Barrett, E. F., and Barrett, J. N., 1976, Separation of two voltage sensitive potassium currents and demonstration of a tetrodotoxin-resistant calcium current in frog motoneurons, J. Physiol. (London) 255:737–774.Google Scholar
  16. Barrett, J. N., Barrett, E. F., and Dribin, L. B., 1981, Calcium-dependent slow potassium conductance in rat skeletal myotubules. Dev. Biol. 82:258–266.PubMedGoogle Scholar
  17. Barrett, J. N., Magleby, K. L., and Pallotta, B. S., 1982, Properties of single calcium-activated potassium channels in cultured rat muscle, J. Physiol (London) 331:211–230.Google Scholar
  18. Bassingthwaite, J. B., Fry, C. H., and McGuigan, J. A. S., 1976, Relationship between intracellular calcium and outward current in mammalian ventricular muscle; a mechanism for the control of action potential duration? J. Physiol. (London) 262:15–37.Google Scholar
  19. Batzri, S., Selinger, Z., Schramm, M., and Robinovitch, M. R., 1973, Potassium release mediated by the epinephrine L-receptor in rat parotid slices. Properties and relation to enzyme secretion, J. Biol. Chem. 248:361–368.PubMedGoogle Scholar
  20. Berkowitz, L. R., and Orringer, E. P., 1981, Effect of cetiedil, an in vitro antisickling agent on erythrocyte membrance cation permeability, J. Clin. Invest. 68:1215–1220.PubMedGoogle Scholar
  21. Blum, R. M., and Hoffman, J. F., 1970, Carrier mediation of Ca-induced K transport and its inhibition in red blood cells, Fed. Proc. 29:663a.Google Scholar
  22. Blum, R. M., and Hoffman, J. F., 1971, The membrane locus of Ca-stimulated K transport in energy-depleted human red blood cells, J. Membr. Biol. 6:315–328.Google Scholar
  23. Blum, R. M., and Hoffman, J. F., 1972, Ca-induced K transport in human red cells: Localization of the Ca-sensitive site to the inside of the membrane, Biochem. Biophys. Res. Commun. 46:1146–1151.PubMedGoogle Scholar
  24. Bodemann, H., and Passow, H., 1972, Factors controlling the resealing of the membrane of human erythrocyte ghosts after hypotonic hemolysis, J. Membr. Biol. 8:1–26.PubMedGoogle Scholar
  25. Bookchin, R. M., Lew, V. L., Nagel, R. L., and Raventos, C., 1981, Increase in potassium and calcium transport in human red cells infected with Plasmodium falciparum in vitro, J. Physiol. (London) 312:65.Google Scholar
  26. Boonstra, J., Mummery, C. L., Tertoole, L. G., Vandersa, P. T., and Delaat, S. W., 1981, Characterization of 42K and 86Rb transport and electrical membrane properties of exponentially growing neuroblastoma cells, Biochim. Biophys. Acta 643:89–100.PubMedGoogle Scholar
  27. Brading, A., Bülbring, E., and Tomita, T., 1969, The effect of sodium and calcium on the action potential of the smooth muscle of the guinea-pig taenia coli, J. Physiol. (London) 200:637–654.Google Scholar
  28. Brehm, P., Dunlap, K., and Eckert, R., 1978, Calcium-dependent repolarization in Paramecium, J. Physiol. (London) 274:639–654.Google Scholar
  29. Brown, A. M., and Lew, V. L., 1981, Lack of time-dependent inactivation of the Ca-sensitive K channel of red cells, J. Physiol (London) 320:122P.Google Scholar
  30. Brown, A. M., Ellory, J. C., Young, J. D., and Lew, V. L., 1978, A calcium activated potassium channel present in foetal red cells of sheep but absent from reticulocytes and mature red cells, Biochim. Biophys. Acta 511:163–175.PubMedGoogle Scholar
  31. Bülbring, E., and Tomita, T., 1977, Calcium-requirement of the L action of catecholamines on guinea-pig tenia coli, Proc. Roy. Soc. Biol. Sci. 197:271–284.Google Scholar
  32. Burgess, G. M., Claret, M., and Jenkinson, D. H., 1979, Effects of catecholamines, ATP and ionophore A23187 on potassium and calcium movements in isolated hepatocytes, Nature 279:544–546.PubMedGoogle Scholar
  33. Burgess, G. M., Claret, M., and Jenkinson, D. H., 1981, Effects of quinine and apamin on the calcium-dependent potassium permeability of mammalian hepatocytes and red cells, J. Physiol. (London) 317:67–90.Google Scholar
  34. Burgin, H., and Schatzmann, H. J., 1979, The relation between net calcium, alkali cation and chloride movements in red cells exposed to salicylate, J. Physiol. (London) 287:15–32.Google Scholar
  35. Carafoli, E., and Crompton, M., 1978, The regulation of intracellular calcium, in: Current Topics in Membranes and Transport,Vol. 10 (F. Bronner and A. Kleinzeller, eds.), Academic Press, New York, pp. 151–216.Google Scholar
  36. Cheung, W. Y., 1982, Calmodulin—an overview. Fed. Proc. 41:2253–2257.PubMedGoogle Scholar
  37. Cotterrell, D., and Whittam, R., 1970, An increase in potassium efflux in human red cells associated with reversing the sign of the membrane potential, J. Physiol. (London) 210:136–137P.Google Scholar
  38. Craig, A. B., 1958, Observations on epinephrine and glucagon-induced glycogenolysis and potassium loss in the isolated perfused frog liver, Am. J. Physiol. 193:425–430.PubMedGoogle Scholar
  39. Dayson, H., 1941, The effect of some metabolic poisons on the permeability of the rabbit erythrocyte to potassium, J. Cell. Comp. Physiol. 18:173–185.Google Scholar
  40. Dayson, H., 1942, The haemolytic action of potassium salts, J. Physiol. (London) 101:265–283.Google Scholar
  41. dePeyer, J. E., Cachelin, A. B., Levitan, I. B., and Reuter, H., 1982, Ca2+-activated K+ conductance in internally perfused snail neurons is enhanced by protein phosphorylation, Proc. Natl. Acad. Sci. USA 79:4207–4211.Google Scholar
  42. Deutsch, C., and Price, M. A., 1982, Cell calcium in human peripheral blood lymphocytes and the effect of mitogen, Biochim. Biophys. Acta 687:211–218.PubMedGoogle Scholar
  43. Doljanski, F., Ben-Sasson, S., Reich, M., and Groves, N. B., 1974, Dynamic osmotic behavior of chick blood lymphocytes. J. Cell Physiol. 84:215–224.PubMedGoogle Scholar
  44. Dunn, M. J., 1974, Red blood cell calcium and magnesium: Effects upon sodium and potassium transport and cellular morphology, Biochim. Biophys. Acta 352:97–116.PubMedGoogle Scholar
  45. Eaton, J. W., Skelton, T. D., Swofford, H. S., Kolpin, C. E., and Jacob, H. S., 1973, Elevated erythrocyte calcium in sickle cell disease, Nature 246:105–106.PubMedGoogle Scholar
  46. Eaton, J. W., Branda, R. F., Hadland, C., and Dreher, K., 1980, Anion channel blockade—effects upon erythrocyte membrane calcium response, Am. J. Hematol. 9:391–399.PubMedGoogle Scholar
  47. Eckert, E., 1977, Genes, channels and membrane currents in Paramecium, Nature 368:104–105.Google Scholar
  48. Ekman, A., Manninen, V., and Salminen, S., 1969, Ion movements in red cells treated with propranolol, Acta Physiol. Scand. 75:333–344.Google Scholar
  49. Feig, S. A., and Bassilian, S., 1974, Abnormal RBC Ca metabolism in hereditary spherocytosis, Blood 44:937.Google Scholar
  50. Feltz, A., Ronjevic, K., and Lisiewicz, A., 1972, Intracellular free Ca2+ and membrane properties of motoneurones, Nature New Biol. 237:179–181.Google Scholar
  51. Ferreira, H. G., and Lew, V. L., 1976, Use of ionophore A23187 to measure cytoplasmic Ca buffering and activation of the Ca pump by internal Ca, Nature 259:47–49.PubMedGoogle Scholar
  52. Ferreira, H. G., and Lew, V. L., 1977, Passive Ca transport and cytoplasmic Ca buffering in intact red cells, in: Membrane Transport in Red Cells (J. C. Ellory and V. L. Lew, eds.), Academic Press, New York, pp. 53–92.Google Scholar
  53. Fink, R., and Lüttgau, H. C., 1976, An evaluation of the membrane constants and the potassium conductance in metabolically exhausted muscle fibres, J. Physiol. (London) 263:215–238.Google Scholar
  54. Freedman, M. H., 1979, Early biochemical events in lymphocyte activation I. Investigation of the nature and significance of early calcium fluxes observed in mitogen-induced T and B lymphocytes, Cell. Immunl. 44:290–313.Google Scholar
  55. Freedman, M. H., Raff, M. C., and Gomperts, B., 1975, Induction of increased calcium uptake in mouse T lymphocytes by concanavalin A and its modulation by cyclic nucleotides, Nature 255:378–380.PubMedGoogle Scholar
  56. Fuhrmann, G. F., Hüttermann, F., and Knauf, P. A., 1984, The mechanism of vanadium action on selective K+-permeability in human erythrocytes, Biochim. Biophys. Acta 769:130–140.PubMedGoogle Scholar
  57. Garcia-Sancho, J., Sanchez, A., and Herreros, B., 1979, Stimulation of monovalent cation fluxes by electron donors in the human red cell membrane, Biochim. Biophys. Acta 556:118–130.PubMedGoogle Scholar
  58. Garcia-Sancho, J., Sanchez, A., and Herreros, B., 1982, All-or-none response of the Ca2+-dependent K+ channel in inside-out vesicles, Nature 296:744–746.PubMedGoogle Scholar
  59. Gárdos, G., 1956, The permeability of human erythrocytes to potassium, Acta Physiol. Acad. Sci. Hung. 10:185–189.Google Scholar
  60. Gardos, G., 1958a, Effect of ethylenediamine-tetraacetate on the permeability of human erythrocytes, Acta Physiol. Acad. Sci. Hung. 14:1–5.Google Scholar
  61. Gardas, G., 1958b, The function of calcium in the potassium permeability of human erythrocytes, Biochim. Biophys. Acta 30:653–654.Google Scholar
  62. Gárdos, G., 1959, The role of calcium in the potassium permeability of human erythrocytes, Acta Physiol. Acad. Sci. Hung. 15:121–125.Google Scholar
  63. Gärdos, G., 1966a, The role of 2,3-diphosphoglyceric acid in the potassium transport of human erythrocytes, Experientia 22:308.Google Scholar
  64. Gárdos, G., 1966b, The mechanism of ion transport in human erythrocytes I. The role of 2,3-diphosphoglyceric acid in the regulation of potassium transport, Acta Biochim. Biophys. Acad. Sci. Hung. 1:139–148.Google Scholar
  65. Gárdos, G., 1967, Studies on potassium permeability changes in human erythrocytes, Experientia 23:19.PubMedGoogle Scholar
  66. Gárdos, G., 1972, Ion transport across the erythrocyte membrane, Haematologia 6:237–247.PubMedGoogle Scholar
  67. Gárdos, G., and Straub, F. B., 1957, Über die Rolle Der Adenosintriphosphorsaüre (ATP) in der K-Permeabilitat der menschlichen roten Blutkorperchen, Acta Physiol. Acad. Sci. Hung. 12:1–8.Google Scholar
  68. Gárdos, G., and Szâsz, I., 1968, The mechanism of ion transport in human erythrocytes II. The role of histamine in regulation of cation transport, Acta Biochim. Biophys. Acad. Sci. Hung. 3:13–27Google Scholar
  69. Gárdos, G., and Szasz, I., 1973, Studies on the leak cation transport of human erythrocytes, in: Erythrocytes, Thrombocytes, Leukocytes (E. Gerlach, K. Moser, E. Deutsch, and W. Wilmanns, eds.), Georg Thieme, Stuttgart, pp. 31–33.Google Scholar
  70. Gárdos, G., Szâsz, I., and Sarkadi, B., 1975a, Mechanism of Ca-dependent K transport in human red cells, FEBS Proc. 35:167–180.Google Scholar
  71. Gárdos, G., Sarkadi, B., and Szâsz, I., 1975b, Effect of the Ca-ionophore A23187 on the K transport of human red cells, Abst. Vol. 5th Int. Cong. Biophys. p. 100.Google Scholar
  72. Gárdos, G., Lassen, U. V., and Pape, L., 1976, Effect of antihistamines and chlorpromazine on the calciuminduced hyperpolarization of the Amphiuma red cell membrane, Biochim. Biophys. Acta 448:599–606.PubMedGoogle Scholar
  73. Gárdos, G., Szâsz, I., and Sarkadi, B., 1977, Effect of intracellular calcium on the cation transport processes in human red cells, Acta Biol. Med. Germ. 36:823–829.PubMedGoogle Scholar
  74. Glader, B. E., Fortier, N., Albala, M. M., and Nathan, D. G., 1974, Congenital anemia associated with dehydrated erythrocytes and increased potassium loss, New Engl. J. Med. 291:491–496.PubMedGoogle Scholar
  75. Glynn, I. M., and Warner, A. E., 1972, Nature of the calcium dependent potassium leak induced by (+)- propranolol, and its possible relevance to the drug’s antiarrhythmic effect, Br. J. Pharmacol. 44:271–278.PubMedGoogle Scholar
  76. Gorman, A. L. F., and Hermann, A., 1979, Internal effects of divalent cations on potassium permeability in molluscan neurones, J. Physiol. (London) 296:393–410.Google Scholar
  77. Gorman, A. L. F., and McReynolds, J. S., 1974, Control of membrane K+ permeability in a hyperpolarizing photoreceptor: Similar effects of light and metabolic inhibition, Science 185:620–621.PubMedGoogle Scholar
  78. Gorman, A. L. F., and Thomas, M. V., 1978, Changes in intracellular concentration of free calcium ions in a pace-maker neurone, measured with the metallochromic dye Arsenazo III, J. Physiol. (London) 275:357–376.Google Scholar
  79. Gorman, A. L. F., and Thomas, M. V., 1980, Potassium conductance and internal calcium accumulation in a molluscan neurone, J. Physiol. (London) 308:287–313.Google Scholar
  80. Gorman, A. L. F., Hermann, A., and Thomas, M. V., 1982, Ionic requirements for membrane oscillations and their dependence on the calcium concentration in a molluscan pace-maker neurone, J. Physiol. (London) 327:185–217.Google Scholar
  81. Grafe, P., Mayer, C. J., and Wood, J. D., 1980, Synaptic modulation of calcium-dependent potassium conductance in myenteric neurons in the guinea-pig, J. Physiol. (London) 305:235–248.Google Scholar
  82. Greengard, P., 1978, Phosphorylated proteins as physiological effectors, Science 199:146–152.PubMedGoogle Scholar
  83. Grey, J. E., and Gitelman, H. J., 1979, Phospholipase participates in the calcium-induced potassium efflux of human erythrocytes, Fed. Proc. 38:1127.Google Scholar
  84. Grigarzik, H., and Passow, H., 1958, Versuche zum mechanismus der bleiwirkung auf die kalium-permeabilität roter blutköperchen, Pflugers Arch. 267:73–92.PubMedGoogle Scholar
  85. Grinstein, S., and Rothstein, A., 1978, Chemically induced cation permeability in red cell membrane vesicles. The sidedness of the response and the proteins involved, Biochim. Biophys. Acta 508:236–245.PubMedGoogle Scholar
  86. Grinstein, S., DuPre, A., and Rothstein, A., 1982a, Volume regulation by human lymphocytes—role of calcium, J. Gen. Physiol. 79:849–868.Google Scholar
  87. Grinstein, S., Clarke, C. A., DuPre, A., and Rothstein, A., 1982b, Volume-induced increase of anion permeability in human lymphocytes, J. Gen. Physiol. 80:801–823.Google Scholar
  88. Gunn, R. B., 1979, Transport of anions across red cell membranes, in: Membrane Transport in Biology, Vol. 2 (G. Giebisch, D. C. Tosteson, and H. H. Ussing, eds.), Springer Verlag, Berlin, pp. 59–80.Google Scholar
  89. Gunn, R. B., Dalmark, M., Tosteson, D. C., and Wieth, I. O., 1973, Characteristics of chloride transport in human red blood cells, J. Gen. Physiol. 61:185–206.PubMedGoogle Scholar
  90. Hamill, O. P., 1981, Potassium channel currents in human red blood cells, J. Physiol. (London) 314:125P.Google Scholar
  91. Hanani, M., and Shaw, C., 1977, A potassium contribution of the response of the barnacle photoreceptor, J. Physiol. (London) 270:151–163.Google Scholar
  92. Harrison, D. G., and Long, C., 1968, The calcium content of human erythrocytes, J. Physiol. (London) 199:367–381.Google Scholar
  93. Haylett, D. G., 1976, The effects of sympathomimetic amines on 45Ca efflux from liver slices, J. Pharmacol. 57:158–160.Google Scholar
  94. Haylett, D. G., and Jenkinson, D. H., 1972, Effects of noradrenaline on potassium efflux, membrane potential and electrolyte levels in tissue slices prepared from guinea pig liver, J. Physiol. (London) 225:721–750.Google Scholar
  95. Heinz, A., and Passow, H., 1980, Role of external potassium in the calcium-induced potassium efflux from human red blood cell ghosts, J. Membr. Biol. 57:119–131.PubMedGoogle Scholar
  96. Hellerstein, S., and Bunthrarungoj, T., 1974, Erythrocyte composition in sickle cell anemia, J. Lab. Clin. Med. 83:611–624.PubMedGoogle Scholar
  97. Hermann, A., and Gorman, A. L., 1981, Effects of tetraethylammonium on potassium currents in a molluscan neuron, J.. Gen. Physiol. 78:87–110.PubMedGoogle Scholar
  98. Hladky, S. B., and Rink, T. J., 1976, Potential difference and the distribution of ions across the human red blood cell membrane: A study of the mechanism by which the fluorescent cation, diS-C3(5) reports membrane potential, J. Physiol. (London) 263:287–319.Google Scholar
  99. Hoffman, J. F., 1962, Cation transport and structure of the red cell plasma membrane, Circulation 26:1201–1213.Google Scholar
  100. Hoffman, J. F., and Blum, R. M., 1977, On the nature of the transport pathway used for Ca2+-dependent K` movement in human red blood cells, in: Membrane Toxicity (M. W. Miller and A. E. Shamoo, eds.), Plenum Press, New York, pp. 381–404.Google Scholar
  101. Hoffman, J. F., and Knauf, P. A., 1973, The mechanism of the increased K transport induced by Ca in human red blood cells, in: Erythrocytes, Thrombocytes, Leukocytes (E. Gerlach, K. Moser, E. Deutch, and W. Wilmanns, eds.), Georg Thieme, Stuttgart, pp. 66–70.Google Scholar
  102. Hoffman, J. F., and Laris, P. C., 1974, Determination of membrane potentials in human and Amphiuma red blood cells by means of a fluorescent probe, J. Physiol. (London) 239:519–552.Google Scholar
  103. Holian, A., Deutsch, C. J., Holian, S. K., Daniele, R. P., and Wilson, D. F., 1979, Lymphocyte response to phytohemagglutinin: Intracellular volume and intracellular K+, J. Cell. Physiol. 98:137–144.PubMedGoogle Scholar
  104. Howland, J. L., 1974, Abnormal potassium conductance associated with muscular dystrophy, Nature 251:724–725.PubMedGoogle Scholar
  105. Hugues, M., Romey, G., Duval, D., Vincent, J. P., and Lazdunski, M., 1982a, Apamin as a selective blocker of the calcium-dependent potassium channel in neuroblastoma cells: Voltage-clamp and biochemical characterization of the toxin receptor, Proc. Natl. Acad. Sci. USA 79:1308–1312.Google Scholar
  106. Hugues, M., Schmid, H., and Lazdunski, M., 1982b, Identification of a protein component of the Ca2+-dependent K+ channel by affinity labeling with apamin, Biochem. Biophys. Res. Commun. 107:1557–1582.Google Scholar
  107. Hunter, M. J., 1971, A quantitative estimate of the non-exchange-restricted chloride permeability of the human red cell, J. Physiol (London) 218:49P.Google Scholar
  108. Hunter, M. J., 1977, Human erythrocyte anion permeabilities measured under conditions of net charge transfer, J. Physiol. (London) 268:35–49.Google Scholar
  109. Isenberg, G., 1975, Is potassium conductance of cardiac Purkinje fibres controlled by [Ca2+]? Nature 253:273–274.Google Scholar
  110. Isenberg, G., 1978, The positive dynamic current of the cardiac Purkinje fibre is not a chloride but a potassium current, Pflugers Arch. 377:R5.Google Scholar
  111. Jenkins, D. M. G., and Lew, V. L., 1973, Ca uptake by ATP depleted red cells from different species with and without associated increase in K permeability, J. Physiol. (London) 234:41–42P.Google Scholar
  112. Kaczmarek, L. K., Jennings, K. R., Strumwasser, F., Nairn, A. C., Walter, V., Wilson, F. D., and Greengard, P., 1980, Microinjection of catalytic subunit of cyclic AMP-dependent protein kinase enhances calcium action potential of bag cell neurons in cell culture, Proc. Natl. Acad. Sci. USA 77:7487–7491.PubMedGoogle Scholar
  113. Karlish, S. J. D., Ellory, J. C., and Lew, V. L., 1981, Evidence against Na -pump mediation of Ca2+-activated K+ transport and diuretic-sensitive Na’/K’ cotransport, Biochim. Biophys. Acta 646:353–355.PubMedGoogle Scholar
  114. Kass, R. S., and Tsien, R. W., 1976, Control of action potential duration by calcium ions in cardiac Purkinje fibers, J. Gen. Physiol. 67:599–617.PubMedGoogle Scholar
  115. Kirkpatrick, F. H., Hillman, D. G., and LaCelle, P. L., 1975, A23187 and red cells: Changes in deform-ability, K+, Mg2+, Ca2+, and ATP, Experientia 31:653–654.PubMedGoogle Scholar
  116. Knauf, P. A., 1979, Erythrocyte anion exchange and the Band III protein: Transport kinetics and molecular structure, in: Current Topics in Membranes and Transport, Vol. 12 (F. Bronner and A. Kleinzeller, eds.), Academic Press, New York, pp. 251–365.Google Scholar
  117. Knauf, P. A., and Rothstein, A., 1971, Chemical modifications of membranes: I. Effects of sulthydryl and amino reactive reagents on anion and cation permeability of human red blood cell, J. Gen. Physiol. 58:190–210.PubMedGoogle Scholar
  118. Knauf, P. A., Riordan, J. R., Schuhmann, B., and Passow, H., 1974, Effects of external potassium on calcium-induced potassium leakage from human red blood cell ghosts, in: Membranes: Comparative Biochemistry and Physiology of Transport (L. Bolis, K. Bloch, S. E. Luria, and F. Lynen, eds.), North Holland, Amsterdam, pp. 305–309.Google Scholar
  119. Knauf, P. A., Riordan, J. R., Schuhmann, B., Wood-Guth, I., and Passow, H., 1975, Calcium-potassium stimulated net potassium efflux from human erythrocyte ghosts, J. Membr. Biol. 25:1–22.PubMedGoogle Scholar
  120. Knauf, P. A., Fuhrmann, G. F., Rothstein, S., and Rothstein, A., 1977, The relationship between anion exchange and net anion flow across the human red blood cell membrane, J. Gen. Physiol. 69:363–386.PubMedGoogle Scholar
  121. Koller, C. A., Orringer, E. P., and Parker, J. C., 1979, Quinine protects pyruvate kinase deficient red cells from dehydration, Am. J. Hematol. 7:193–199.PubMedGoogle Scholar
  122. Kregenow, F. M., and Hoffman, J. F., 1972, Some kinetic and metabolic characteristics of calcium-induced potassium transport in human red cells, J. Gen. Physiol. 60:406–429.PubMedGoogle Scholar
  123. Krnjevic, K., and Lisiewicz, A., 1972, Injection of calcium ions into spinal motoneurones, J. Physiol. (London) 225:363–390.Google Scholar
  124. Kuba, K., 1980, Release of calcium ions linked to the activation of potassium conductance in a caffeine-treated sympathetic neurone, J. Physiol. (London) 298:251–269.Google Scholar
  125. Kuba, K., and Nishi, S., 1976, Rhythmic hyperpolarizations and depolarization of sympathetic ganglion cells induced by caffeine, J. Neurophysiol. 39:547–563.PubMedGoogle Scholar
  126. Kurtzer, R., and Roberts, M. L., 1982, Calcium-dependent K’ efflux from rat submandibular gland. The effects of trifluoperazine and quinidine, Biochim. Biophys. Acta 693:479–484.PubMedGoogle Scholar
  127. LaCelle, P. L., and Rothstein, A., 1966, The passive permeability of the red blood cell to cations, J. Gen. Physiol. 50:171–188.PubMedGoogle Scholar
  128. Lackington, I., and Orrego, F., 1981, Inhibition of calcium-activated potassium conductance of human erythrocytes by calmodulin inhibitory drugs, FEBS Lett. 133: 103–106.PubMedGoogle Scholar
  129. Larsen, F. L., and Vincenzi, F. F., 1979, Calcium transport across the plasma membrane: Stimulation by calmodulin, Science 204:306–309.PubMedGoogle Scholar
  130. Larsen, F. L., Katz, S., Roufogalis, B. D., and Brooks, D. E., 1981, Physiological sheer stresses enhance the Ca2+ permeability of human erythrocytes, Nature 294: 667–668.PubMedGoogle Scholar
  131. Lassen, U. V., 1972, Membrane potential and membrane resistance of red cells, in: Oxygen Affinity and Red Cell Acid Base Status (M. Rorth and P. Astrup, eds.), Munksgaard, Copenhagen, pp. 291–304.Google Scholar
  132. Lassen, U. V., Pape, L., and Vestergaard-Bogind, B., 1973, Membrane potential of Amphiuma red cells: Effect of calcium, in: Erythrocytes, Thrombocytes, Leukocytes (E. Gerlach, K. Moser, E. Deutsch, and W. Wilmanns, eds.), Georg Thieme, Stuttgart, pp. 33–36.Google Scholar
  133. Lassen, U. V., Pape, L., and Vestergaard-Bogind, B., 1976, Effect of calcium on the membrane potential of Amphiuma red cells, J. Membr. Biol. 26:51–70.PubMedGoogle Scholar
  134. Lassen, U. V., Pape, L., and Vestergaard-Bogind, B., 1980, Calcium related transient changes in membrane potential of red cells, in: Membrane Transport in Erythrocytes (U. V. Lassen, H. H. Ussing, and J. O. Wieth, eds.), Munksgaard, Copenhagen, pp. 255–273.Google Scholar
  135. Latorre, R., and Miller, C., 1983, Conduction and selectivity in potassium channels, J. Membr. Biol. 71:11–30.PubMedGoogle Scholar
  136. Latorre, R., Vergara, C., and Hidalgo, C., 1982, Reconstitution in planar lipid bilayers of Ca2+-dependent K+ channel from transverse tubule membranes isolated from rabbit skeletal muscle, Proc. Natl. Acad. Sci. USA 79:805–809.PubMedGoogle Scholar
  137. Lepke, S., and Passow, H., 1960, Die Wirkung von Erdalkalimetallionen auf die Kationpermeabilitat fluoridvergifteter Erythrocyten, Pflugers Arch. 271:473–487.Google Scholar
  138. Lepke, S., and Passow, H., 1968, Effects of fluoride on potassium and sodium permeability of the erythrocyte membrane, J. Gen. Physiol. 51:365–372.PubMedGoogle Scholar
  139. Lew, V. L., 1970, Effect of intracellular calcium on the potassium permeability of human red cells, J. Physiol. (London) 206:35–36P.Google Scholar
  140. Lew, V. L., 1971a, On the ATP-dependence of the Cat+-induced increase in K+ permeability observed in human red cells, Biochim. Biophys. Acta 233:827–830.Google Scholar
  141. Lew, V. L., 197lb, Effect of ouabain on the Ca++ -dependent increase in K+ permeability in ATP depleted guinea-pig red cells, Biochim. Biophys. Acta 249:236–239.Google Scholar
  142. Lew, V. L., 1974, On the mechanism of the Ca-induced increase in K permeability observed in human red cell membranes, in: Comparative Biochemistry and Physiology of Transport (L. Bolis, K. Bloch, S. E. Luria, and F. Lynen, eds.), North Holland, Amsterdam, pp. 310–316.Google Scholar
  143. Lew, V. L., and Beaugé, L., 1979, Passive cation fluxes in red cell membranes, in: Membrane Transport in Biology, Vol. 2 (G. Giebisch, D. C. Tosteson, and H. H. Ussing, eds.), Springer Verlag, Berlin, pp. 81–116.Google Scholar
  144. Lew, V. L., and Bookchin, R. M., 1980, A Ca2+-refractory state of the Ca2+-sensitive K+ permeability mechanism in sickle cell anaemia red cells, Biochim. Biophys. Acta 602:196–200.PubMedGoogle Scholar
  145. Lew, V. L., and Ferreira, H. G., 1976, Variable Ca sensitivity of a K selective channel in intact red cell membranes, Nature 263:336–338.PubMedGoogle Scholar
  146. Lew, V. L., and Ferreira, H. G., 1977, The effect of Ca on the K permeability of red cells, in: Membrane Transport in Red Cells (J. C. Ellory and V. L. Lew, eds.), Academic Press, New York, pp. 93–100.Google Scholar
  147. Lew, V. L., and Ferreira, H. G., 1978, Calcium transport and the properties of a Ca-activated potassium channel in red cell membranes, in: Current Topics in Membranes and Transport, Vol. 10 (F. Bronner and A. Kleinzeller, eds.), Academic Press, New York, pp. 217–277.Google Scholar
  148. Lew, V. L., and Simonsen, L. O., 1981, A23187-induced 45Ca flux kinetics reveal uniform ionophore distribution and cytoplasmic calcium buffering in ATP-depleted human red cells, J. Physiol. (London) 316:6–7.Google Scholar
  149. Lew, V. L., Muallem, S., and Seymour, C. A., 1980, One-step vesicles from mammalian red cells, J. Physiol. (London) 307:36–37P.Google Scholar
  150. Lew, V. L., Muallem, S., and Seymour, C. A., 1982, Properties of the Ca2+ activated K+ channel in one-step inside-out vesicles from human red cell membranes, Nature 296:742–744.PubMedGoogle Scholar
  151. Lindemann, B., and Passow, H., 1960, Kaliumverlust and ATP-Zerfall in bleivergifteten Menschenerythrocyten, Pflugers Arch. 271:369–373.Google Scholar
  152. Lisman, J. E., and Brown, J. E., 1972, The effects of intracellular iontophoretic injection of calcium and sodium ions on the light response of Limulus ventral photoreceptors, J. Gen. Physiol. 59:701–719.PubMedGoogle Scholar
  153. Lorand, L., Weissmann, L. B., Epel, D. L., and Lorand, J. B., 1976, Role of the intrinsic transglutaminase in the Ca2+ mediated crosslinking of erythrocyte proteins, Proc. Natl. Acad. Sci. USA 73:4479–4481.PubMedGoogle Scholar
  154. Macey, R. I., Adorante, J. S., and Orme, F. W., 1978, Erythrocyte membrane potentials determined by hydrogen ion distribution, Biochim. Biophys. Acta 512:284–295.PubMedGoogle Scholar
  155. Manninen, V., 1970, Movements of sodium and potassium ions and their tracers in propranolol-treated red cells and diaphragm muscle, Acta Physiol. Scand. Suppl. 355:1–37.PubMedGoogle Scholar
  156. Marban, E., and Tsien, R. W., 1982, Effects of nystatin-mediated intracellular ion substitution on membrane currents in calf Purkinje fibres, J. Physiol. (London) 329:569–587.Google Scholar
  157. Marino, D., Sarkadi, B., Gardos, G., and Bolis, L., 1981, Calcium-induced alkali cation transport in nucleated red cells, Mol. Physiol. 1:295–300.Google Scholar
  158. Marshall, J. M., 1977, Modulation of smooth muscle activity by catecholamines, Fed. Proc. 36:2450–2455.PubMedGoogle Scholar
  159. Marty, A., 1981, Ca-dependent K-channels with large unitary conductance in chromaffin cell membranes, Nature 291:497–500.PubMedGoogle Scholar
  160. Masys, D. R., Bromberg, P. A., and Balcerzak, S. P., 1974, Red cells shrink during sickling, Blood 44:885–890.PubMedGoogle Scholar
  161. Matthews, E. K., 1975, Calcium and stimulus-secretion coupling in pancreatic islet cells, in: Calcium Transport in Contraction and Secretion (E. Carafoli, ed.), North Holland, Amsterdam, pp. 203–210.Google Scholar
  162. Meech, R. W., 1974, The sensitivity of Helix aspersa neurones to injected calcium ions, J. Physiol. (London) 237:259–277.Google Scholar
  163. Meech, R. W., 1976, Intracellular calcium and the control of membrane permeability, in: Calcium in Biological Systems, Symp. Soc. Exp. Biol. Med. 30:161–191.Google Scholar
  164. Meech, R. W., 1978, Calcium-dependent potassium activation in nervous tissues, Annu. Rev. Biophys. Bioeng. 7:1–18.PubMedGoogle Scholar
  165. Meech, R. W., and Standen, N. B., 1975, Potassium activation in Helix aspersa under voltage clamp: A component mediated by calcium influx, J. Physiol. (London) 249:211–239.Google Scholar
  166. Meech, R. W., and Strumwasser, F., 1970, Intracellular calcium injection activates potassium conductance in Aplysia nerve cells, Fed. Proc. 29:834.Google Scholar
  167. Mironneau, J., and Savineau, J. P., 1980, Effects of calcium ions on outward membrane currents in rat uterine smooth muscle, J. Physiol. (London) 302:411–425.Google Scholar
  168. Moolenaar, W. H., and Spector, I., 1979a, The calcium action potential and a prolonged calcium-dependent after-hyperpolarization in mouse neuroblastoma cells, J. Physiol. (London) 292:297–306.Google Scholar
  169. Moolenaar, W. H., and Spector, I., 1979b, The calcium current and the activation of a slow potassium conductance in voltage-clamped mouse neuroblastoma cells, J. Physiol. (London) 292:307–323.Google Scholar
  170. Morita, K., North, R. A., and Tokimasa, T., 1982, The calcium-activated potassium conductance in guineapig myenteric neurones, J. Physiol. (London) 329:341–354.Google Scholar
  171. Mounier, Y., and Vassort, G., 1975, Evidence for a transient potassium membrane current dependent on calcium influx in crab muscle fibre, J. Physiol. (London) 251:609–625.Google Scholar
  172. Naccache, P. H., Volpi, M., Shawell, H. J., Becker, E. L., and Sha’afi, R. I., 1979, Chemotactic factor-induced release of membrane calcium in rabbit neutrophils, Science 203:461–463.PubMedGoogle Scholar
  173. Nelson, P. G., and Henkart, M. I., 1979, Oscillatory membrane potential changes in cells of mesenchymal origin: The role of an intracellular regulation system, J. Exp. Biol. 81:49–61.PubMedGoogle Scholar
  174. Nicoll, R. A., and Alger, B. E., 1981, Synaptic excitation may activate a calcium-dependent potassium conductance in hippocampal pyramidal cells, Science 212:957–958.PubMedGoogle Scholar
  175. North, R. A., 1981, The calcium-dependent slow after-hyperpolarization in myenteric plexus neurones with tetrodotoxin-resistant action potentials, Br. J. Pharmacol. 49:709–711.Google Scholar
  176. Okada, Y., Tsuchiya, W., and Inouye, A., 1979, Oscillations of membrane potential in L cells. IV. Role of intracellular Ca2+ in hyperpolarizing excitability, J. Membr. Biol. 47:357–376.PubMedGoogle Scholar
  177. Okada, Y., Tsuchiya, W., and Yada, T., 1982, Calcium channel and calcium pump involved in oscillatory hyperpolarizing responses of L-strain mouse fibroblasts, J. Physiol. (London) 327:449–461.Google Scholar
  178. Oliveira-Castro, G. M., and Dos Reis, G. A., 1981, Electrophysiology of phagocytic membranes III. Evidence for a calcium-dependent potassium permeability change during slow hyperpolarizations in activated macrophages, Biochim. Biophys. Acta 640:500–511.PubMedGoogle Scholar
  179. Orringer, E. P., and Parker, J. C., 1973, Ion and water movements in red blood cells, in: Progress in Hematology, Vol. 8 (E. B. Brown, ed.), Grune and Stratton, New York, pp. 1–23.Google Scholar
  180. Orskov, S. L., 1935, Untersuchungen über den einfluss von kohlensaure und blei auf die permeabilität der blutkörperchen für kalium und rubidium, Biochem. Z. 279:250–261.Google Scholar
  181. Pallotta, B. S., Magleby, K. L., and Barrett, J. N., 1981, Single channel recordings of Ca2+-activated K+ currents in rat muscle cell culture, Nature 293:471–474.PubMedGoogle Scholar
  182. Pape, L., 1982, Effect of extracellular Ca2+, K+, and OH- on erythrocyte membrane potential as monitored by the fluorescent probe 3,3-dipropylthiodicarbocyanine, Biochim. Biophys. Acta 686: 225–232.PubMedGoogle Scholar
  183. Parker, J. C., 1978, Sodium and calcium movements in dog red blood cells, J. Gen. Physiol. 71:1–17.PubMedGoogle Scholar
  184. Parker, J. C., 1981, Effects of drugs on calcium related phenomena in red blood cells, Fed. Proc. 40:2872–2876.PubMedGoogle Scholar
  185. Parker, J. C., 1983, Hemolytic action of potassium salts on dog red blood cells, Am. J. Physiol., 244:C313–317.PubMedGoogle Scholar
  186. Parker, J. C., Gitelman, H. J., Glosson, P. S., and Leonard, D. L., 1975, The role of calcium in volume regulation by dog red blood cells, J. Gen. Physiol. 65:84–96.PubMedGoogle Scholar
  187. Parker, J. C., Orringer, E. P., and McManus, T. J., 1978, Disorders of ion transport in red blood cells: Physiology of Membrane Disorders (T. E. Andreoli, J. F. Hoffman, and D. D. Fanestil, eds.), Plenum, New York, pp. 773–800.Google Scholar
  188. Parod, R. J., and Putney, J. W., Jr., 1978, Role of calcium in the receptor-mediated control of potassium permeability in the rat lacrimal gland, J. Physiol. (London) 281:371–381.Google Scholar
  189. Passow, H., 1963, Metabolic control of passive cation permeability in human red cells, in: Cell Interface Reactions (H. D. Brown, ed.), Scholar’s Library, New York, pp. 57–107.Google Scholar
  190. Passow, H., 1981, Selective enhancement of potassium efflux from red blood cells by lead, in: The Functions of Red Blood Cells: Erythrocyte Pathobiology (D. F. Wallach, ed.), Alan R. Liss, New York, pp. 80–104.Google Scholar
  191. Passow, H., and Vielhauer, E., 1966, Die wirkung von trioseredukton auf die kalium und natriumpermeabilität roter blutkörperchen, Pflugers Arch. 288:1–14.Google Scholar
  192. Plishker, G. A., Appel, S. H., Dedman, J. R., and Means, A. R., 1980, Phenothiazine inhibition of calmodulin stimulates Ca-dependent K-efflux in human red blood cells, Fed. Proc. 39:1713.Google Scholar
  193. Porzig, H., 1975, Comparative study of the effects of propranolol and tetracaine on cation movements in resealed human red cell ghosts, J. Physiol. (London) 249:27–50.Google Scholar
  194. Porzig, H., 1977, Studies on the cation permeability of human red cell ghosts, J. Membr. Biol. 31:317–349.PubMedGoogle Scholar
  195. Putney, J. W., Jr., 1976, Stimulation of 45Ca influx in rat parotid gland by carbachol, J. Pharmacol. Exp. Ther. 199:526–537.PubMedGoogle Scholar
  196. Putney, J. W., Jr., 1978, Ionic millieu and control of K permeability in rat parotid gland, Am. J. Physiol. 235:C180–C187.PubMedGoogle Scholar
  197. Putney, J. W., Jr., 1979, Stimulus-permeability coupling: Role of calcium in the receptor regulation of membrane permeability, Pharmacol. Rev. 30:209–245.Google Scholar
  198. Putney, J. W., Jr., Parod, R. J., and Marier, S. H., 1977, Control by calcium of protein discharge and membrane permeability to potassium in the rat lacrimal gland, Life Sci. 2:1905–1912.Google Scholar
  199. Putney, J. W., Jr., van de Walle, C. M., and Leslie, B. A., 1978, Stimulus-secretion coupling in the rat lacrimal gland, Am. J. Physiol. 235:C188–C198.PubMedGoogle Scholar
  200. Quastel, M. R., and Kaplan, J. G., 1970, Early stimulation of potassium uptake in lymphocytes treated with PHA, Exp. Cell. Res. 63:230–233.PubMedGoogle Scholar
  201. Rasmussen, H., and Goodman, D. P. H., 1977, Relationship between calcium and cyclic nucleotides in cell activation, Physiol. Rev. 57:421–509.PubMedGoogle Scholar
  202. Reed, P. W., 1973, Calcium-dependent potassium efflux from rat erythrocytes incubated with antibiotic A23187, Fed. Proc. 32:635.Google Scholar
  203. Reed, P. W., 1976, Effects of the divalent cation ionophore A23187 on potassium permeability of rat erythrocytes, J. Biol. Chem. 251:3489–3494.PubMedGoogle Scholar
  204. Reichstein, E., and Rothstein, A., 1981, Effects of quinine on Ca2+-induced K+ efflux from human red blood cells, J. Membr. Biol. 59:57–63.PubMedGoogle Scholar
  205. Richhardt, H. W., Fuhrmann, G. F., and Knauf, P. A., 1979, Dog red blood cells exhibit a Ca-stimulated increase in K permeability in the absence of (Na,K) ATPase activity, Nature 279:248–250.PubMedGoogle Scholar
  206. Riordan, J. R., and Passow, H., 1971, Effects of calcium and lead on potassium permeability of human erythrocyte ghosts, Biochim. Biophys. Acta 249:601–605.PubMedGoogle Scholar
  207. Riordan, J. R., and Passow, H., 1973, The effects of calcium and lead on the potassium permeability of human erythrocytes and erythrocyte ghosts, in: Comparative Physiology (L. Bolis, K. Schmidt-Nielsen, and S. H. P. Maddrell, eds.), North Holland, Amsterdam, pp. 543–581.Google Scholar
  208. Romero, P. J., and Whittam, R., 1971, The control by internal calcium of membrane permeability to sodium and potassium, J. Physiol. (London) 214:481–507.Google Scholar
  209. Roti-Roti, L. W., and Rothstein, A., 1973, Adaptation of mouse leukemic cells (L5178Y) to anisotonic media, Exp. Cell. Res. 79:295–310.PubMedGoogle Scholar
  210. Roufogalis, B. D., 1979, Regulation of calcium translocation across the red blood cell membrane, Can. J. Physiol. Pharmacol. 57:1331–1349.Google Scholar
  211. Roufogalis, B. D., 1981, Phenothiazine antagonism of calmodulin: A structurally nonspecific interaction, Biochem. Biophys. Res. Commun. 98:607–613.PubMedGoogle Scholar
  212. Sarkadi, B., 1980, Active calcium transport in human red cells, Biochem. Biophys. Acta 604:159–190.PubMedGoogle Scholar
  213. Sarkadi, B., and Tosteson, D. C., 1979, Active cation transport in human red cells, in: Membrane Transport in Biology, Vol. 2 (G. Giebisch, D. C. Tosteson, and H. H. Ussing, eds.), Springer Verlag, Berlin, pp. 117–160.Google Scholar
  214. Sarkadi, B., Szâsz, I., and Gardas, G., 1976, The use of ionophores for rapid loading of human red cells with radioactive cations for cation pump studies, J. Membr. Biol. 26:357–370.PubMedGoogle Scholar
  215. Sarkadi, B., Szâsz, I., Gerlôczi, A., and Gärdos, G., 1977, Transport parameters and stoichiometry of active calcium ion extrusion in intact human red cells, Biochim. Biophys. Acta 464:93–107.PubMedGoogle Scholar
  216. Sarkadi, B., Schubert, A., and Gárdos, G., 1979, Effects of calcium-EGTA buffers on active calcium transport in inside-out red cell membrane vesicles, Experientia 35:1045–1047.PubMedGoogle Scholar
  217. Sarkadi, B., Szebeni, J., and Gárdos, G., 1980, Effects of calcium on cation transport processes in inside-out red cell membrane vesicles, in: Membrane Transport in Erythrocytes (U. V. Lassen, H. H. Ussing, and J. O. Wieth, eds.), Munksgaard, Copenhagen, pp. 220–235.Google Scholar
  218. Sarkadi, B., Enyedi, A., Nyers, A., and Gdrdos, G., 1982, The function and regulation of the calcium pump in the erythrocyte membrane, Ann. N.Y. Acad. Sci. 402:329–348.PubMedGoogle Scholar
  219. Sarkadi, B., Grinstein, S., Mack, E., and Rothstein, A., 1983, An anion conductance pathway is involved in regulatory volume decrease in human lymphocytes, Biophys. F. 41:188a.Google Scholar
  220. Satow, Y., and Kung, C., 1980, Ca-induced K outward current in Paramecium tetraurelia, J. Exp. Biol. 88:293–303.PubMedGoogle Scholar
  221. Schatzmann, H. J., 1973, Dependence on calcium concentration and stoichiometry of the calcium pump in human red cells, J. Physiol. (London) 235:551–569.Google Scholar
  222. Schatzmann, H. J., 1975, Active calcium transport and Ca2+-activated ATPase in human red cells in: Current Topics in Membranes and Transport, Vol. 6 (F. Bronner and A. Kleinzeller, eds.), Academic Press, New York, pp. 125–168.Google Scholar
  223. Schatzmann, H. J., 1982, The plasma membrane calcium pump of erythrocytes and other animal cells, in: Membrane Transport of Calcium (E. Carafoli, ed.), Academic Press, New York, pp. 41–108Google Scholar
  224. Schramm, M., and Selinger, Z., 1975, The functions of cyclic AMP and calcium as alternative secondGoogle Scholar
  225. Schubert, A., and Sarkadi, B., 1977, Kinetic studies on the calcium-dependent potassium transport in human red blood cells, Acta Biochim. Biophys. Acad. Sci. Hung. 12:207–216.PubMedGoogle Scholar
  226. Schwarz, W., and Passow, H., 1983, Ca2+-activated K+ channels in erythrocytes and excitable cells, Ann. Rev. Physiol. 45:359–374.Google Scholar
  227. Segel, G. B., Simon, W., and Lichtman, M. A., 1979, Regulation of sodium and potassium transport in phytohemagglutinin-stimulated human blood lymphocytes, J. Clin. Invest. 64:834–841.PubMedGoogle Scholar
  228. Sha’afi, R. I., and Naccache, P. H., 1981, Ionic events in neutrophil chemotaxis, in: Advances in Inflammation Research, Vol. 2 (G. Weissmann, ed.), Raven Press, pp. 115–148.Google Scholar
  229. Shalev, O., Leida, M. N., Hebbel, R. P., Jacob, H. S., and Eaton, J. W., 1981, Abnormal erythrocyte calcium homeostasis in oxidant-induced hemolytic disease, Blood 58:1232–1238.PubMedGoogle Scholar
  230. Siegelbaum, S. A., and Tsien, R. W., 1980, Calcium-activated transient outward current in calf cardiac Purkinje fibres, J. Physiol. (London) 299:485–506.Google Scholar
  231. Siegelbaum, S. A., Tsien, R. W., and Kass, R. S., 1977, Role of intracellular calcium in the transient outward current of calf Purkinje fibres, Nature 269:611–613.PubMedGoogle Scholar
  232. Siemon, H., Schneider, H., and Fuhrmann, G. F., 1982, Vanadium increases selective K+ permeability in human erythrocytes, Toxicology 22:271–278.Google Scholar
  233. Simons, T. J. B., 1976a, The preparation of human red cell ghosts containing calcium buffers, J. Physiol. (London) 256:209–225.Google Scholar
  234. Simons, T. J. B., 1976b, Calcium-dependent potassium exchange in human red cell ghosts, J. Physiol. (London) 256:227–244.Google Scholar
  235. Simons, T. J. B., 1976c, Carbocyanine dyes inhibit Ca-dependent K efflux from human red cell ghosts, Nature (London) 264:467–469.Google Scholar
  236. Simons, T. J. B., 1979, Actions of a carbocyanine dye on calcium-dependent potassium transport in human red cell ghosts, J. Physiol. (London) 288:481–507.Google Scholar
  237. Simons, T. J. B., 1982, A method for estimating free Ca within human red blood cells, with an application to the study of their Ca-dependent K permeability, J. Membr. Biol. 66:235–247.PubMedGoogle Scholar
  238. Simonsen, L. O., Gomme, J., and Lew, V. L., 1982, Uniform ionophore A23187 distribution and cytoplasmic calcium buffering in intact human red cells, Biochim. Biophys. Acta 692:431–440.PubMedGoogle Scholar
  239. Steck, T. L., 1974, Preparation of impermeable inside-out and right-side-out vesicles from erythrocyte membrane, in: Methods in Membrane Biology, Vol. 2 (E. D. Korn, ed.), Plenum Press, New York, pp. 245–282.Google Scholar
  240. Stinnakre, J., and Tauc, L., 1973, Calcium influx in active Aplysia neurones detected by injected aequorin, Nature, New Biol. 242:113–115.Google Scholar
  241. Szâsz, I., and Gárdos, G., 1974, Mechanism of various drug effects on the Ca2+-dependent K+-efflux from human red blood cells, FEBS Lett. 44:213–216.PubMedGoogle Scholar
  242. Szâsz, I., Sarkadi, B., and Gárdos, G., 1974, Erythrocyte parameters during induced Ca2+-dependent rapid K+-efflux: Optimum conditions for kinetic analysis, Haematologia 8:143–151.PubMedGoogle Scholar
  243. Szâsz, I., Sarkadi, B., and Gárdos, G., 1977, Mechanism of Ca2+-dependent selective rapid K+-transport induced by propranolol in red cells, J. Membr. Biol. 35:75–93.PubMedGoogle Scholar
  244. Szäsz, I., Sarkadi, B., and Gárdos, G., 1978a, Effects of drugs on calcium-dependent rapid potassium transport in calcium-loaded intact red cells, Acta Biochim. Biophys. Acad. Sci. Hung. 13:133–141.Google Scholar
  245. Szâsz, I., Sarkadi, B., and Gárdos, G., 1978b, Mechanism for passive calcium transport in human red cells, Acta Biochim. Biophys. Acad. Sci. Hung. 13:239–249.Google Scholar
  246. Szäsz, I., Sarkadi, B., and Gärdos, G., 1978c, Changes in the Ca2+-transport processes of red cells during storage in ACD, Brit. J. Haematol. 39:559–568.Google Scholar
  247. Szäsz, I., Sarkadi, B., Schubert, A., and Gärdos, G., 1978d, Effects of lanthanum on calcium-dependent phenomena in human red cells, Biochim. Biophys. Acta 512:331–340.Google Scholar
  248. Szâsz, I., Sarkadi, B., and Gárdos, G., 1980, Calcium sensitivity of calcium-dependent functions in human red blood cells, in: Advances in Physiological Sciences Vol. 6 (S. R. Hollän, G. Gárdos, and B. Sarkadi, eds.), Pergamon Press, Akadémiai Kiadô, Budapest, pp. 211–221.Google Scholar
  249. Szâsz, I., Sarkadi, B., and Gárdos, G., 1982, Operation of a Ca-dependent K(Rb)-transport in human lymphocytes, Haematologia 15:83–89.PubMedGoogle Scholar
  250. Sze, H., and Solomon, A. K., 1979, Calcium-induced potassium pathways in sided erythrocyte membrane vesicles, Biochim. Biophys. Acta 554:180–194.PubMedGoogle Scholar
  251. Szönyi, S., 1960, Wirkung von Fluorid auf die Verteilung von Kalium und Natrium sowie auf die Co2Bindung in menschlichen Blut, Acta Physiol. Acad. Sci. Hung. 17:9–13.PubMedGoogle Scholar
  252. Thomas, M. V., and Gorman, A. L. F., 1977, Internal calcium changes in a bursting pace-maker neuron measured with arsenazo III., Science 196:531–533.PubMedGoogle Scholar
  253. Tosteson, D. C., 1959, Halide transport in red blood cells, Acta Physiol. Scand. 46:19–41.Google Scholar
  254. Tosteson, D. C., and Hoffman, J. F., 1960, Regulation of cell volume by active cation transport in high and low potassium sheep red cells, J. Gen. Physiol. 44:169–194.PubMedGoogle Scholar
  255. Tsien, R. Y., Pozzan, T., and Rink, T. J., 1982, T-cell mitogens cause early changes in cytoplasmic free Ca2+ and membrane potential in lymphocytes, Nature 295:68–71.PubMedGoogle Scholar
  256. Valdeolmillos, M., Garcia-Sancho, J., and Herreros, B., 1982, Ca2+-dependent K+ transport in the Ehrlich ascites tumor cells, Biochim. Biophys. Acta 685:273–278.PubMedGoogle Scholar
  257. van Rossum, G. D. V., 1970, Relation of intracellular Ca2+ to retention of K+ by liver slices, Nature (London) 225:638–639.Google Scholar
  258. Vestergaard-Bogind, B., and Bennekou, P., 1982, Calcium-induced oscillations in K’ conductance and membrane potential of human erythrocytes mediated by the ionophore A23187, Biochim. Biophys. Acta 688:37–44.PubMedGoogle Scholar
  259. Vincenzi, F. F., 1981, Calmodulin pharmacology, Cell Calcium 2:387–409.PubMedGoogle Scholar
  260. Volpi, M., Shaafi, R. I., and Feinstein, M. B., 1981, Antagonism of calmodulin by local anesthetics—inhibition of calmodulin-stimulated calcium transport of erythrocyte inside-out membrane vesicles, Mol. Pharmacol. 20:363–370.PubMedGoogle Scholar
  261. Walsh, J. V., and Singer, J. J., 1980, Penetration-induced hyperpolarization as evidence for Ca2+ -activation of K+ conductance in isolated smooth muscle cells, Am. J. Physiol. 239:182–189.Google Scholar
  262. Weed, R. I., LaCelle, P. L., and Merrill, E. M., 1969, Metabolic dependence of red cell deformability, J. Clin. Invest. 48:795–809.PubMedGoogle Scholar
  263. Whitney, R. B., and Sutherland, R. M., 1972, Enhanced uptake of calcium by transforming lymphocytes, Cell. Immunol. 5:137–147.PubMedGoogle Scholar
  264. Whittan, R., 1968, Control of membrane permeability to potassium in red blood cells, Nature (London) 219:610.Google Scholar
  265. Wilbrandt, W., 1937, A relation between the permeability of red cell and its metabolism, Trans. Faraday Soc. 33:956–959.Google Scholar
  266. Wilbrandt, W., 1940, Die Abhängigkeit der Ionenpermeabilität der Erythrozyten vom glykolytischen Stoffwechsel, P, flugers Arch. 243:519–536.Google Scholar
  267. Wiley, J. S., 1981, Increased erythrocyte cation permeability in thalassemia and conditions of marrow stress, J. Clin. Invest. 67:917–922.PubMedGoogle Scholar
  268. Wiley, J. S., and Gill, F. M., 1976, Red cell calcium leak in congenital hemolytic anemia with extreme microcytosis, Blood 47:197–210.PubMedGoogle Scholar
  269. Yellen, G., 1982, Single Ca2+-activated nonselective cation channels in neuroblastoma, Nature 296:357–359.PubMedGoogle Scholar
  270. Yingst, D. R., and Hoffman, J. F., 1978, Changes of intracellular Ca2+ as measured by arsenazo III in relation to the K permeability of human erythrocyte ghosts, Biophys. J. 23:463–471.PubMedGoogle Scholar
  271. Yingst, D. R., and Hoffman, J. F., 1981, Effect of intracellular Ca on inhibiting the Na-K pump and stimulating Ca-induced K transport in resealed human red cell ghosts, Fed. Proc. 40:543.Google Scholar
  272. Yingst, D. R., and Hoffman, J. F., 1984, Ca-induced K transport in human red blood cell ghosts containing arsenazo III: Transmembrane interactions of Na, K, and Ca and the relationship to the functioning Na-K pump, J. Gen. Physiol., 83:19–45.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • B. Sarkadi
    • 1
  • G. Gárdos
    • 1
  1. 1.National Institute of Haematology and Blood TransfusionBudapestHungary

Personalised recommendations