Skip to main content

Calcium-Induced Potassium Transport in Cell Membranes

  • Chapter
The Enzymes of Biological Membranes

Abstract

Studies in the 1930–1940s, directed toward the elucidation of the connection between cell metabolism and ion—water content of human red cells, noted extreme alterations in K+ leakage under various experimental conditions. In lead-poisoned red cells (Ørskov, 1935), and in NaF-treated cells, Wilbrandt (1937, 1940) observed an increase in net K+ efflux and a concomitant cell shrinkage. It was first demonstrated by Gárdos (1956, 1958a,b, 1959) that, in metabolically depleted red cells, the enhanced K+ efflux took place only when Ca2+ ions were present in the suspending media. Since that time, it has been firmly established that rapid K+ transport in red cells is triggered by a specific interaction of Ca2+ ions with the intracellular membrane surface (see Section II-B), and the process, often noted in the literature as the “Gárdos phenomenon,” has become a model system to entertain numerous membrane physiologists, biochemists, and biophysicists. Training courses in membrane biology use this easily reproducible phenomenon to illustrate specificity, side-dependent activation, and selectivity of natural transport processes. Established research workers, deeply involved in the investigation of complex phenomena in complex cellular systems, from time to time return to the red-cell Ca2+ -induced K+ transport* to reveal new and important aspects of this process. The Ca2+ -induced K+ transport in red cells gave new insights into the coupling of ion movements to changes in membrane potential, and into the problem of side-dependent triggering and gating of ionic channels. In the meantime, as it generally occurs with red cell membrane phenomena, the phenomenon has turned out to be present in many animal cell membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, P. R., Constanti, A., Brown, D. A., and Clark, R. B., 1982a, Intracellular Ca2+ activates a fast voltage-sensitive K+ current in vertebrate sympathetic neurons, Nature 296:746–749.

    CAS  Google Scholar 

  • Adams, P. R., Brown, D. A., and Constanti, A., 1982b, M-currents and other potassium currents in bullfrog sympathetic neurones, J. Physiol. (London) 330:537–572.

    CAS  Google Scholar 

  • Adams, W. B., and Levitan, I. B., 1982, Intracellular injection of protein kinase inhibitor blocks the serotonin-induced increase in K+ conductance in Aplysia neuron R 15, Proc. Natl. Acad. Sci. USA 79:3877–3880.

    PubMed  CAS  Google Scholar 

  • Alger, B. E., and Nicoll, R. A., 1980, Epileptiform burst after-hyperpolarization: Calcium-induced potassium potential in hippocampal pyramidal cells, Science 210:1122–1124.

    PubMed  CAS  Google Scholar 

  • Al-Jobore, A., and Roufogalis, B. D., 1981, Influence of EGTA on the apparent Ca2+-affinity of Mg2+- dependent, Ca2+-stimulated ATPase in the human erythrocyte membrane, Biochim. Biophys. Acta 645:1–9.

    PubMed  CAS  Google Scholar 

  • Allan, D., and Michell, R. H., 1975, Accumulation of 1,2-diacylglycerol in the plasma membrane may lead to echinocyte transformation of erythrocytes, Nature 258:348–349.

    PubMed  CAS  Google Scholar 

  • Allan, D., and Michell, R. H., 1977, Calcium ion-dependent diacylglycerol accumulation in erythrocytes is associated with microvesiculation but not with efflux of potassium ions, Biochem. J. 166:495–499.

    PubMed  CAS  Google Scholar 

  • Allan, D., and Thomas, P., 1981a, Ca2+-induced biochemical changes in human erythrocytes and their relation to microvesiculation, Biochem. J. 198:433–440.

    CAS  Google Scholar 

  • Allan, D., and Thomas, P., 1981b, The effects of Ca2+ and se-on Ca2+-sensitive biochemical changes in human erythrocytes and their membranes, Biochem. J. 198:441–445.

    CAS  Google Scholar 

  • Armando-Hardy, M., Ellory, J. C., Ferreira, H. G., Fleminger, S., and Lew, V. L., 1975, Inhibition of the calcium-induced increase in the potassium permeability of human red blood cells by quinine, J. Physiol. (London) 250:32–33P.

    Google Scholar 

  • Atwater, I., and Biegelman, P. M., 1976, Dynamic characteristics of electrical activity in pancreatic 13 cells. Effects of calcium and magnesium, J. Physiol. (Paris) 72:769–786.

    CAS  Google Scholar 

  • Atwater, I., Dawson, C. M., Ribalet, B., and Rojas, E., 1979, Potassium permeability activated by intracellular calcium ion concentration in the pancreatic B-cell, J. Physiol. (London) 288:575–588.

    CAS  Google Scholar 

  • Baker, P. F., 1972, Transport and metabolism of calcium ions in nerve, Prog. Biophys. Mol. Biol. 24:177–223.

    PubMed  CAS  Google Scholar 

  • Banks, B. E. C., Brown, C., Burgess, G. M., Bumstock, G., Claret, M., Cocks, T. M., and Jenkinson, D. H., 1979, Apamin blocks certain neurotransmitter induced increases in potassium permeability, Nature 282:417–419.

    Google Scholar 

  • Barrett, E. F., and Barrett, J. N., 1976, Separation of two voltage sensitive potassium currents and demonstration of a tetrodotoxin-resistant calcium current in frog motoneurons, J. Physiol. (London) 255:737–774.

    Google Scholar 

  • Barrett, J. N., Barrett, E. F., and Dribin, L. B., 1981, Calcium-dependent slow potassium conductance in rat skeletal myotubules. Dev. Biol. 82:258–266.

    PubMed  CAS  Google Scholar 

  • Barrett, J. N., Magleby, K. L., and Pallotta, B. S., 1982, Properties of single calcium-activated potassium channels in cultured rat muscle, J. Physiol (London) 331:211–230.

    CAS  Google Scholar 

  • Bassingthwaite, J. B., Fry, C. H., and McGuigan, J. A. S., 1976, Relationship between intracellular calcium and outward current in mammalian ventricular muscle; a mechanism for the control of action potential duration? J. Physiol. (London) 262:15–37.

    Google Scholar 

  • Batzri, S., Selinger, Z., Schramm, M., and Robinovitch, M. R., 1973, Potassium release mediated by the epinephrine L-receptor in rat parotid slices. Properties and relation to enzyme secretion, J. Biol. Chem. 248:361–368.

    PubMed  CAS  Google Scholar 

  • Berkowitz, L. R., and Orringer, E. P., 1981, Effect of cetiedil, an in vitro antisickling agent on erythrocyte membrance cation permeability, J. Clin. Invest. 68:1215–1220.

    PubMed  CAS  Google Scholar 

  • Blum, R. M., and Hoffman, J. F., 1970, Carrier mediation of Ca-induced K transport and its inhibition in red blood cells, Fed. Proc. 29:663a.

    Google Scholar 

  • Blum, R. M., and Hoffman, J. F., 1971, The membrane locus of Ca-stimulated K transport in energy-depleted human red blood cells, J. Membr. Biol. 6:315–328.

    CAS  Google Scholar 

  • Blum, R. M., and Hoffman, J. F., 1972, Ca-induced K transport in human red cells: Localization of the Ca-sensitive site to the inside of the membrane, Biochem. Biophys. Res. Commun. 46:1146–1151.

    PubMed  CAS  Google Scholar 

  • Bodemann, H., and Passow, H., 1972, Factors controlling the resealing of the membrane of human erythrocyte ghosts after hypotonic hemolysis, J. Membr. Biol. 8:1–26.

    PubMed  CAS  Google Scholar 

  • Bookchin, R. M., Lew, V. L., Nagel, R. L., and Raventos, C., 1981, Increase in potassium and calcium transport in human red cells infected with Plasmodium falciparum in vitro, J. Physiol. (London) 312:65.

    Google Scholar 

  • Boonstra, J., Mummery, C. L., Tertoole, L. G., Vandersa, P. T., and Delaat, S. W., 1981, Characterization of 42K and 86Rb transport and electrical membrane properties of exponentially growing neuroblastoma cells, Biochim. Biophys. Acta 643:89–100.

    PubMed  CAS  Google Scholar 

  • Brading, A., Bülbring, E., and Tomita, T., 1969, The effect of sodium and calcium on the action potential of the smooth muscle of the guinea-pig taenia coli, J. Physiol. (London) 200:637–654.

    CAS  Google Scholar 

  • Brehm, P., Dunlap, K., and Eckert, R., 1978, Calcium-dependent repolarization in Paramecium, J. Physiol. (London) 274:639–654.

    CAS  Google Scholar 

  • Brown, A. M., and Lew, V. L., 1981, Lack of time-dependent inactivation of the Ca-sensitive K channel of red cells, J. Physiol (London) 320:122P.

    Google Scholar 

  • Brown, A. M., Ellory, J. C., Young, J. D., and Lew, V. L., 1978, A calcium activated potassium channel present in foetal red cells of sheep but absent from reticulocytes and mature red cells, Biochim. Biophys. Acta 511:163–175.

    PubMed  CAS  Google Scholar 

  • Bülbring, E., and Tomita, T., 1977, Calcium-requirement of the L action of catecholamines on guinea-pig tenia coli, Proc. Roy. Soc. Biol. Sci. 197:271–284.

    Google Scholar 

  • Burgess, G. M., Claret, M., and Jenkinson, D. H., 1979, Effects of catecholamines, ATP and ionophore A23187 on potassium and calcium movements in isolated hepatocytes, Nature 279:544–546.

    PubMed  CAS  Google Scholar 

  • Burgess, G. M., Claret, M., and Jenkinson, D. H., 1981, Effects of quinine and apamin on the calcium-dependent potassium permeability of mammalian hepatocytes and red cells, J. Physiol. (London) 317:67–90.

    CAS  Google Scholar 

  • Burgin, H., and Schatzmann, H. J., 1979, The relation between net calcium, alkali cation and chloride movements in red cells exposed to salicylate, J. Physiol. (London) 287:15–32.

    CAS  Google Scholar 

  • Carafoli, E., and Crompton, M., 1978, The regulation of intracellular calcium, in: Current Topics in Membranes and Transport,Vol. 10 (F. Bronner and A. Kleinzeller, eds.), Academic Press, New York, pp. 151–216.

    Google Scholar 

  • Cheung, W. Y., 1982, Calmodulin—an overview. Fed. Proc. 41:2253–2257.

    PubMed  CAS  Google Scholar 

  • Cotterrell, D., and Whittam, R., 1970, An increase in potassium efflux in human red cells associated with reversing the sign of the membrane potential, J. Physiol. (London) 210:136–137P.

    Google Scholar 

  • Craig, A. B., 1958, Observations on epinephrine and glucagon-induced glycogenolysis and potassium loss in the isolated perfused frog liver, Am. J. Physiol. 193:425–430.

    PubMed  CAS  Google Scholar 

  • Dayson, H., 1941, The effect of some metabolic poisons on the permeability of the rabbit erythrocyte to potassium, J. Cell. Comp. Physiol. 18:173–185.

    Google Scholar 

  • Dayson, H., 1942, The haemolytic action of potassium salts, J. Physiol. (London) 101:265–283.

    Google Scholar 

  • dePeyer, J. E., Cachelin, A. B., Levitan, I. B., and Reuter, H., 1982, Ca2+-activated K+ conductance in internally perfused snail neurons is enhanced by protein phosphorylation, Proc. Natl. Acad. Sci. USA 79:4207–4211.

    CAS  Google Scholar 

  • Deutsch, C., and Price, M. A., 1982, Cell calcium in human peripheral blood lymphocytes and the effect of mitogen, Biochim. Biophys. Acta 687:211–218.

    PubMed  CAS  Google Scholar 

  • Doljanski, F., Ben-Sasson, S., Reich, M., and Groves, N. B., 1974, Dynamic osmotic behavior of chick blood lymphocytes. J. Cell Physiol. 84:215–224.

    PubMed  CAS  Google Scholar 

  • Dunn, M. J., 1974, Red blood cell calcium and magnesium: Effects upon sodium and potassium transport and cellular morphology, Biochim. Biophys. Acta 352:97–116.

    PubMed  CAS  Google Scholar 

  • Eaton, J. W., Skelton, T. D., Swofford, H. S., Kolpin, C. E., and Jacob, H. S., 1973, Elevated erythrocyte calcium in sickle cell disease, Nature 246:105–106.

    PubMed  CAS  Google Scholar 

  • Eaton, J. W., Branda, R. F., Hadland, C., and Dreher, K., 1980, Anion channel blockade—effects upon erythrocyte membrane calcium response, Am. J. Hematol. 9:391–399.

    PubMed  CAS  Google Scholar 

  • Eckert, E., 1977, Genes, channels and membrane currents in Paramecium, Nature 368:104–105.

    Google Scholar 

  • Ekman, A., Manninen, V., and Salminen, S., 1969, Ion movements in red cells treated with propranolol, Acta Physiol. Scand. 75:333–344.

    CAS  Google Scholar 

  • Feig, S. A., and Bassilian, S., 1974, Abnormal RBC Ca metabolism in hereditary spherocytosis, Blood 44:937.

    Google Scholar 

  • Feltz, A., Ronjevic, K., and Lisiewicz, A., 1972, Intracellular free Ca2+ and membrane properties of motoneurones, Nature New Biol. 237:179–181.

    CAS  Google Scholar 

  • Ferreira, H. G., and Lew, V. L., 1976, Use of ionophore A23187 to measure cytoplasmic Ca buffering and activation of the Ca pump by internal Ca, Nature 259:47–49.

    PubMed  CAS  Google Scholar 

  • Ferreira, H. G., and Lew, V. L., 1977, Passive Ca transport and cytoplasmic Ca buffering in intact red cells, in: Membrane Transport in Red Cells (J. C. Ellory and V. L. Lew, eds.), Academic Press, New York, pp. 53–92.

    Google Scholar 

  • Fink, R., and Lüttgau, H. C., 1976, An evaluation of the membrane constants and the potassium conductance in metabolically exhausted muscle fibres, J. Physiol. (London) 263:215–238.

    CAS  Google Scholar 

  • Freedman, M. H., 1979, Early biochemical events in lymphocyte activation I. Investigation of the nature and significance of early calcium fluxes observed in mitogen-induced T and B lymphocytes, Cell. Immunl. 44:290–313.

    CAS  Google Scholar 

  • Freedman, M. H., Raff, M. C., and Gomperts, B., 1975, Induction of increased calcium uptake in mouse T lymphocytes by concanavalin A and its modulation by cyclic nucleotides, Nature 255:378–380.

    PubMed  CAS  Google Scholar 

  • Fuhrmann, G. F., Hüttermann, F., and Knauf, P. A., 1984, The mechanism of vanadium action on selective K+-permeability in human erythrocytes, Biochim. Biophys. Acta 769:130–140.

    PubMed  CAS  Google Scholar 

  • Garcia-Sancho, J., Sanchez, A., and Herreros, B., 1979, Stimulation of monovalent cation fluxes by electron donors in the human red cell membrane, Biochim. Biophys. Acta 556:118–130.

    PubMed  CAS  Google Scholar 

  • Garcia-Sancho, J., Sanchez, A., and Herreros, B., 1982, All-or-none response of the Ca2+-dependent K+ channel in inside-out vesicles, Nature 296:744–746.

    PubMed  CAS  Google Scholar 

  • Gárdos, G., 1956, The permeability of human erythrocytes to potassium, Acta Physiol. Acad. Sci. Hung. 10:185–189.

    Google Scholar 

  • Gardos, G., 1958a, Effect of ethylenediamine-tetraacetate on the permeability of human erythrocytes, Acta Physiol. Acad. Sci. Hung. 14:1–5.

    CAS  Google Scholar 

  • Gardas, G., 1958b, The function of calcium in the potassium permeability of human erythrocytes, Biochim. Biophys. Acta 30:653–654.

    Google Scholar 

  • Gárdos, G., 1959, The role of calcium in the potassium permeability of human erythrocytes, Acta Physiol. Acad. Sci. Hung. 15:121–125.

    Google Scholar 

  • Gärdos, G., 1966a, The role of 2,3-diphosphoglyceric acid in the potassium transport of human erythrocytes, Experientia 22:308.

    Google Scholar 

  • Gárdos, G., 1966b, The mechanism of ion transport in human erythrocytes I. The role of 2,3-diphosphoglyceric acid in the regulation of potassium transport, Acta Biochim. Biophys. Acad. Sci. Hung. 1:139–148.

    Google Scholar 

  • Gárdos, G., 1967, Studies on potassium permeability changes in human erythrocytes, Experientia 23:19.

    PubMed  Google Scholar 

  • Gárdos, G., 1972, Ion transport across the erythrocyte membrane, Haematologia 6:237–247.

    PubMed  Google Scholar 

  • Gárdos, G., and Straub, F. B., 1957, Über die Rolle Der Adenosintriphosphorsaüre (ATP) in der K-Permeabilitat der menschlichen roten Blutkorperchen, Acta Physiol. Acad. Sci. Hung. 12:1–8.

    Google Scholar 

  • Gárdos, G., and Szâsz, I., 1968, The mechanism of ion transport in human erythrocytes II. The role of histamine in regulation of cation transport, Acta Biochim. Biophys. Acad. Sci. Hung. 3:13–27

    Google Scholar 

  • Gárdos, G., and Szasz, I., 1973, Studies on the leak cation transport of human erythrocytes, in: Erythrocytes, Thrombocytes, Leukocytes (E. Gerlach, K. Moser, E. Deutsch, and W. Wilmanns, eds.), Georg Thieme, Stuttgart, pp. 31–33.

    Google Scholar 

  • Gárdos, G., Szâsz, I., and Sarkadi, B., 1975a, Mechanism of Ca-dependent K transport in human red cells, FEBS Proc. 35:167–180.

    Google Scholar 

  • Gárdos, G., Sarkadi, B., and Szâsz, I., 1975b, Effect of the Ca-ionophore A23187 on the K transport of human red cells, Abst. Vol. 5th Int. Cong. Biophys. p. 100.

    Google Scholar 

  • Gárdos, G., Lassen, U. V., and Pape, L., 1976, Effect of antihistamines and chlorpromazine on the calciuminduced hyperpolarization of the Amphiuma red cell membrane, Biochim. Biophys. Acta 448:599–606.

    PubMed  Google Scholar 

  • Gárdos, G., Szâsz, I., and Sarkadi, B., 1977, Effect of intracellular calcium on the cation transport processes in human red cells, Acta Biol. Med. Germ. 36:823–829.

    PubMed  Google Scholar 

  • Glader, B. E., Fortier, N., Albala, M. M., and Nathan, D. G., 1974, Congenital anemia associated with dehydrated erythrocytes and increased potassium loss, New Engl. J. Med. 291:491–496.

    PubMed  CAS  Google Scholar 

  • Glynn, I. M., and Warner, A. E., 1972, Nature of the calcium dependent potassium leak induced by (+)- propranolol, and its possible relevance to the drug’s antiarrhythmic effect, Br. J. Pharmacol. 44:271–278.

    PubMed  CAS  Google Scholar 

  • Gorman, A. L. F., and Hermann, A., 1979, Internal effects of divalent cations on potassium permeability in molluscan neurones, J. Physiol. (London) 296:393–410.

    CAS  Google Scholar 

  • Gorman, A. L. F., and McReynolds, J. S., 1974, Control of membrane K+ permeability in a hyperpolarizing photoreceptor: Similar effects of light and metabolic inhibition, Science 185:620–621.

    PubMed  CAS  Google Scholar 

  • Gorman, A. L. F., and Thomas, M. V., 1978, Changes in intracellular concentration of free calcium ions in a pace-maker neurone, measured with the metallochromic dye Arsenazo III, J. Physiol. (London) 275:357–376.

    CAS  Google Scholar 

  • Gorman, A. L. F., and Thomas, M. V., 1980, Potassium conductance and internal calcium accumulation in a molluscan neurone, J. Physiol. (London) 308:287–313.

    CAS  Google Scholar 

  • Gorman, A. L. F., Hermann, A., and Thomas, M. V., 1982, Ionic requirements for membrane oscillations and their dependence on the calcium concentration in a molluscan pace-maker neurone, J. Physiol. (London) 327:185–217.

    CAS  Google Scholar 

  • Grafe, P., Mayer, C. J., and Wood, J. D., 1980, Synaptic modulation of calcium-dependent potassium conductance in myenteric neurons in the guinea-pig, J. Physiol. (London) 305:235–248.

    CAS  Google Scholar 

  • Greengard, P., 1978, Phosphorylated proteins as physiological effectors, Science 199:146–152.

    PubMed  CAS  Google Scholar 

  • Grey, J. E., and Gitelman, H. J., 1979, Phospholipase participates in the calcium-induced potassium efflux of human erythrocytes, Fed. Proc. 38:1127.

    Google Scholar 

  • Grigarzik, H., and Passow, H., 1958, Versuche zum mechanismus der bleiwirkung auf die kalium-permeabilität roter blutköperchen, Pflugers Arch. 267:73–92.

    PubMed  CAS  Google Scholar 

  • Grinstein, S., and Rothstein, A., 1978, Chemically induced cation permeability in red cell membrane vesicles. The sidedness of the response and the proteins involved, Biochim. Biophys. Acta 508:236–245.

    PubMed  CAS  Google Scholar 

  • Grinstein, S., DuPre, A., and Rothstein, A., 1982a, Volume regulation by human lymphocytes—role of calcium, J. Gen. Physiol. 79:849–868.

    CAS  Google Scholar 

  • Grinstein, S., Clarke, C. A., DuPre, A., and Rothstein, A., 1982b, Volume-induced increase of anion permeability in human lymphocytes, J. Gen. Physiol. 80:801–823.

    CAS  Google Scholar 

  • Gunn, R. B., 1979, Transport of anions across red cell membranes, in: Membrane Transport in Biology, Vol. 2 (G. Giebisch, D. C. Tosteson, and H. H. Ussing, eds.), Springer Verlag, Berlin, pp. 59–80.

    Google Scholar 

  • Gunn, R. B., Dalmark, M., Tosteson, D. C., and Wieth, I. O., 1973, Characteristics of chloride transport in human red blood cells, J. Gen. Physiol. 61:185–206.

    PubMed  CAS  Google Scholar 

  • Hamill, O. P., 1981, Potassium channel currents in human red blood cells, J. Physiol. (London) 314:125P.

    Google Scholar 

  • Hanani, M., and Shaw, C., 1977, A potassium contribution of the response of the barnacle photoreceptor, J. Physiol. (London) 270:151–163.

    CAS  Google Scholar 

  • Harrison, D. G., and Long, C., 1968, The calcium content of human erythrocytes, J. Physiol. (London) 199:367–381.

    CAS  Google Scholar 

  • Haylett, D. G., 1976, The effects of sympathomimetic amines on 45Ca efflux from liver slices, J. Pharmacol. 57:158–160.

    CAS  Google Scholar 

  • Haylett, D. G., and Jenkinson, D. H., 1972, Effects of noradrenaline on potassium efflux, membrane potential and electrolyte levels in tissue slices prepared from guinea pig liver, J. Physiol. (London) 225:721–750.

    CAS  Google Scholar 

  • Heinz, A., and Passow, H., 1980, Role of external potassium in the calcium-induced potassium efflux from human red blood cell ghosts, J. Membr. Biol. 57:119–131.

    PubMed  CAS  Google Scholar 

  • Hellerstein, S., and Bunthrarungoj, T., 1974, Erythrocyte composition in sickle cell anemia, J. Lab. Clin. Med. 83:611–624.

    PubMed  CAS  Google Scholar 

  • Hermann, A., and Gorman, A. L., 1981, Effects of tetraethylammonium on potassium currents in a molluscan neuron, J.. Gen. Physiol. 78:87–110.

    PubMed  CAS  Google Scholar 

  • Hladky, S. B., and Rink, T. J., 1976, Potential difference and the distribution of ions across the human red blood cell membrane: A study of the mechanism by which the fluorescent cation, diS-C3(5) reports membrane potential, J. Physiol. (London) 263:287–319.

    CAS  Google Scholar 

  • Hoffman, J. F., 1962, Cation transport and structure of the red cell plasma membrane, Circulation 26:1201–1213.

    CAS  Google Scholar 

  • Hoffman, J. F., and Blum, R. M., 1977, On the nature of the transport pathway used for Ca2+-dependent K` movement in human red blood cells, in: Membrane Toxicity (M. W. Miller and A. E. Shamoo, eds.), Plenum Press, New York, pp. 381–404.

    Google Scholar 

  • Hoffman, J. F., and Knauf, P. A., 1973, The mechanism of the increased K transport induced by Ca in human red blood cells, in: Erythrocytes, Thrombocytes, Leukocytes (E. Gerlach, K. Moser, E. Deutch, and W. Wilmanns, eds.), Georg Thieme, Stuttgart, pp. 66–70.

    Google Scholar 

  • Hoffman, J. F., and Laris, P. C., 1974, Determination of membrane potentials in human and Amphiuma red blood cells by means of a fluorescent probe, J. Physiol. (London) 239:519–552.

    CAS  Google Scholar 

  • Holian, A., Deutsch, C. J., Holian, S. K., Daniele, R. P., and Wilson, D. F., 1979, Lymphocyte response to phytohemagglutinin: Intracellular volume and intracellular K+, J. Cell. Physiol. 98:137–144.

    PubMed  CAS  Google Scholar 

  • Howland, J. L., 1974, Abnormal potassium conductance associated with muscular dystrophy, Nature 251:724–725.

    PubMed  CAS  Google Scholar 

  • Hugues, M., Romey, G., Duval, D., Vincent, J. P., and Lazdunski, M., 1982a, Apamin as a selective blocker of the calcium-dependent potassium channel in neuroblastoma cells: Voltage-clamp and biochemical characterization of the toxin receptor, Proc. Natl. Acad. Sci. USA 79:1308–1312.

    CAS  Google Scholar 

  • Hugues, M., Schmid, H., and Lazdunski, M., 1982b, Identification of a protein component of the Ca2+-dependent K+ channel by affinity labeling with apamin, Biochem. Biophys. Res. Commun. 107:1557–1582.

    Google Scholar 

  • Hunter, M. J., 1971, A quantitative estimate of the non-exchange-restricted chloride permeability of the human red cell, J. Physiol (London) 218:49P.

    Google Scholar 

  • Hunter, M. J., 1977, Human erythrocyte anion permeabilities measured under conditions of net charge transfer, J. Physiol. (London) 268:35–49.

    CAS  Google Scholar 

  • Isenberg, G., 1975, Is potassium conductance of cardiac Purkinje fibres controlled by [Ca2+]? Nature 253:273–274.

    CAS  Google Scholar 

  • Isenberg, G., 1978, The positive dynamic current of the cardiac Purkinje fibre is not a chloride but a potassium current, Pflugers Arch. 377:R5.

    Google Scholar 

  • Jenkins, D. M. G., and Lew, V. L., 1973, Ca uptake by ATP depleted red cells from different species with and without associated increase in K permeability, J. Physiol. (London) 234:41–42P.

    Google Scholar 

  • Kaczmarek, L. K., Jennings, K. R., Strumwasser, F., Nairn, A. C., Walter, V., Wilson, F. D., and Greengard, P., 1980, Microinjection of catalytic subunit of cyclic AMP-dependent protein kinase enhances calcium action potential of bag cell neurons in cell culture, Proc. Natl. Acad. Sci. USA 77:7487–7491.

    PubMed  CAS  Google Scholar 

  • Karlish, S. J. D., Ellory, J. C., and Lew, V. L., 1981, Evidence against Na -pump mediation of Ca2+-activated K+ transport and diuretic-sensitive Na’/K’ cotransport, Biochim. Biophys. Acta 646:353–355.

    PubMed  CAS  Google Scholar 

  • Kass, R. S., and Tsien, R. W., 1976, Control of action potential duration by calcium ions in cardiac Purkinje fibers, J. Gen. Physiol. 67:599–617.

    PubMed  CAS  Google Scholar 

  • Kirkpatrick, F. H., Hillman, D. G., and LaCelle, P. L., 1975, A23187 and red cells: Changes in deform-ability, K+, Mg2+, Ca2+, and ATP, Experientia 31:653–654.

    PubMed  CAS  Google Scholar 

  • Knauf, P. A., 1979, Erythrocyte anion exchange and the Band III protein: Transport kinetics and molecular structure, in: Current Topics in Membranes and Transport, Vol. 12 (F. Bronner and A. Kleinzeller, eds.), Academic Press, New York, pp. 251–365.

    Google Scholar 

  • Knauf, P. A., and Rothstein, A., 1971, Chemical modifications of membranes: I. Effects of sulthydryl and amino reactive reagents on anion and cation permeability of human red blood cell, J. Gen. Physiol. 58:190–210.

    PubMed  CAS  Google Scholar 

  • Knauf, P. A., Riordan, J. R., Schuhmann, B., and Passow, H., 1974, Effects of external potassium on calcium-induced potassium leakage from human red blood cell ghosts, in: Membranes: Comparative Biochemistry and Physiology of Transport (L. Bolis, K. Bloch, S. E. Luria, and F. Lynen, eds.), North Holland, Amsterdam, pp. 305–309.

    Google Scholar 

  • Knauf, P. A., Riordan, J. R., Schuhmann, B., Wood-Guth, I., and Passow, H., 1975, Calcium-potassium stimulated net potassium efflux from human erythrocyte ghosts, J. Membr. Biol. 25:1–22.

    PubMed  CAS  Google Scholar 

  • Knauf, P. A., Fuhrmann, G. F., Rothstein, S., and Rothstein, A., 1977, The relationship between anion exchange and net anion flow across the human red blood cell membrane, J. Gen. Physiol. 69:363–386.

    PubMed  CAS  Google Scholar 

  • Koller, C. A., Orringer, E. P., and Parker, J. C., 1979, Quinine protects pyruvate kinase deficient red cells from dehydration, Am. J. Hematol. 7:193–199.

    PubMed  CAS  Google Scholar 

  • Kregenow, F. M., and Hoffman, J. F., 1972, Some kinetic and metabolic characteristics of calcium-induced potassium transport in human red cells, J. Gen. Physiol. 60:406–429.

    PubMed  CAS  Google Scholar 

  • Krnjevic, K., and Lisiewicz, A., 1972, Injection of calcium ions into spinal motoneurones, J. Physiol. (London) 225:363–390.

    CAS  Google Scholar 

  • Kuba, K., 1980, Release of calcium ions linked to the activation of potassium conductance in a caffeine-treated sympathetic neurone, J. Physiol. (London) 298:251–269.

    CAS  Google Scholar 

  • Kuba, K., and Nishi, S., 1976, Rhythmic hyperpolarizations and depolarization of sympathetic ganglion cells induced by caffeine, J. Neurophysiol. 39:547–563.

    PubMed  CAS  Google Scholar 

  • Kurtzer, R., and Roberts, M. L., 1982, Calcium-dependent K’ efflux from rat submandibular gland. The effects of trifluoperazine and quinidine, Biochim. Biophys. Acta 693:479–484.

    PubMed  CAS  Google Scholar 

  • LaCelle, P. L., and Rothstein, A., 1966, The passive permeability of the red blood cell to cations, J. Gen. Physiol. 50:171–188.

    PubMed  CAS  Google Scholar 

  • Lackington, I., and Orrego, F., 1981, Inhibition of calcium-activated potassium conductance of human erythrocytes by calmodulin inhibitory drugs, FEBS Lett. 133: 103–106.

    PubMed  CAS  Google Scholar 

  • Larsen, F. L., and Vincenzi, F. F., 1979, Calcium transport across the plasma membrane: Stimulation by calmodulin, Science 204:306–309.

    PubMed  CAS  Google Scholar 

  • Larsen, F. L., Katz, S., Roufogalis, B. D., and Brooks, D. E., 1981, Physiological sheer stresses enhance the Ca2+ permeability of human erythrocytes, Nature 294: 667–668.

    PubMed  CAS  Google Scholar 

  • Lassen, U. V., 1972, Membrane potential and membrane resistance of red cells, in: Oxygen Affinity and Red Cell Acid Base Status (M. Rorth and P. Astrup, eds.), Munksgaard, Copenhagen, pp. 291–304.

    Google Scholar 

  • Lassen, U. V., Pape, L., and Vestergaard-Bogind, B., 1973, Membrane potential of Amphiuma red cells: Effect of calcium, in: Erythrocytes, Thrombocytes, Leukocytes (E. Gerlach, K. Moser, E. Deutsch, and W. Wilmanns, eds.), Georg Thieme, Stuttgart, pp. 33–36.

    Google Scholar 

  • Lassen, U. V., Pape, L., and Vestergaard-Bogind, B., 1976, Effect of calcium on the membrane potential of Amphiuma red cells, J. Membr. Biol. 26:51–70.

    PubMed  CAS  Google Scholar 

  • Lassen, U. V., Pape, L., and Vestergaard-Bogind, B., 1980, Calcium related transient changes in membrane potential of red cells, in: Membrane Transport in Erythrocytes (U. V. Lassen, H. H. Ussing, and J. O. Wieth, eds.), Munksgaard, Copenhagen, pp. 255–273.

    Google Scholar 

  • Latorre, R., and Miller, C., 1983, Conduction and selectivity in potassium channels, J. Membr. Biol. 71:11–30.

    PubMed  CAS  Google Scholar 

  • Latorre, R., Vergara, C., and Hidalgo, C., 1982, Reconstitution in planar lipid bilayers of Ca2+-dependent K+ channel from transverse tubule membranes isolated from rabbit skeletal muscle, Proc. Natl. Acad. Sci. USA 79:805–809.

    PubMed  CAS  Google Scholar 

  • Lepke, S., and Passow, H., 1960, Die Wirkung von Erdalkalimetallionen auf die Kationpermeabilitat fluoridvergifteter Erythrocyten, Pflugers Arch. 271:473–487.

    CAS  Google Scholar 

  • Lepke, S., and Passow, H., 1968, Effects of fluoride on potassium and sodium permeability of the erythrocyte membrane, J. Gen. Physiol. 51:365–372.

    PubMed  CAS  Google Scholar 

  • Lew, V. L., 1970, Effect of intracellular calcium on the potassium permeability of human red cells, J. Physiol. (London) 206:35–36P.

    Google Scholar 

  • Lew, V. L., 1971a, On the ATP-dependence of the Cat+-induced increase in K+ permeability observed in human red cells, Biochim. Biophys. Acta 233:827–830.

    CAS  Google Scholar 

  • Lew, V. L., 197lb, Effect of ouabain on the Ca++ -dependent increase in K+ permeability in ATP depleted guinea-pig red cells, Biochim. Biophys. Acta 249:236–239.

    Google Scholar 

  • Lew, V. L., 1974, On the mechanism of the Ca-induced increase in K permeability observed in human red cell membranes, in: Comparative Biochemistry and Physiology of Transport (L. Bolis, K. Bloch, S. E. Luria, and F. Lynen, eds.), North Holland, Amsterdam, pp. 310–316.

    Google Scholar 

  • Lew, V. L., and Beaugé, L., 1979, Passive cation fluxes in red cell membranes, in: Membrane Transport in Biology, Vol. 2 (G. Giebisch, D. C. Tosteson, and H. H. Ussing, eds.), Springer Verlag, Berlin, pp. 81–116.

    Google Scholar 

  • Lew, V. L., and Bookchin, R. M., 1980, A Ca2+-refractory state of the Ca2+-sensitive K+ permeability mechanism in sickle cell anaemia red cells, Biochim. Biophys. Acta 602:196–200.

    PubMed  CAS  Google Scholar 

  • Lew, V. L., and Ferreira, H. G., 1976, Variable Ca sensitivity of a K selective channel in intact red cell membranes, Nature 263:336–338.

    PubMed  CAS  Google Scholar 

  • Lew, V. L., and Ferreira, H. G., 1977, The effect of Ca on the K permeability of red cells, in: Membrane Transport in Red Cells (J. C. Ellory and V. L. Lew, eds.), Academic Press, New York, pp. 93–100.

    Google Scholar 

  • Lew, V. L., and Ferreira, H. G., 1978, Calcium transport and the properties of a Ca-activated potassium channel in red cell membranes, in: Current Topics in Membranes and Transport, Vol. 10 (F. Bronner and A. Kleinzeller, eds.), Academic Press, New York, pp. 217–277.

    Google Scholar 

  • Lew, V. L., and Simonsen, L. O., 1981, A23187-induced 45Ca flux kinetics reveal uniform ionophore distribution and cytoplasmic calcium buffering in ATP-depleted human red cells, J. Physiol. (London) 316:6–7.

    Google Scholar 

  • Lew, V. L., Muallem, S., and Seymour, C. A., 1980, One-step vesicles from mammalian red cells, J. Physiol. (London) 307:36–37P.

    Google Scholar 

  • Lew, V. L., Muallem, S., and Seymour, C. A., 1982, Properties of the Ca2+ activated K+ channel in one-step inside-out vesicles from human red cell membranes, Nature 296:742–744.

    PubMed  CAS  Google Scholar 

  • Lindemann, B., and Passow, H., 1960, Kaliumverlust and ATP-Zerfall in bleivergifteten Menschenerythrocyten, Pflugers Arch. 271:369–373.

    CAS  Google Scholar 

  • Lisman, J. E., and Brown, J. E., 1972, The effects of intracellular iontophoretic injection of calcium and sodium ions on the light response of Limulus ventral photoreceptors, J. Gen. Physiol. 59:701–719.

    PubMed  CAS  Google Scholar 

  • Lorand, L., Weissmann, L. B., Epel, D. L., and Lorand, J. B., 1976, Role of the intrinsic transglutaminase in the Ca2+ mediated crosslinking of erythrocyte proteins, Proc. Natl. Acad. Sci. USA 73:4479–4481.

    PubMed  CAS  Google Scholar 

  • Macey, R. I., Adorante, J. S., and Orme, F. W., 1978, Erythrocyte membrane potentials determined by hydrogen ion distribution, Biochim. Biophys. Acta 512:284–295.

    PubMed  CAS  Google Scholar 

  • Manninen, V., 1970, Movements of sodium and potassium ions and their tracers in propranolol-treated red cells and diaphragm muscle, Acta Physiol. Scand. Suppl. 355:1–37.

    PubMed  CAS  Google Scholar 

  • Marban, E., and Tsien, R. W., 1982, Effects of nystatin-mediated intracellular ion substitution on membrane currents in calf Purkinje fibres, J. Physiol. (London) 329:569–587.

    CAS  Google Scholar 

  • Marino, D., Sarkadi, B., Gardos, G., and Bolis, L., 1981, Calcium-induced alkali cation transport in nucleated red cells, Mol. Physiol. 1:295–300.

    CAS  Google Scholar 

  • Marshall, J. M., 1977, Modulation of smooth muscle activity by catecholamines, Fed. Proc. 36:2450–2455.

    PubMed  CAS  Google Scholar 

  • Marty, A., 1981, Ca-dependent K-channels with large unitary conductance in chromaffin cell membranes, Nature 291:497–500.

    PubMed  CAS  Google Scholar 

  • Masys, D. R., Bromberg, P. A., and Balcerzak, S. P., 1974, Red cells shrink during sickling, Blood 44:885–890.

    PubMed  CAS  Google Scholar 

  • Matthews, E. K., 1975, Calcium and stimulus-secretion coupling in pancreatic islet cells, in: Calcium Transport in Contraction and Secretion (E. Carafoli, ed.), North Holland, Amsterdam, pp. 203–210.

    Google Scholar 

  • Meech, R. W., 1974, The sensitivity of Helix aspersa neurones to injected calcium ions, J. Physiol. (London) 237:259–277.

    CAS  Google Scholar 

  • Meech, R. W., 1976, Intracellular calcium and the control of membrane permeability, in: Calcium in Biological Systems, Symp. Soc. Exp. Biol. Med. 30:161–191.

    CAS  Google Scholar 

  • Meech, R. W., 1978, Calcium-dependent potassium activation in nervous tissues, Annu. Rev. Biophys. Bioeng. 7:1–18.

    PubMed  CAS  Google Scholar 

  • Meech, R. W., and Standen, N. B., 1975, Potassium activation in Helix aspersa under voltage clamp: A component mediated by calcium influx, J. Physiol. (London) 249:211–239.

    CAS  Google Scholar 

  • Meech, R. W., and Strumwasser, F., 1970, Intracellular calcium injection activates potassium conductance in Aplysia nerve cells, Fed. Proc. 29:834.

    Google Scholar 

  • Mironneau, J., and Savineau, J. P., 1980, Effects of calcium ions on outward membrane currents in rat uterine smooth muscle, J. Physiol. (London) 302:411–425.

    CAS  Google Scholar 

  • Moolenaar, W. H., and Spector, I., 1979a, The calcium action potential and a prolonged calcium-dependent after-hyperpolarization in mouse neuroblastoma cells, J. Physiol. (London) 292:297–306.

    CAS  Google Scholar 

  • Moolenaar, W. H., and Spector, I., 1979b, The calcium current and the activation of a slow potassium conductance in voltage-clamped mouse neuroblastoma cells, J. Physiol. (London) 292:307–323.

    CAS  Google Scholar 

  • Morita, K., North, R. A., and Tokimasa, T., 1982, The calcium-activated potassium conductance in guineapig myenteric neurones, J. Physiol. (London) 329:341–354.

    CAS  Google Scholar 

  • Mounier, Y., and Vassort, G., 1975, Evidence for a transient potassium membrane current dependent on calcium influx in crab muscle fibre, J. Physiol. (London) 251:609–625.

    CAS  Google Scholar 

  • Naccache, P. H., Volpi, M., Shawell, H. J., Becker, E. L., and Sha’afi, R. I., 1979, Chemotactic factor-induced release of membrane calcium in rabbit neutrophils, Science 203:461–463.

    PubMed  CAS  Google Scholar 

  • Nelson, P. G., and Henkart, M. I., 1979, Oscillatory membrane potential changes in cells of mesenchymal origin: The role of an intracellular regulation system, J. Exp. Biol. 81:49–61.

    PubMed  CAS  Google Scholar 

  • Nicoll, R. A., and Alger, B. E., 1981, Synaptic excitation may activate a calcium-dependent potassium conductance in hippocampal pyramidal cells, Science 212:957–958.

    PubMed  CAS  Google Scholar 

  • North, R. A., 1981, The calcium-dependent slow after-hyperpolarization in myenteric plexus neurones with tetrodotoxin-resistant action potentials, Br. J. Pharmacol. 49:709–711.

    Google Scholar 

  • Okada, Y., Tsuchiya, W., and Inouye, A., 1979, Oscillations of membrane potential in L cells. IV. Role of intracellular Ca2+ in hyperpolarizing excitability, J. Membr. Biol. 47:357–376.

    PubMed  CAS  Google Scholar 

  • Okada, Y., Tsuchiya, W., and Yada, T., 1982, Calcium channel and calcium pump involved in oscillatory hyperpolarizing responses of L-strain mouse fibroblasts, J. Physiol. (London) 327:449–461.

    CAS  Google Scholar 

  • Oliveira-Castro, G. M., and Dos Reis, G. A., 1981, Electrophysiology of phagocytic membranes III. Evidence for a calcium-dependent potassium permeability change during slow hyperpolarizations in activated macrophages, Biochim. Biophys. Acta 640:500–511.

    PubMed  CAS  Google Scholar 

  • Orringer, E. P., and Parker, J. C., 1973, Ion and water movements in red blood cells, in: Progress in Hematology, Vol. 8 (E. B. Brown, ed.), Grune and Stratton, New York, pp. 1–23.

    Google Scholar 

  • Orskov, S. L., 1935, Untersuchungen über den einfluss von kohlensaure und blei auf die permeabilität der blutkörperchen für kalium und rubidium, Biochem. Z. 279:250–261.

    CAS  Google Scholar 

  • Pallotta, B. S., Magleby, K. L., and Barrett, J. N., 1981, Single channel recordings of Ca2+-activated K+ currents in rat muscle cell culture, Nature 293:471–474.

    PubMed  CAS  Google Scholar 

  • Pape, L., 1982, Effect of extracellular Ca2+, K+, and OH- on erythrocyte membrane potential as monitored by the fluorescent probe 3,3-dipropylthiodicarbocyanine, Biochim. Biophys. Acta 686: 225–232.

    PubMed  CAS  Google Scholar 

  • Parker, J. C., 1978, Sodium and calcium movements in dog red blood cells, J. Gen. Physiol. 71:1–17.

    PubMed  CAS  Google Scholar 

  • Parker, J. C., 1981, Effects of drugs on calcium related phenomena in red blood cells, Fed. Proc. 40:2872–2876.

    PubMed  CAS  Google Scholar 

  • Parker, J. C., 1983, Hemolytic action of potassium salts on dog red blood cells, Am. J. Physiol., 244:C313–317.

    PubMed  CAS  Google Scholar 

  • Parker, J. C., Gitelman, H. J., Glosson, P. S., and Leonard, D. L., 1975, The role of calcium in volume regulation by dog red blood cells, J. Gen. Physiol. 65:84–96.

    PubMed  CAS  Google Scholar 

  • Parker, J. C., Orringer, E. P., and McManus, T. J., 1978, Disorders of ion transport in red blood cells: Physiology of Membrane Disorders (T. E. Andreoli, J. F. Hoffman, and D. D. Fanestil, eds.), Plenum, New York, pp. 773–800.

    Google Scholar 

  • Parod, R. J., and Putney, J. W., Jr., 1978, Role of calcium in the receptor-mediated control of potassium permeability in the rat lacrimal gland, J. Physiol. (London) 281:371–381.

    CAS  Google Scholar 

  • Passow, H., 1963, Metabolic control of passive cation permeability in human red cells, in: Cell Interface Reactions (H. D. Brown, ed.), Scholar’s Library, New York, pp. 57–107.

    Google Scholar 

  • Passow, H., 1981, Selective enhancement of potassium efflux from red blood cells by lead, in: The Functions of Red Blood Cells: Erythrocyte Pathobiology (D. F. Wallach, ed.), Alan R. Liss, New York, pp. 80–104.

    Google Scholar 

  • Passow, H., and Vielhauer, E., 1966, Die wirkung von trioseredukton auf die kalium und natriumpermeabilität roter blutkörperchen, Pflugers Arch. 288:1–14.

    CAS  Google Scholar 

  • Plishker, G. A., Appel, S. H., Dedman, J. R., and Means, A. R., 1980, Phenothiazine inhibition of calmodulin stimulates Ca-dependent K-efflux in human red blood cells, Fed. Proc. 39:1713.

    Google Scholar 

  • Porzig, H., 1975, Comparative study of the effects of propranolol and tetracaine on cation movements in resealed human red cell ghosts, J. Physiol. (London) 249:27–50.

    CAS  Google Scholar 

  • Porzig, H., 1977, Studies on the cation permeability of human red cell ghosts, J. Membr. Biol. 31:317–349.

    PubMed  CAS  Google Scholar 

  • Putney, J. W., Jr., 1976, Stimulation of 45Ca influx in rat parotid gland by carbachol, J. Pharmacol. Exp. Ther. 199:526–537.

    PubMed  CAS  Google Scholar 

  • Putney, J. W., Jr., 1978, Ionic millieu and control of K permeability in rat parotid gland, Am. J. Physiol. 235:C180–C187.

    PubMed  CAS  Google Scholar 

  • Putney, J. W., Jr., 1979, Stimulus-permeability coupling: Role of calcium in the receptor regulation of membrane permeability, Pharmacol. Rev. 30:209–245.

    Google Scholar 

  • Putney, J. W., Jr., Parod, R. J., and Marier, S. H., 1977, Control by calcium of protein discharge and membrane permeability to potassium in the rat lacrimal gland, Life Sci. 2:1905–1912.

    Google Scholar 

  • Putney, J. W., Jr., van de Walle, C. M., and Leslie, B. A., 1978, Stimulus-secretion coupling in the rat lacrimal gland, Am. J. Physiol. 235:C188–C198.

    PubMed  CAS  Google Scholar 

  • Quastel, M. R., and Kaplan, J. G., 1970, Early stimulation of potassium uptake in lymphocytes treated with PHA, Exp. Cell. Res. 63:230–233.

    PubMed  CAS  Google Scholar 

  • Rasmussen, H., and Goodman, D. P. H., 1977, Relationship between calcium and cyclic nucleotides in cell activation, Physiol. Rev. 57:421–509.

    PubMed  CAS  Google Scholar 

  • Reed, P. W., 1973, Calcium-dependent potassium efflux from rat erythrocytes incubated with antibiotic A23187, Fed. Proc. 32:635.

    Google Scholar 

  • Reed, P. W., 1976, Effects of the divalent cation ionophore A23187 on potassium permeability of rat erythrocytes, J. Biol. Chem. 251:3489–3494.

    PubMed  CAS  Google Scholar 

  • Reichstein, E., and Rothstein, A., 1981, Effects of quinine on Ca2+-induced K+ efflux from human red blood cells, J. Membr. Biol. 59:57–63.

    PubMed  CAS  Google Scholar 

  • Richhardt, H. W., Fuhrmann, G. F., and Knauf, P. A., 1979, Dog red blood cells exhibit a Ca-stimulated increase in K permeability in the absence of (Na,K) ATPase activity, Nature 279:248–250.

    PubMed  CAS  Google Scholar 

  • Riordan, J. R., and Passow, H., 1971, Effects of calcium and lead on potassium permeability of human erythrocyte ghosts, Biochim. Biophys. Acta 249:601–605.

    PubMed  CAS  Google Scholar 

  • Riordan, J. R., and Passow, H., 1973, The effects of calcium and lead on the potassium permeability of human erythrocytes and erythrocyte ghosts, in: Comparative Physiology (L. Bolis, K. Schmidt-Nielsen, and S. H. P. Maddrell, eds.), North Holland, Amsterdam, pp. 543–581.

    Google Scholar 

  • Romero, P. J., and Whittam, R., 1971, The control by internal calcium of membrane permeability to sodium and potassium, J. Physiol. (London) 214:481–507.

    CAS  Google Scholar 

  • Roti-Roti, L. W., and Rothstein, A., 1973, Adaptation of mouse leukemic cells (L5178Y) to anisotonic media, Exp. Cell. Res. 79:295–310.

    PubMed  CAS  Google Scholar 

  • Roufogalis, B. D., 1979, Regulation of calcium translocation across the red blood cell membrane, Can. J. Physiol. Pharmacol. 57:1331–1349.

    CAS  Google Scholar 

  • Roufogalis, B. D., 1981, Phenothiazine antagonism of calmodulin: A structurally nonspecific interaction, Biochem. Biophys. Res. Commun. 98:607–613.

    PubMed  CAS  Google Scholar 

  • Sarkadi, B., 1980, Active calcium transport in human red cells, Biochem. Biophys. Acta 604:159–190.

    PubMed  CAS  Google Scholar 

  • Sarkadi, B., and Tosteson, D. C., 1979, Active cation transport in human red cells, in: Membrane Transport in Biology, Vol. 2 (G. Giebisch, D. C. Tosteson, and H. H. Ussing, eds.), Springer Verlag, Berlin, pp. 117–160.

    Google Scholar 

  • Sarkadi, B., Szâsz, I., and Gardas, G., 1976, The use of ionophores for rapid loading of human red cells with radioactive cations for cation pump studies, J. Membr. Biol. 26:357–370.

    PubMed  CAS  Google Scholar 

  • Sarkadi, B., Szâsz, I., Gerlôczi, A., and Gärdos, G., 1977, Transport parameters and stoichiometry of active calcium ion extrusion in intact human red cells, Biochim. Biophys. Acta 464:93–107.

    PubMed  CAS  Google Scholar 

  • Sarkadi, B., Schubert, A., and Gárdos, G., 1979, Effects of calcium-EGTA buffers on active calcium transport in inside-out red cell membrane vesicles, Experientia 35:1045–1047.

    PubMed  CAS  Google Scholar 

  • Sarkadi, B., Szebeni, J., and Gárdos, G., 1980, Effects of calcium on cation transport processes in inside-out red cell membrane vesicles, in: Membrane Transport in Erythrocytes (U. V. Lassen, H. H. Ussing, and J. O. Wieth, eds.), Munksgaard, Copenhagen, pp. 220–235.

    Google Scholar 

  • Sarkadi, B., Enyedi, A., Nyers, A., and Gdrdos, G., 1982, The function and regulation of the calcium pump in the erythrocyte membrane, Ann. N.Y. Acad. Sci. 402:329–348.

    PubMed  CAS  Google Scholar 

  • Sarkadi, B., Grinstein, S., Mack, E., and Rothstein, A., 1983, An anion conductance pathway is involved in regulatory volume decrease in human lymphocytes, Biophys. F. 41:188a.

    Google Scholar 

  • Satow, Y., and Kung, C., 1980, Ca-induced K outward current in Paramecium tetraurelia, J. Exp. Biol. 88:293–303.

    PubMed  CAS  Google Scholar 

  • Schatzmann, H. J., 1973, Dependence on calcium concentration and stoichiometry of the calcium pump in human red cells, J. Physiol. (London) 235:551–569.

    CAS  Google Scholar 

  • Schatzmann, H. J., 1975, Active calcium transport and Ca2+-activated ATPase in human red cells in: Current Topics in Membranes and Transport, Vol. 6 (F. Bronner and A. Kleinzeller, eds.), Academic Press, New York, pp. 125–168.

    Google Scholar 

  • Schatzmann, H. J., 1982, The plasma membrane calcium pump of erythrocytes and other animal cells, in: Membrane Transport of Calcium (E. Carafoli, ed.), Academic Press, New York, pp. 41–108

    Google Scholar 

  • Schramm, M., and Selinger, Z., 1975, The functions of cyclic AMP and calcium as alternative second

    Google Scholar 

  • Schubert, A., and Sarkadi, B., 1977, Kinetic studies on the calcium-dependent potassium transport in human red blood cells, Acta Biochim. Biophys. Acad. Sci. Hung. 12:207–216.

    PubMed  CAS  Google Scholar 

  • Schwarz, W., and Passow, H., 1983, Ca2+-activated K+ channels in erythrocytes and excitable cells, Ann. Rev. Physiol. 45:359–374.

    CAS  Google Scholar 

  • Segel, G. B., Simon, W., and Lichtman, M. A., 1979, Regulation of sodium and potassium transport in phytohemagglutinin-stimulated human blood lymphocytes, J. Clin. Invest. 64:834–841.

    PubMed  CAS  Google Scholar 

  • Sha’afi, R. I., and Naccache, P. H., 1981, Ionic events in neutrophil chemotaxis, in: Advances in Inflammation Research, Vol. 2 (G. Weissmann, ed.), Raven Press, pp. 115–148.

    Google Scholar 

  • Shalev, O., Leida, M. N., Hebbel, R. P., Jacob, H. S., and Eaton, J. W., 1981, Abnormal erythrocyte calcium homeostasis in oxidant-induced hemolytic disease, Blood 58:1232–1238.

    PubMed  CAS  Google Scholar 

  • Siegelbaum, S. A., and Tsien, R. W., 1980, Calcium-activated transient outward current in calf cardiac Purkinje fibres, J. Physiol. (London) 299:485–506.

    CAS  Google Scholar 

  • Siegelbaum, S. A., Tsien, R. W., and Kass, R. S., 1977, Role of intracellular calcium in the transient outward current of calf Purkinje fibres, Nature 269:611–613.

    PubMed  CAS  Google Scholar 

  • Siemon, H., Schneider, H., and Fuhrmann, G. F., 1982, Vanadium increases selective K+ permeability in human erythrocytes, Toxicology 22:271–278.

    CAS  Google Scholar 

  • Simons, T. J. B., 1976a, The preparation of human red cell ghosts containing calcium buffers, J. Physiol. (London) 256:209–225.

    CAS  Google Scholar 

  • Simons, T. J. B., 1976b, Calcium-dependent potassium exchange in human red cell ghosts, J. Physiol. (London) 256:227–244.

    CAS  Google Scholar 

  • Simons, T. J. B., 1976c, Carbocyanine dyes inhibit Ca-dependent K efflux from human red cell ghosts, Nature (London) 264:467–469.

    CAS  Google Scholar 

  • Simons, T. J. B., 1979, Actions of a carbocyanine dye on calcium-dependent potassium transport in human red cell ghosts, J. Physiol. (London) 288:481–507.

    CAS  Google Scholar 

  • Simons, T. J. B., 1982, A method for estimating free Ca within human red blood cells, with an application to the study of their Ca-dependent K permeability, J. Membr. Biol. 66:235–247.

    PubMed  CAS  Google Scholar 

  • Simonsen, L. O., Gomme, J., and Lew, V. L., 1982, Uniform ionophore A23187 distribution and cytoplasmic calcium buffering in intact human red cells, Biochim. Biophys. Acta 692:431–440.

    PubMed  CAS  Google Scholar 

  • Steck, T. L., 1974, Preparation of impermeable inside-out and right-side-out vesicles from erythrocyte membrane, in: Methods in Membrane Biology, Vol. 2 (E. D. Korn, ed.), Plenum Press, New York, pp. 245–282.

    Google Scholar 

  • Stinnakre, J., and Tauc, L., 1973, Calcium influx in active Aplysia neurones detected by injected aequorin, Nature, New Biol. 242:113–115.

    CAS  Google Scholar 

  • Szâsz, I., and Gárdos, G., 1974, Mechanism of various drug effects on the Ca2+-dependent K+-efflux from human red blood cells, FEBS Lett. 44:213–216.

    PubMed  Google Scholar 

  • Szâsz, I., Sarkadi, B., and Gárdos, G., 1974, Erythrocyte parameters during induced Ca2+-dependent rapid K+-efflux: Optimum conditions for kinetic analysis, Haematologia 8:143–151.

    PubMed  Google Scholar 

  • Szâsz, I., Sarkadi, B., and Gárdos, G., 1977, Mechanism of Ca2+-dependent selective rapid K+-transport induced by propranolol in red cells, J. Membr. Biol. 35:75–93.

    PubMed  Google Scholar 

  • Szäsz, I., Sarkadi, B., and Gárdos, G., 1978a, Effects of drugs on calcium-dependent rapid potassium transport in calcium-loaded intact red cells, Acta Biochim. Biophys. Acad. Sci. Hung. 13:133–141.

    Google Scholar 

  • Szâsz, I., Sarkadi, B., and Gárdos, G., 1978b, Mechanism for passive calcium transport in human red cells, Acta Biochim. Biophys. Acad. Sci. Hung. 13:239–249.

    Google Scholar 

  • Szäsz, I., Sarkadi, B., and Gärdos, G., 1978c, Changes in the Ca2+-transport processes of red cells during storage in ACD, Brit. J. Haematol. 39:559–568.

    Google Scholar 

  • Szäsz, I., Sarkadi, B., Schubert, A., and Gärdos, G., 1978d, Effects of lanthanum on calcium-dependent phenomena in human red cells, Biochim. Biophys. Acta 512:331–340.

    Google Scholar 

  • Szâsz, I., Sarkadi, B., and Gárdos, G., 1980, Calcium sensitivity of calcium-dependent functions in human red blood cells, in: Advances in Physiological Sciences Vol. 6 (S. R. Hollän, G. Gárdos, and B. Sarkadi, eds.), Pergamon Press, Akadémiai Kiadô, Budapest, pp. 211–221.

    Google Scholar 

  • Szâsz, I., Sarkadi, B., and Gárdos, G., 1982, Operation of a Ca-dependent K(Rb)-transport in human lymphocytes, Haematologia 15:83–89.

    PubMed  Google Scholar 

  • Sze, H., and Solomon, A. K., 1979, Calcium-induced potassium pathways in sided erythrocyte membrane vesicles, Biochim. Biophys. Acta 554:180–194.

    PubMed  CAS  Google Scholar 

  • Szönyi, S., 1960, Wirkung von Fluorid auf die Verteilung von Kalium und Natrium sowie auf die Co2Bindung in menschlichen Blut, Acta Physiol. Acad. Sci. Hung. 17:9–13.

    PubMed  Google Scholar 

  • Thomas, M. V., and Gorman, A. L. F., 1977, Internal calcium changes in a bursting pace-maker neuron measured with arsenazo III., Science 196:531–533.

    PubMed  CAS  Google Scholar 

  • Tosteson, D. C., 1959, Halide transport in red blood cells, Acta Physiol. Scand. 46:19–41.

    CAS  Google Scholar 

  • Tosteson, D. C., and Hoffman, J. F., 1960, Regulation of cell volume by active cation transport in high and low potassium sheep red cells, J. Gen. Physiol. 44:169–194.

    PubMed  CAS  Google Scholar 

  • Tsien, R. Y., Pozzan, T., and Rink, T. J., 1982, T-cell mitogens cause early changes in cytoplasmic free Ca2+ and membrane potential in lymphocytes, Nature 295:68–71.

    PubMed  CAS  Google Scholar 

  • Valdeolmillos, M., Garcia-Sancho, J., and Herreros, B., 1982, Ca2+-dependent K+ transport in the Ehrlich ascites tumor cells, Biochim. Biophys. Acta 685:273–278.

    PubMed  CAS  Google Scholar 

  • van Rossum, G. D. V., 1970, Relation of intracellular Ca2+ to retention of K+ by liver slices, Nature (London) 225:638–639.

    Google Scholar 

  • Vestergaard-Bogind, B., and Bennekou, P., 1982, Calcium-induced oscillations in K’ conductance and membrane potential of human erythrocytes mediated by the ionophore A23187, Biochim. Biophys. Acta 688:37–44.

    PubMed  CAS  Google Scholar 

  • Vincenzi, F. F., 1981, Calmodulin pharmacology, Cell Calcium 2:387–409.

    PubMed  CAS  Google Scholar 

  • Volpi, M., Shaafi, R. I., and Feinstein, M. B., 1981, Antagonism of calmodulin by local anesthetics—inhibition of calmodulin-stimulated calcium transport of erythrocyte inside-out membrane vesicles, Mol. Pharmacol. 20:363–370.

    PubMed  CAS  Google Scholar 

  • Walsh, J. V., and Singer, J. J., 1980, Penetration-induced hyperpolarization as evidence for Ca2+ -activation of K+ conductance in isolated smooth muscle cells, Am. J. Physiol. 239:182–189.

    Google Scholar 

  • Weed, R. I., LaCelle, P. L., and Merrill, E. M., 1969, Metabolic dependence of red cell deformability, J. Clin. Invest. 48:795–809.

    PubMed  CAS  Google Scholar 

  • Whitney, R. B., and Sutherland, R. M., 1972, Enhanced uptake of calcium by transforming lymphocytes, Cell. Immunol. 5:137–147.

    PubMed  CAS  Google Scholar 

  • Whittan, R., 1968, Control of membrane permeability to potassium in red blood cells, Nature (London) 219:610.

    Google Scholar 

  • Wilbrandt, W., 1937, A relation between the permeability of red cell and its metabolism, Trans. Faraday Soc. 33:956–959.

    CAS  Google Scholar 

  • Wilbrandt, W., 1940, Die Abhängigkeit der Ionenpermeabilität der Erythrozyten vom glykolytischen Stoffwechsel, P, flugers Arch. 243:519–536.

    CAS  Google Scholar 

  • Wiley, J. S., 1981, Increased erythrocyte cation permeability in thalassemia and conditions of marrow stress, J. Clin. Invest. 67:917–922.

    PubMed  CAS  Google Scholar 

  • Wiley, J. S., and Gill, F. M., 1976, Red cell calcium leak in congenital hemolytic anemia with extreme microcytosis, Blood 47:197–210.

    PubMed  CAS  Google Scholar 

  • Yellen, G., 1982, Single Ca2+-activated nonselective cation channels in neuroblastoma, Nature 296:357–359.

    PubMed  CAS  Google Scholar 

  • Yingst, D. R., and Hoffman, J. F., 1978, Changes of intracellular Ca2+ as measured by arsenazo III in relation to the K permeability of human erythrocyte ghosts, Biophys. J. 23:463–471.

    PubMed  CAS  Google Scholar 

  • Yingst, D. R., and Hoffman, J. F., 1981, Effect of intracellular Ca on inhibiting the Na-K pump and stimulating Ca-induced K transport in resealed human red cell ghosts, Fed. Proc. 40:543.

    Google Scholar 

  • Yingst, D. R., and Hoffman, J. F., 1984, Ca-induced K transport in human red blood cell ghosts containing arsenazo III: Transmembrane interactions of Na, K, and Ca and the relationship to the functioning Na-K pump, J. Gen. Physiol., 83:19–45.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

Sarkadi, B., Gárdos, G. (1985). Calcium-Induced Potassium Transport in Cell Membranes. In: Martonosi, A.N. (eds) The Enzymes of Biological Membranes. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4601-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4601-2_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4603-6

  • Online ISBN: 978-1-4684-4601-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics