Advertisement

The Sarcoplasmic Reticulum Membrane

  • Marek Michalak

Abstract

The sarcoplasmic reticulum is a closed membranous system surrounding myofibrils in muscle cells. It regulates the level of free Ca2+ in the cytoplasm, thereby regulating the contraction and relaxation of muscle cells. Aspects of the sarcoplasmic reticulum and of excitation—contraction coupling have been reviewed recently (MacLennan and Holland, 1975, 1976; Ebashi, 1976; Tada et al.,1978a; Fabiato and Fabiato, 1979; Hasselbach, 1979; de Mais and Vianna, 1979; Inesi, 1981; Ikemoto, 1982; Moller et al.,1982; Berman, 1982). This review is complementary to Chapter 30 and describes work on the sarcoplasmic reticulum that is not directly related to the mechanism of ATP-dependent Ca2+ transport.

Keywords

ATPase Activity Sarcoplasmic Reticulum Adenosine Triphosphatase Plasmic Reticulum Sarcoplasmic Reticulum Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Affolter, H., Chiesi, M., Dabrowska, R., and Carafoli, E., 1976, Calcium regulation in heart cells. The interaction of mitochondria and sarcoplasmic reticulum with troponin-bound calcium, Eur. J. Biochem. 67:389.PubMedGoogle Scholar
  2. Allen, G., 1977, On the primary structure of the Ca2+ ATPase of sarcoplasmic reticulum, in: FEBS 11th Meeting Copenhagen, Membrane Proteins, Vol. 45 (P. Nicholls, Y. V. Moller, P. L. Jorgensen, and A. Y. Moody, eds.), Pergamon Press, New York, p. 159.Google Scholar
  3. Allen, G., 1980a, The primary structure of the calcium ion-transporting adenosine triphosphatase of rabbit skeletal sarcoplasmic reticulum, Biochem. J. 187:545.Google Scholar
  4. Allen, G., 1980b, Primary structure of the calcium ion-transporting adenosine triphosphatase of rabbit skeletal sarcoplasmic reticulum, Biochem. J. 187:565.Google Scholar
  5. Allen, G., and Green, N. M., 1978, Primary structures of cysteine-containing peptides from the calcium ion-transporting adenosine triphosphatase of rabbit sarcoplasmic reticulum, Biochem. J. 173:393.PubMedGoogle Scholar
  6. Allen, G., Bottomley, R. C., and Trinnaman, B. J., 1980a, Primary structure of the calcium ion-transporting adenosine triphosphatase from rabbit skeletal sarcoplasmic reticulum, Biochem. J. 187:577.Google Scholar
  7. Allen, G., Trinnaman, B. J., and Green, N. M., 1980b, The primary structure of the calcium ion-transporting adenosine triphosphatase protein of rabbit skeletal sarcoplasmic reticulum, Biochem. J. 187:591.Google Scholar
  8. Andersen, J. P., Le Maire, M., and Moller, J. V., 1980, Properties of detergent-solubilized and membranous (Ca2+ + Mg2+) activated ATPase from sarcoplasmic reticulum as studied by sulfhydryl reactivity and ESR spectroscopy. Effect of protein—protein interactions, Biochim. Biophys. Acta 603:84.PubMedGoogle Scholar
  9. Andersen, P., Moller, J. V., and Jorgensen, P. L., 1982, The functional unit of sarcoplasmic reticulum Ca2+ -ATPase. Active site titration and fluorescence measurements, J. Biol. Chem. 257:8300.PubMedGoogle Scholar
  10. Anzai, K., Kiring, Y., and Shimizu, H., 1978, Temperature induced change in the Ca2+ -dependent ATPase activity and in the state of the ATPase protein of sarcoplasmic reticulum membrane, J. Biochem. 84:815.PubMedGoogle Scholar
  11. Arakawa, M., and Muramatsu, T., 1974, Endo-3-N-acetylglucosaminidases acting on the carbohydrate moieties of glycoproteins. The differential specificities of the enzyme from Streptomyces griseus and Diplococcus pneumoniae, J. Biochem. 76:307.PubMedGoogle Scholar
  12. Bailin, G., 1980, Crosslinking of sarcoplasmic reticulum ATPase protein with 1,5-difluoro 2,4-dinitrobenzene, Biochim. Biophys. Acta 624:511.PubMedGoogle Scholar
  13. Banerjee, R., Epstein, M., Kandrach, M., Zimniak, P., and Racker, E., 1979, A new method of preparing Ca2+ -ATPase from sarcoplasmic reticulum: Extraction with octyl-glucoside, Membr. Biochem. 2:283.PubMedGoogle Scholar
  14. Baskin, R. J., 1971, Ultrastructure and calcium transport in crustacean muscle microsomes, J. Cell Biol. 48:49.PubMedGoogle Scholar
  15. Baskin, R. J., and Hanna, S., 1979, Cross-linking of the (Ca2+ + Mg2+) ATPase protein, Biochim. Biophys. Acta 576:61.PubMedGoogle Scholar
  16. Bastin, J., and Nakajima, S., 1974, Action potential in the transverse tubules and its role in the activation of skeletal muscle, J. Gen. Physiol. 63:257.Google Scholar
  17. Beirao, P. S., and de Meis, L. 1976, ADP-activated calcium ion exchange in sarcoplasmic reticulum vesicles, Biochim. Biophys. Acta 433:520.PubMedGoogle Scholar
  18. Bennett, N., and Dupont, Y., 1981, Evidence for a calcium gated cation channel in sarcoplasmic reticulum vesicles, FEBS Lett. 128:269.PubMedGoogle Scholar
  19. Bennett, J. P., McGill, K. A., and Warren, G. B., 1978, Transbilayer disposition of phospholipid annulus surrounding a calcium transport protein, Nature 274:823.PubMedGoogle Scholar
  20. Bennett, J. P., McGill, K. A., and Warren, G. B., 1980, The role of lipids in the functioning of a membrane protein: The sarcoplasmic reticulum pump, Curr. Top. Membr. Trans. 14:127.Google Scholar
  21. Berman, M. C., 1982, Energy coupling and uncoupling of active calcium transport by sarcoplasmic reticulum membranes, Biochim. Biophys. Acta 694:95.PubMedGoogle Scholar
  22. Bhalla, R. C., Webb, R. C., Singh, D., and Brock, T., 1978, Role of cyclic AMP in rat aortic microsomal phosphorylation and calcium system, Am. J. Physiol. 234:HSO8.Google Scholar
  23. Bidlack, J. M., and Shamoo, A. F., 1980, Adenosine 3’, 5’-monophosphate-dependent phosphorylation of a 6,000 and 22,000 dalton protein from cardiac sarcoplasmic reticulum, Biochim. Biophys. Acta 632:310.PubMedGoogle Scholar
  24. Boland, R., and Martonosi, A., 1976, The lipid composition and Ca’ -transport function of sarcoplasmic reticulum (SR) membranes during development in vivo and in vitro, in: Function and Biosynthesis of Lipids (N. G. Bazar, R. R. Brenner, and N. M. Guisto, eds.), Plenum, New York and London, p. 233.Google Scholar
  25. Boland, R., Martonosi, A., and Tillack, T. W., 1974, Developmental changes in the composition and function of sarcoplasmic reticulum, J. Biol. Chem. 249:612.PubMedGoogle Scholar
  26. Boland, R., Chyn, T., Roufa, D., Reyes, E., and Martonosi, A., 1977, The lipid composition of muscle cells during development, Biochim. Biophys. Acta 489:349.PubMedGoogle Scholar
  27. Borchman, D., Simon, R., and Bicknell-Brown, E., 1982, Variation in the lipid composition of rabbit muscle sarcoplasmic reticulum membrane with muscle type, J. Biol. Chem. 257:14136.PubMedGoogle Scholar
  28. Boulan, E. R., Kreibich, G., and Sabatini, D. D., 1978, Spatial orientation of glycoproteins in membranes of rat liver rough microsomes. I. Localization of lectin binding sites in microsomal membranes, J. Cell Biol. 78:894.Google Scholar
  29. Brotherus, J. R., Moller, J. V., and Jorgensen, P. L., 1981, Soluble and active renal Na, K-ATPase with maximum protein molecular mass 170,000 ± 9,000 daltons; formation of larger units by secondary aggregation, Biochem. Biophys. Res. Commun. 100:146.PubMedGoogle Scholar
  30. Burkli, A., and Cherry, R. J., 1981, Rotational motion and flexibility of Ca2+ + Mg2+ -dependent adenosine 5’-triphosphatase in sarcoplasmic reticulum membranes, Biochemistry 20:138.PubMedGoogle Scholar
  31. Campbell, K. P., and MacLennan, D. H., 1981, Purification and characterization of the 53,000 dalton glycoprotein from the sarcoplasmic reticulum, J. Biol. Chem. 256:4626.PubMedGoogle Scholar
  32. Campbell, K. P., and MacLennan, D. H., 1982, A calmodulin-dependent protein kinase system from skeletal muscle sarcoplasmic reticulum, J. Biol. Chem. 257:1238.PubMedGoogle Scholar
  33. Campbell, K. P., and Shamoo, A. E., 1980, Phosphorylation of heavy sarcoplasmic reticulum vesicles: Identification and characterization of three phosphorylated proteins, J. Membr. Biol. 56:241.PubMedGoogle Scholar
  34. Campbell, K. P., Franzini-Armstrong, C., and Shamoo, A. E., 1980, Further characterization of light and heavy sarcoplasmic reticulum vesicles. Identification of the “sarcoplasmic reticulum feet” associated with heavy sarcoplasmic reticulum vesicles, Biochim. Biophys. Acta 602:97.PubMedGoogle Scholar
  35. Campbell, K. P., MacLennan, D. H., Jorgensen, A. O., and Mintzer, M. C., 1983a, Purification and characterization of calsequestrin from canine cardiac sarcoplasmic reticulum and identification of the 53,000-dalton glycoprotein, J. Biol. Chem. 258:1197.Google Scholar
  36. Campbell, K. P., MacLennan, D. H., and Jorgensen, A. O., 1983b, Staining of the Ca’-binding proteins, calsequestrin, calmodulin, troponin C, and S-100, with the cationic carbocyanine dye “stains all,” J. Biol. Chem. 258:11267.Google Scholar
  37. Capaldi, R. A., and Vanderkooi, G., 1972, The low polarity of many membrane proteins, Proc. Natl. Acad. Sci. USA 69:930.PubMedGoogle Scholar
  38. Caswell, H. A., Lou, Y. H., and Brunschwig, J-P., 1976, Ouabain-binding vesicles from skeletal muscle, Arch. Biochem. Biophys. 176:417.PubMedGoogle Scholar
  39. Chapman, D., Gomez-Fernandez, J. C., and Goni, F. M., 1979, Intrinsic protein-lipid interactions: Physical and biochemical evidence, FEBS Lett. 98:211.PubMedGoogle Scholar
  40. Chiesi, M., and Carafoli, E., 1982, The regulation of Ca2+ -transport by fast skeletal muscle sarcoplasmic reticulum, J. Biol. Chem. 257:984.PubMedGoogle Scholar
  41. Chyn, T. L., Martonosi, A. G., Morimoto, T., and Sabatini, D. D., 1979, In vitro synthesis of the Ca2+ transport ATPase by ribosomes bound to sarcoplasmic reticulum membranes, Proc. Natl. Acad. Sci. USA 76:1241.PubMedGoogle Scholar
  42. Clark, S. P., and Molday, R. S., 1979, Orientation of membrane glycoproteins in sealed rod outer segment disks, Biochemistry 18:5868.PubMedGoogle Scholar
  43. Clarke, S., 1975, The size and detergent binding of membrane proteins, J. Biol. Chem. 250:5459.PubMedGoogle Scholar
  44. Collins, J. H., Zot, A. S., and Kranias, E. G., 1982, Isolation of two proteolipids from rabbit muscle sarcoplasmic reticulum, Prep. Biochem. 12:255.PubMedGoogle Scholar
  45. Constantin, L. L., and Podolsky, R. J., 1967, Depolarization of the internal membrane system in the activation of frog skeletal muscle, J. Gen. Physiol. 50:1101.Google Scholar
  46. Craig, W. S., and Kyte, J., 1980, Stoichiometry and molecular weight of the minimum asymmetric units of canine renal sodium and potassium ion-activated adenosine triphosphatase, J. Biol. Chem. 255:6262.PubMedGoogle Scholar
  47. Davis, D. G., Inesi, G., and Gulik-Krzywicki, T., 1976, Lipid molecular motion and enzyme activity in sarcoplasmic reticulum membranes, Biochemistry 15:1271.PubMedGoogle Scholar
  48. Deamer, D. W., and Baskin, R. Y., 1969, Ultrastructure of sarcoplasmic reticulum preparations, J. Cell Biol. 42:296.PubMedGoogle Scholar
  49. Dean, W. L., and Tanford, C., 1977, Reactivation of lipid-depleted Ca2+-ATPase by a nonionic detergent, J. Biol. Chem. 252:3551.PubMedGoogle Scholar
  50. Dean, W. L., and Tanford, C. 1978, Properties of a delipidated detergent-activated Ca2+ ATPase, Biochemistry 17:1683.PubMedGoogle Scholar
  51. Degani, C., and Boyer, P. D., 1973, A borohydride reduction method for characterization of the acyl phosphate linkage in proteins and its application to sarcoplasmic reticulum adenosine triphosphatase, J. Biol. Chem. 244:3733.Google Scholar
  52. de Meis, L., and Hasselbach, W., 1971, Acetyl phosphate as substrate for Ca2+ uptake in skeletal muscle microsomes, inhibition by alkali ions, J. Biol. Chem. 246:4759.PubMedGoogle Scholar
  53. de Meis, L., and Vianna, A. L., 1979, Energy interconversion by the Ca2+-dependent ATPase of the sarcoplasmic reticulum, Annu. Rev. Biochem. 48:275.PubMedGoogle Scholar
  54. de Meis, L., Martins, O. B., and Alvez, E. W., 1980, Role of water, hydrogen ion and temperature on the synthesis of adenosine triphosphate by the sarcoplasmic reticulum adenosine triphosphatase in the absence of a calcium ion gradient, Biochemistry 19:4252.PubMedGoogle Scholar
  55. Drabikowski, W., Sarzala, M. G., Wroniszewska, A., Lagwinska, E., and Drzewiecka, B., 1972, Role of cholesterol in the Ca2+ uptake and ATPase activity of fragmented sarcoplasmic reticulum, Biochim. Biophys. Acta 274:158.PubMedGoogle Scholar
  56. Dupont, Y., Harrison, S. G., and Hasselbach, W., 1973, Molecular organization in the sarcoplasmic reticulum membrane studied by X-ray diffraction, Nature 244:555.Google Scholar
  57. Ebashi, S., 1976, Excitation-contraction coupling, Annu. Rev. Physiol. 38:293.PubMedGoogle Scholar
  58. Ebashi, S., and Endo, M., 1968, Calcium ion and muscle contraction, Prog. Biophys. Mol. Biol. 18:123.Google Scholar
  59. Eisenberg, B. R., and Eisenberg, R. S., 1982, The T-SR junction in contracting single skeletal muscle fibers, J. Gen. Physiol. 79:1.PubMedGoogle Scholar
  60. Endo, M., 1977, Calcium release from the sarcoplasmic reticulum, Physiol. Rev. 57:71.PubMedGoogle Scholar
  61. Endo, M., Tanake, M., and Ogawa, T., 1970, Calcium induced release of calcium from the sarcoplasmic reticulum of skinned skeletal muscle fibers, Nature 228:34.PubMedGoogle Scholar
  62. Fabiato, A., and Fabiato, F., 1979, Calcium and cardiac excitation—contraction coupling, Annu. Rev. Physiol. 41:473.PubMedGoogle Scholar
  63. Feher, J. J., and Briggs, F. N., 1982, The effect of calcium load on the calcium permeability of sarcoplasmic reticulum, J. Biol. Chem. 257:10191.PubMedGoogle Scholar
  64. Fiehn, W., and Hasselbach, W., 1970, The effect of phospholipase A on the calcium transport and the role of unsaturated fatty acids in ATPase activity of sarcoplasmic vesicles, Eur. J. Biochem. 13:510.PubMedGoogle Scholar
  65. Fleischer, S., Wang, C-T., Hymel, L., Seeling, J., Brown, M. F., Herbette, L., Scarpa, A., McLaughlin, A. C., and Blasie, J. K., 1979, Structural studies of the sarcoplasmic reticulum membrane using the reconstitution approach, in: Function and Molecular Aspects of Biomembrane Transport (E. Quaglariello, F. Palmieri, S. Papa, and M. Klingenberg, eds.), Biomedical Press, Elsevier, North-Holland, p. 465.Google Scholar
  66. Folch-Pi, J., and Stoffyn, P. J., 1972, Proteolipids from membrane systems, Ann. N.Y. Acad. Sci. 195:86.PubMedGoogle Scholar
  67. Franzini-Armstrong, C., 1972, Membrane systems in muscle fibers, in: The Structure and Function of Muscle, Vol. 1 (G. H. Boume, ed.), Academic Press, New York, p. 532.Google Scholar
  68. Franzini-Armstrong, C., 1980, Structure of sarcoplasmic reticulum, Fed. Proc. 39:2403.PubMedGoogle Scholar
  69. Giotta, G. J., 1976a, Distribution of the quaternary structure of (Na+ + K+)-dependent adenosine triphosphatase by Triton X-100, Biochem. Biophys. Res. Commun. 71:776.Google Scholar
  70. Giotta, G. J., 1976b, Quaternary structure of (Na+ + K+)-dependent adenosine triphosphatase, J. Biol. Chem. 251:1247.Google Scholar
  71. Gomez-Fernandez, J. C., Goni, F. M., Bach, D., Restall, C. J., and Chapman, D., 1979, Protein—lipid interactions. A study of (Ca2+ + Mg2+) ATPase reconstituted with synthetic phospholipids, FEBS Lett. 98:224.PubMedGoogle Scholar
  72. Gomez-Fernandez, J. C., Goni, F. M., Bach, D., Restall, C. J., and Chapman, D., 1980, Biophysical studies of (Ca2+ + Mg2+)-ATPase reconstituted systems, Biochim. Biophys. Acta 598:502.PubMedGoogle Scholar
  73. Green, N. M., Allen, G., and Hebdon, G. M., 1980, Structural relationship between the calcium and magnesium-transporting ATPase of sarcoplasmic reticulum and the membrane, Ann. N.Y. Acad. Sci. 358:149.PubMedGoogle Scholar
  74. Greenway, D. C., and MacLennan, D. H., 1978, Assembly of the sarcoplasmic reticulum. Synthesis of calsequestrin and the Ca2+ + Mg2+ adenosine triphosphatase on membrane-bound polyribosomes, Can. J. Biochem. 56:452.PubMedGoogle Scholar
  75. Ha, D-B., Boland, R., and Martonosi, A., 1979, Synthesis of the calcium transport ATPase of sarcoplasmic reticulum and other muscle proteins during development of muscle cells in vivo and in vitro, Biochim. Biophys. Acta 585:165.PubMedGoogle Scholar
  76. Hackenberg, H., and Klingenberg, M., 1980, Molecular weight and hydrodynamic parameters of the adenosine 5’-diphosphate-adenosine 5’-triphosphate carrier in Triton X-100, Biochemistry 19:548.PubMedGoogle Scholar
  77. Hardwicke, P. M. D., and Green, N. M., 1974, The effect of delipidation on the adenosine triphosphatase of sarcoplasmic reticulum. Electron microscopy and physical properties, Eur. J. Biochem. 42:183.PubMedGoogle Scholar
  78. Haslem, R. J., Davidson, M. M. L., Davis, T., Lynham, J. A., and McCleuagham, M. 0., 1978, Regulation of blood platelet function by cyclic nucleotides, Adv. Cycl. Nuc. Res. 9:533.Google Scholar
  79. Hasselbach, W., 1979, The sarcoplasmic calcium pump. A model of energy transduction in biological membranes, in: Topics in Current Chemistry, Vol. 78 (F. L. Boschke, ed.), Springer-Verlag, Berlin, Heidelberg, New York, p. 1.Google Scholar
  80. Hasselbach, W., and Elfvin, L-G., 1967, Structural and chemical asymmetry of the calcium transporting membranes of the sarcotubular system as revealed by electron microscopy, J. Ultrastruct. Res. 17:598.PubMedGoogle Scholar
  81. Hasselbach, W., and Migala, A., 1975, Arrangement of proteins and lipids in the sarcoplasmic reticulum membrane, Z. Naturforsch. C30:681.Google Scholar
  82. Hastings, D. F., and Reynolds, J. A., 1979, Molecular weight of (Na+, K+) ATPase from shark rectal gland, Biochemistry 18:817.PubMedGoogle Scholar
  83. Hebdon, G. M., Cunningham, L. W., and Green, N. M., 1979, Cross-linking experiments with the adenosine triphosphatase of sarcoplasmic reticulum, Biochem. J. 179:135.PubMedGoogle Scholar
  84. Herbette, L., and Blasie, J. K., 1980, Static and time resolved structural studies on isolated sarcoplasmic reticulum membrane, in: Calcium-Binding Proteins: Structure and Function (F. L. Siegel, E. Carafoli, R. H. Kretsinger, D. H. MacLennan, and R. H. Wasserman, eds.), Elsevier, North-Holland, p. 115.Google Scholar
  85. Herbette, L., Marquardt, J., Scarpa, A., and Blasie, J., 1977, A direct analysis of lamellar X-ray diffraction from hydrated oriented multilayers of fully functional sarcoplasmic reticulum, Biophys. J. 20:245.PubMedGoogle Scholar
  86. Herbette, L., Scarpa, A., Blasie, J. K., Bauer, D. R., Wang, C-T., and Fleischer, S., 1981a, Functional characteristics of reconstituted sarcoplasmic reticulum membranes as a function of the lipid-to-protein ratio, Biophys. J. 36:27.Google Scholar
  87. Herbette, L., Scarpa, A., Blasie, J. K., Wang, C-T., Saito, A., and Fleischer, S., 1981b, Comparison of the profile structures of isolated and reconstituted sarcoplasmic reticulum membranes, Biophys. J. 36:47.Google Scholar
  88. Hesketh, T. R., Smith, G. A., Houslay, M. D., McGill, K. A., Birdsall, N. J. M., Metcalfe, J. C., and Warren, G. B., 1976, Annular lipids determine the ATPase activity of a calcium transport protein complexed with dipalmitoyllecithin, Biochemistry 15:4145.PubMedGoogle Scholar
  89. Hicks, M. J., Shigekawa, M., and Katz, A. M., 1979, Mechanism by which cyclic adenosine 3’, 5’monophosphate dependent protein kinase stimulates calcium transport in cardiac sarcoplasmic reticulum, Circ. Res. 44:384.PubMedGoogle Scholar
  90. Hidalgo, C., 1980, Inhibition of calcium transport in sarcoplasmic reticulum after modification of highly reactive amino groups, Biochem. Biophys. Res. Commun. 92:757.PubMedGoogle Scholar
  91. Hidalgo, C., and Ikemoto, N., 1977, Disposition of proteins and aminophospholipids in the sarcoplasmic reticulum membrane, J. Biol. Chem. 252:8446.PubMedGoogle Scholar
  92. Hidalgo, C., Ikemoto, N., and Gergely, J., 1976, Role of phospholipids in Ca-dependent ATPase of sarcoplasmic reticulum. Enzymetic and ESR studies with phospholipid-replaced membranes, J. Biol. Chem. 251:4224.PubMedGoogle Scholar
  93. Hidalgo, C., Thomas, D. D., and Ikemoto, N., 1978, Effect of the lipid environment on protein motion and enzymatic activity of the sarcoplasmic reticulum calcium ATPase, J. Biol. Chem. 253:6879.PubMedGoogle Scholar
  94. Hoffman, W., Sarzala, M. G., Gomez-Femandez, J. C., Goni, F. M., Restall, C. J., Chapman, D., Heppeler, G., and Kreutz, U., 1980, Protein rotational diffusion and lipid structure of reconstituted systems of Ca’-activated adenosine triphosphatase, J. Mol. Biol. 141:119.Google Scholar
  95. Holland, P. C., 1979, Biosynthesis of the Ca2+ and Mg2+-dependent adenosine triphosphatase of sarcoplasmic reticulum in cell cultures of embryonic chick heart, J. Biol. Chem. 254:7604.PubMedGoogle Scholar
  96. Holland, P. C., and MacLennan, D. H., 1976, Assembly of sarcoplasmic reticulum. Biosynthesis of the adenosine triphosphatase in rat skeletal muscle cell culture, J. Biol. Chem. 251:2030.PubMedGoogle Scholar
  97. Hudson, E. N.. and Weber, G., 1973, Synthesis and characterization of two fluorescent sulfhydryl reagents, Biochemistry 12:4154.PubMedGoogle Scholar
  98. Huxley, A. F., 1971, The activation of striated muscle and its mechanical response, Proc. R. Soc. Lond. 5er. B 178:1.Google Scholar
  99. Ikemoto, N., 1982, Structure and function of the calcium pump protein of sarcoplasmic reticulum, Annu. Rev. Phvsiol. 44:297.Google Scholar
  100. Ikemoto, N., Bhatnagar, G. M., and Gergely, J., 1971a, Fractionation of solubilized sarcoplasmic reticulum, Biochem. Biophys. Res. Commun. 44:1540.Google Scholar
  101. Ikemoto, N., Sreter, F. A., and Gergely, J., 197lb, Structural features of the vesicles of FSR-lack functional role in Ca2+ uptake and ATPase activity, Arch. Biochem. Biophys. 147:571.Google Scholar
  102. Ikemoto, N., Sreter, F. A., Nakamura, A., and Gergely, J., 1968, Tryptic digestion and localization of calcium uptake and ATPase activity in fragments of sarcoplasmic reticulum, J. Ultrastruct. Res. 23: 216.Google Scholar
  103. Ikemoto, N., Cucchiaro, J., and Garcia, A. M., 1976, A new glycoprotein factor of the sarcoplasmic reticulumJ. Cell Biol. 70:290a.Google Scholar
  104. Inesi, G., 1972, Active transport of calcium ion in sarcoplasmic membranes, Annu. Rev. Biophys. Bioeng. 1:19.Google Scholar
  105. Inesi, G., 1981, The sarcoplasmic reticulum of skeletal and cardiac muscle, in: Cell and Muscle Motility, Vol. 1 (R. M. Dowben and J. W. Shay, eds.), Plenum Publishing Corporation, New York, p. 63.Google Scholar
  106. Inesi, G., and Asai, H., 1968, Trypsin digestion of fragmented sarcoplasmic reticulum, Arch. Biochem. Biophys. 126:469.PubMedGoogle Scholar
  107. Inesi, G., and Malan, N., 1976, Mechanisms of calcium release in sarcoplasmic reticulum. Mini review, Life Sci. 18:773.PubMedGoogle Scholar
  108. Inesi, G., Millman, M., and Eletr, S., 1973, Temperature-induced transitions of function and structure in sarcoplasmic reticulum membranes, J. Mol. Biol. 81:483.PubMedGoogle Scholar
  109. Jilka, R. L., Martonosi, A. N., and Tillack, T. W., 1975, Effect of the purified (Mg2+ + Ca2+)-activated ATPase of sarcoplasmic reticulum upon the passive Ca2+ permeability and ultrastructure of phospholipid vesicles, J. Biol. Chem. 250:7511.PubMedGoogle Scholar
  110. Jones, L. R., and Cala, S. E., 1981, Biochemical evidence for functional heterogeneity of cardiac sarcoplasmic reticulum vesicles, J. Biol. Chem. 256:11809.PubMedGoogle Scholar
  111. Jones, L. R., Besch, H. R., Fleming, J. W., McConnaughey, M. M., and Watanabe, A. M., 1979, Separation of vesicles of cardiac sarcolemma from vesicles of cardiac sarcoplasmic reticulum, J. Biol. Chem. 254:530.PubMedGoogle Scholar
  112. Jorgensen, A. O., Kalnins, V. I., Zubrzycka, E., and MacLennan, D. H., 1977, Assembly of the sarcoplasmic reticulum. Localization by immunofluorescence of sarcoplasmic reticulum proteins in differentiating rat skeletal muscle cell cultures, J. Cell Biol. 74:287.PubMedGoogle Scholar
  113. Jorgensen, K. E., Lind, K. E., Roigaard-Peterson, H., and Moller, J. V., 1978, The functional unit of calcium-plus-magnesium-ion-dependent adenosine triphosphatase from sarcoplasmic reticulum, Biochem. J. 169:489.PubMedGoogle Scholar
  114. Jorgensen, A. O., Kalnins, V., and MacLennan, D. H., 1979, Localization of sarcoplasmic reticulum proteins in rat skeletal muscle by immunofluorescence, J. Cell Biol. 80:372.PubMedGoogle Scholar
  115. Jorgensen, A. O., Shen, A. C-Y., Daly, P., and MacLennan, D. H., 1982a, Localization of Ca2+ + Mg2+- ATPase of the sarcoplasmic reticulum in adult rat papillary muscle, J. Cell Biol. 93:883.Google Scholar
  116. Jorgensen, A. O., Shen, A. C.-Y., MacLennan, D. H., and Tokuyasu, K. T., 1982b, Ultrastructural localization of the Ca2+ + Mg2+ -dependent ATPase of sarcoplasmic reticulum in rat skeletal muscle by ferritin labeling of ultrathin frozen sections, J. Cell Biol. 92:409–416.Google Scholar
  117. Kaizu, T., Kirino, Y., and Shimizu, H., 1980, A saturation transfer electron spin resonance study on the break in the arrhenius plot for the rotational motion of Ca2+ -dependent adenosine triphosphatase molecules in purified and lipid replaced preparations of rabbit skeletal muscle sarcoplasmic reticulum, J. Biochem. 88:1837.PubMedGoogle Scholar
  118. Kanazawa, T., Yamada, S., Yamamoto, T., and Tonomura, Y., 1971, Reaction mechanism of the Ca2+ dependent ATPase of sarcoplasmic reticulum. V. Vectorial requirements for calcium reactions of ATPase: Formation and decomposition of a phosphorylated intermediate and ATP-formation from ADP and the intermediate, J. Biochem. 70:95.PubMedGoogle Scholar
  119. Katz, A. M., 1979, Role of the contractile proteins and sarcoplasmic reticulum in the response of the heart to catecholamines: A historical review, Adv. Cycl. Nuc. Res. 11:303.Google Scholar
  120. Katz, A. M., 1980, Relaxing effects of catecholamines in the heart, Trends Pharmacol. Sci. 1:434.Google Scholar
  121. Katz, A. M., Tada, M., and Kirchberger, M. A., 1975, Control of calcium transport in the myocardium by the cyclic AMP protein kinase system, Adv. Cycl. Nuc. Res. 5:453.Google Scholar
  122. Katz, A. M., Dunnett, J., Repke, D. I., and Hasselbach, W., 1976, Control of calcium permeability in the sarcoplasmic reticulum, FEBS Lett. 67:208.Google Scholar
  123. Katz, A. M., Repke, D. I., Fudyma, G., and Shigekawa, M., 1977, Control of calcium efflux from sarcoplasmic reticulum vesicles by external calcium, J. Biol. Chem. 252:4210–4214.PubMedGoogle Scholar
  124. Katz, A. M., Nesh-Adler, P., Watras, J., Messineo, F. C., Takenaka, H., and Louis, C. F., 1982, Fatty acid effects on calcium influx and efflux in sarcoplasmic reticulum vesicles from rabbit skeletal muscle, Biochem. Biophys. Acta 687:17.PubMedGoogle Scholar
  125. Kennedy, S. J., 1978, Structures of membrane proteins, J. Membr. Biol. 42:265.PubMedGoogle Scholar
  126. Kimura, M., Kimura, I., and Kobayashi, S., 1977, The activation of cyclic 3’,5’-adenosine monophosphate dependent protein kinase on sarcoplasmic reticulum fractions of various smooth muscles and its related novel relaxants, Biochem. Pharmacol. 26:994.PubMedGoogle Scholar
  127. Kirchberger, M. A., and Antonetz, T., 1982, Phospholamban: Dissociation of the 22,000 molecular weight protein of cardiac sarcoplasmic reticulum into 11,000 and 5,500 molecular weights forms, Biochem. Biophys. Res. Commun. 105:152.PubMedGoogle Scholar
  128. Kirchberger, M. A., Tada, M., and Katz, A. M., 1974, Adenosine 3’:5’-monophosphate-dependent protein kinase catalyzed phosphorylation reaction and its relationship to calcium transport in cardiac sarcoplasmic reticulum, J. Biol. Chem. 249:6166.PubMedGoogle Scholar
  129. Kiring, Y., Okkume, T., and Shimizu, H., 1978, Saturation transfer electron study on the rotational diffusion of calcium and magnesium dependent adenosine triphosphatase in sarcoplasmic reticulum membranes, J. Biochem. 84:111.Google Scholar
  130. Klip, A., Reithmeier, R. A. F., and MacLennan, D. H., 1980, Alignment of the major tryptic fragments of the adenosine triphosphatase from sarcoplasmic reticulum, J. Biol. Chem. 255:6562.PubMedGoogle Scholar
  131. Knowles, A. F., and Racker, E., 1975, Properties of a reconstituted calcium pump, J. Biol. Chem. 250:3538.PubMedGoogle Scholar
  132. Knowles, A. F., Kandrach, A., Racker, E., and Khorana, H. G., 1975, Acetyl phosphatidylethanolamine in the reconstitution of ion pumps, J. Biol. Chem. 250:1809.PubMedGoogle Scholar
  133. Knowles, A. F., Eyton, E., and Racker, E., 1976, Phospholipid protein interactions in the Ca2+ adenosine triphosphatase of sarcoplasmic reticulum, J. Biol. Chem. 251:5161.PubMedGoogle Scholar
  134. Knowles, A., Zimniak, P., Alfonso, M., Zimnik, A., and Racker, E., 1980, Isolation and characterization of proteolipids from sarcoplasmic reticulum, J. Membr. Biol. 55:233.PubMedGoogle Scholar
  135. Kyte, T., 1972, Properties of the two polypeptides of sodium and potassium dependent adenosine triphosphatase, J. Biol. Chem. 247:7642.PubMedGoogle Scholar
  136. Laemmli, U. K., 1970, Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature 227:680.PubMedGoogle Scholar
  137. Lau, Y. H., Caswell, A. H., and Brunschwig, J. P., 1977, Isolation of transverse tubules by fractionation of triad junctions of skeletal muscle, J. Biol. Chem. 252:5565.PubMedGoogle Scholar
  138. Lee, A. G., Birdsall, N. J. M., Metcalf, J. C., Toon, P. A., and Warren, G. B., 1974, Clusters in lipid bilayers and the interpretation of thermal effects in biological membranes, Biochemistry 13:3699.PubMedGoogle Scholar
  139. Le Maire, M., Jorgensen, K. E., Roigaard-Peterson, H., and Moller, J. V., 1976a, Properties of deoxycholate solubilized sarcoplasmic reticulum Ca2+-ATPase, Biochemistry 15:5805.Google Scholar
  140. Le Maire, M., Moller, J. V., and Tanford, C., 1976b, Retention of enzyme activity by detergent solubilized sarcoplasmic reticulum Ca2+ ATPase, Biochemistry 15:2336.Google Scholar
  141. Le Maire, M., Lind, K. F., Jorgensen, K. E., Roigaard-Peterson, H., and Moller, J. V., 1978, Enzymatically active Ca2+ ATPase from sarcoplasmic reticulum membrane, solubilized by nonionic detergents. Role of lipid for aggregation of the protein, J. Biol. Chem. 253:7051.PubMedGoogle Scholar
  142. Le Maire, M., Moller, J. V., and Gulik-Krzywicki, T., 1981, Freeze-fracture study of water-soluble, standard proteins and of detergent solubilized forms of sarcoplasmic reticulum Ca2+ ATPase, Biochim. Biophvs. Acta 643:115.Google Scholar
  143. Le Peuch, C. J., Haieck, J., and Demaille, J. G., 1979, Concerted regulation of cardiac sarcoplasmic reticulum calcium transport by cyclic adenosine monophosphate dependent and calcium-colmodulin dependent phosphorylation, Biochemistry 19:3368.Google Scholar
  144. Le Peuch, C. J., Le Peuch, D. A. M., and Demaille, J. G., 1980, Phospholamban, activator of the cardiac sarcoplasmic reticulum calcium pump. Physiochemical properties and diagonal purification, Biochemistry 19:3368.PubMedGoogle Scholar
  145. Levitsky, D. O., Aliev, M. K., Kuzmin, A. V., Levchenko, T. S., Smirna, V. N., and Chazov, E. I., 1976, Isolation of calcium pump system and purification of calcium ion-dependent ATPase from heart muscle, Biochim. Biophvs. Acta 443:468.Google Scholar
  146. Liang, S-M., and Winter, C. G., 1977, Digitonin-induced changes in subunit arrangement in relation to some in vitro activities of the (Na2+,K2+) ATPase, J. Biol Chem. 252:8278.PubMedGoogle Scholar
  147. Liu, T., Stetson, B., Turco, S. J., Hubbard, S. C., and Robbins, P. W., 1979, Arrangement of glucose residues in the lipid linked oligosaccharide precursor of asparaginyl oligosaccharide, J. Biol. Chem. 254:4554.PubMedGoogle Scholar
  148. Louis, C. F., and Jarvis, B., 1982, Affinity labeling of calmodulin-binding components in canine cardiac sarcoplasmic reticulum, J. Biol. Chem. 257:15187.PubMedGoogle Scholar
  149. Louis, C. F., and Maffitt, M., 1982, Characterization of calmodulin-mediated phosphorylation of cardiac muscle sarcoplasmic reticulum, Arch. Biochem. Biophys. 218:109.PubMedGoogle Scholar
  150. Louis, C. F., and Shooter, E. M., 1972, The proteins of rabbit skeletal muscle sarcoplasmic reticulum, Arch. Biochem. Biophys. 153:641.PubMedGoogle Scholar
  151. Louis, C. F., Nash-Adler, P. A., Fudyma, G., Shigekawa, M., Akowitz, A., and Katz, A. M., 1980, A comparison of vesicles derived from terminal cistemae and longitudinal tubules of sarcoplasmic reticulum isolated from rabbit skeletal muscle, Eur. J. Biochem. 111:1.PubMedGoogle Scholar
  152. Louis, C. F., Maffitt, M., and Jarvis, B., 1982, Factors that modify the molecular size of phospholamban, the 23,000-dalton cardiac sarcoplasmic reticulum phosphoprotein, J. Biol. Chem. 257:15182.PubMedGoogle Scholar
  153. MacLennan, D. H., 1970, Purification and properties of an adenosine triphosphatase from sarcoplasmic reticulum, J. Biol. Chem. 245:4508.PubMedGoogle Scholar
  154. MacLennan, D. H., 1975, Resolution of the calcium transport system of sarcoplasmic reticulum, Can. J. Biochem. 53:251.PubMedGoogle Scholar
  155. MacLennan, D. H., and Holland, P. C., 1975, Calcium transport in sarcoplasmic reticulum, Annu. Rev. Biophys. Bioenerg. 4:377.Google Scholar
  156. MacLennan, D. H., and Holland, P. C., 1976, The calcium transport ATPase of sarcoplasmic reticulum, in: The Enzymes of Biological Membranes, Vol. 3 (A. Martonosi, ed.), Plenum Press, New York, p. 221.Google Scholar
  157. MacLennan, D. H., and Reithmeier, R. A. F., 1982, The structure of the Ca2+/Mg2+-ATPase of sarcoplasmic reticulum, in: Membranes and Transport, Vol. 1 (A. Martonosi, ed.), Plenum Publishing Corporation, New York, p. 567.Google Scholar
  158. MacLennan, D. H., and Wong, P. T. S., 1971, Isolation of a calcium sequestering protein from sarcoplasmic reticulum, Proc. Natl. Acad. Sci. USA 68:1231.PubMedGoogle Scholar
  159. MacLennan, D. H., Seeman, P., Iles, G. H., and Yip, C. C., 1971, Membrane formation by the adenosine triphosphatase of sarcoplasmic reticulum, J. Biol. Chem. 246:2702.PubMedGoogle Scholar
  160. MacLennan, D. H., Yip, C. C., Iles, G. H., and Seeman, P., 1972, Isolation of sarcoplasmic reticulum proteins, Cold Spring Harbor Symp. Quant. Biol. 37:460.Google Scholar
  161. MacLennan, D. H., Zubrzycka, E., Jorgensen, A. O., and Kalnins, I., 1978, Assembly of the sarcoplasmic reticulum, in: The Molecular Biology of Membranes (S. Fleischer, Y. Hatefi, D. H. MacLennan, and A. Tzagoloff, eds.), Plenum Press, New York, p. 304.Google Scholar
  162. MacLennan, D. H., Reithmeier, R. A. F., Shoshan, V., Campbell, K. P., LeBel, D., Herrmann, T. R., and Shamoo, A. F., 1980, Ion pathways in proteins of the sarcoplasmic reticulum, Ann. N.Y. Acad. Sci. 358:138.PubMedGoogle Scholar
  163. MacLennan, D. H., Shoshan, V., and Wood, D. S., 1982, Studies of Ca’ release from sarcoplasmic reticulum, Ann. N.Y. Acad. Sci. 402:400.Google Scholar
  164. Madden, T. D., and Quinn, P. J., 1979, Arrhenius discontinuities of Ca2+-ATPase activity are related to changes in membranes lipid fluidity of sarcoplasmic reticulum, FEBS Lett. 107:110.PubMedGoogle Scholar
  165. Madden, T. D., Chapman, D., and Quinn, P. J., 1979, Cholesterol modulates activity of calcium dependent ATPase of the sarcoplasmic reticulum, Nature 279:538.PubMedGoogle Scholar
  166. Madden, T. D., King, M. D., and Quinn, P. J., 1981, The modulation of Ca2+-ATPase activity of sarcoplasmic reticulum membrane cholesterol. The effect of enzyme coupling, Biochim. Biophys. Acta 641:265.PubMedGoogle Scholar
  167. Malan, N., Sabbadini, R., Scales, D., and Inesi, G., 1975, Functional and structural roles of sarcoplasmic reticulum protein components, FEBS Lett. 60:122.Google Scholar
  168. Marcelja, S., 1976, Lipid-mediated protein interaction in membranes, Biochim. Biophys. Acta 455:1.PubMedGoogle Scholar
  169. Martonosi, A., 1967, The role of phospholipids in the ATPase activity of skeletal muscle microsomes, Biochem. Biophys. Res. Commun. 29:753.PubMedGoogle Scholar
  170. Martonosi, A., 1968, Sarcoplasmic reticulum. IV. Localization of microsomal adenosine triphosphatase, J. Biol. Chem. 243:71.PubMedGoogle Scholar
  171. Martonosi, A., 1972, Biochemical and clinical aspects of sarcoplasmic reticulum function, Curr. Top. Membr. Trans. 3:83.Google Scholar
  172. Martonosi, A., 1975, Membrane transport during development of animals, Biochim. Biophys. Acta 415:311.PubMedGoogle Scholar
  173. Martonosi, A., 1980, Calcium pumps, Fed. Proc. 39:2401.PubMedGoogle Scholar
  174. Martonosi, A., 1982, The development of sarcoplasmic reticulum membranes, Annu. Rev. Physiol. 44:337.PubMedGoogle Scholar
  175. Martonosi, A., and Fortier, F., 1974, The effect of anti-ATPase antibodies upon the Ca2+ transport of sarcoplasmic reticulum, Biochem. Biophys. Res. Commun. 60:382.PubMedGoogle Scholar
  176. Martonosi, A., and Halpin, R., 1971, Sarcoplasmic reticulum. X. The protein composition of sarcoplasmic reticulum membranes, Arch. Biochem. Biophys. 144:66.PubMedGoogle Scholar
  177. Martonosi, A., Donley, J., and Halpin, R. A., 1968, Sarcoplasmic reticulum. III. The role of phospholipids in the adenosine triphosphatase activity and Ca2+ transport, J. Biol. Chem. 253:61.Google Scholar
  178. Martonosi, A., Boland, R., and Halpin, R. A., 1972, The biosynthesis of sarcoplasmic reticulum membranes and the mechanism of calcium transport, Cold Spring Harbor Symp. Quant. Biol. 37:455.Google Scholar
  179. Martonosi, A., Roufa, D., Boland, R., Reyes, E., and Tillack, T. W., 1977, Development of sarcoplasmic reticulum in cultured chicken muscle, J. Biol. Chem. 252:318.PubMedGoogle Scholar
  180. Martonosi, A., Chyn, T. L., and Schibeci, A., 1978, The calcium transport of sarcoplasmic reticulum, Ann. N.Y. Acad. Sci. 307:148.PubMedGoogle Scholar
  181. McFarland, B. H., and Inesi, G., 1971, Solubilization of sarcoplasmic reticulum with Triton X-100, Arch. Biochem. Biophys. 145:456.PubMedGoogle Scholar
  182. McKinley, D., and Meissner, G., 1978, Evidence for a K2+, Na2+ permeable channel in sarcoplasmic reticulum, J. Membr. Biol. 44:159–186.PubMedGoogle Scholar
  183. McLaughlin, A. C., Herbette, L., Blasie, J. K., Wang, C. T., Hymel, L., and Fleischer, S., 1981, 31P-NMR studies of oriented multilayers formed from isolated sarcoplasmic reticulum and reconstituted sarcoplasmic reticulum. Evidence that “boundary-layer” phospholipid is not immobilized, Biochim. Biophys. Acta 643:1.PubMedGoogle Scholar
  184. Meissner, G., 1973, ATP and Ca2+ binding by the Ca2+ pump protein of sarcoplasmic reticulum, Biochim. Biophys. Acta 298:906.PubMedGoogle Scholar
  185. Meissner, G., 1975, Isolation and characterization of two types of sarcoplasmic reticulum vesicles, Biochim. Biophys. Acta 389:51.PubMedGoogle Scholar
  186. Meissner, G., 1981, Calcium transport and monovalent cation and proton fluxes in sarcoplasmic reticulum, J. Biol. Chem. 256:636.PubMedGoogle Scholar
  187. Meissner, G., and Fleischer, S., 1972, The role of phospholipid in Ca2+ stimulated ATPase activity of sarcoplasmic reticulum, Biochim. Biophys. Acta 255:19.PubMedGoogle Scholar
  188. Meissner, G., and Fleischer, S., 1973, Ca2+ uptake in reconstituted sarcoplasmic reticulum vesicles, Biochem. Biophys. Res. Commun. 59:913.Google Scholar
  189. Meissner, G., and Fleischer, S., 1974, Dissociation and reconstitution of functional sarcoplasmic reticulum vesicles, J. Biol. Chem. 249:302.PubMedGoogle Scholar
  190. Meissner, G.. and McKinley, D., 1976, Permeability of sarcoplasmic reticulum membrane: The effect of changed ionic environments on Ca2+ release, J. Biol. Chem. 255:6814.Google Scholar
  191. Meissner, G., and Young, G., 1980, Proton permeability of sarcoplasmic reticulum vesicles, J. Biol. Chem. 255:6814.PubMedGoogle Scholar
  192. Meissner, G., Conner, G., and Fleischer, S., 1973, Isolation of sarcoplasmic reticulum by zonal centrifugation and purification of Ca2+ pump and Ca2+ binding proteins, Biochim. Biophys. Acta 298:246.PubMedGoogle Scholar
  193. Melgunov, V. I., and Alimara, E. I., 1980, The dependence for reactivation of lipid-depleted Ca2+ -ATPase of sarcoplasmic reticulum by non-ionic detergents on their hydrophile/lipophile balance, FEBS Lett. 121:235.PubMedGoogle Scholar
  194. Michalak, M., and MacLennan, D. H., 1980, Assembly of the sarcoplasmic reticulum. Biosynthesis of the high affinity calcium binding protein in rat skeletal muscle cell cultures, J. Biol. Chem. 255:1327.PubMedGoogle Scholar
  195. Michalak, M., and Sarzala, M. G., 1975, Ultrastructure of sarcoplasmic reticulum membrane during development of rabbit skeletal muscle, Ann. Med. Sect. Pol. Acad. Sci. 20:93.PubMedGoogle Scholar
  196. Michalak, M., Campbell, P. K., and MacLennan, D. H., 1980, Localization of the high affinity calcium binding protein and an intrinsic glycoprotein in sarcoplasmic reticulum membranes, J. Biol. Chem. 255:1317.PubMedGoogle Scholar
  197. Migala, A., Agostini, B., and Hasselbach, W., 1973, Tryptic fragmentation of the calcium transport system in the sarcoplasmic reticulum, Z. Naturforsch. 28:178.Google Scholar
  198. Millman, M. S., 1980, A thermal transition of passive calcium efflux in fragmented sarcoplasmic reticulum, Membr. Biochem. 3:271.PubMedGoogle Scholar
  199. Mitchinson, C., Wilderspin, A. F., Trinnaman, B. J., and Green, N. M., 1982, Identification of a labelled peptide after stoichiometric reaction of fluorescein isothiocyanate with the Ca2+ -dependent adenosine triphosphatase of sarcoplasmic reticulum, FEBS Lett. 146:87.PubMedGoogle Scholar
  200. Miyamoto, H., and Racker, E., 1981, Calcium induced calcium release at terminal cisternae of skeletal sarcoplasmic reticulum, FEBS Lett. 133:235.PubMedGoogle Scholar
  201. Miyamoto, H., and Racker, E., 1982, Mechanism of calcium release from skeletal sarcoplasmic reticulum, J. Membr. Biol. 66:193.PubMedGoogle Scholar
  202. Moller, J. V., Lind, K. E., and Andersen, J. P., 1980, Enzyme kinetics and substrate stabilization of detergent solubilized and membranous (Ca2+ + Mg2+)-activated ATPase from sarcoplasmic reticulum. Effect of protein—protein interactions, J. Biol. Chem. 255:1912.PubMedGoogle Scholar
  203. Moller, J. V., Andersen, J. P., and le Maire, M., 1982, The sarcoplasmic reticulum Ca2+ -ATPase, Mol. Cell. Biochem. 42:83.PubMedGoogle Scholar
  204. Moore, B. M., Lentz, B. R., and Meissner, G., 1978, Effects of sarcoplasmic reticulum Ca2+ ATPase on phospholipid bilayer fluidity: Boundry lipid, Biochemistry 17:5248.PubMedGoogle Scholar
  205. Mostov, K. E., De Foor, P., Fleischer, S., and Blobel, G., 1981, Co-translational membrane integration of calcium pump protein without signal sequence cleavage, Nature 292:87.PubMedGoogle Scholar
  206. Murphy, A. J., 1976, Sulfhydryl group modification of sarcoplasmic reticulum membranes, Biochemistry 15:4492.PubMedGoogle Scholar
  207. Murphy, A. J., 1977, Sarcoplasmic reticulum adenosine triphosphatase: Labeling of an essential lysyl residue with pyridoxyl-5’-phosphate, Arch. Biochem. Biophys. 180:114.PubMedGoogle Scholar
  208. Murphy, A. J., Pepitone, M., and Highsmith, S., 1982, Detergent-solubilized sarcoplasmic reticulum ATPase. Hydrodynamic and catalytic propertiesJ. Biol. Chem. 257:3551.PubMedGoogle Scholar
  209. Nagasaki, K., and Kasai, M., 1980, Magnesium permeability of sarcoplasmic reticulum vesicles monitored in terms of chlortetracycline fluorescence, J. Biochem. 87:709.PubMedGoogle Scholar
  210. Nakamura, H., and Martonosi, A. N., 1980, Effect of phospholipid substitution on the mobility of protein bound spin labels in sarcoplasmic reticulum, J. Biochem. 87:525.PubMedGoogle Scholar
  211. Nakamura, H., Jilka, R. L., Boland, R., and Martonosi, A. N., 1976, Mechanism of ATP hydrolysis by sarcoplasmic reticulum and the role of phospholipids, J. Biol. Chem. 25:5414.Google Scholar
  212. Nakamura, M., and Ohnishi, S., 1975, Organization of lipids in sarcoplasmic reticulum membranes and Ca’-dependent ATPase activity, J. Biochem. 78:1039.PubMedGoogle Scholar
  213. Nestruck-Goyke, A. C., and Hasselbach, W., 1981, Preparative isolation of Apo (Ca2+-ATPase) from sarcoplasmic reticulum and the reactivation by lysophosphatidylcholine of Ca2+ -dependent ATP hydrolysis and partial-reaction steps of the enzyme, Eur. J. Biochem. 114:339.PubMedGoogle Scholar
  214. Nigg, E. A., and Cherry, R. J., 1979, Dimeric association of band 3 in the erythrocyte membrane demonstrated by protein diffusion measurements, Nature 277:493.PubMedGoogle Scholar
  215. Nishikori, K., and Maeno, H., 1979, Close relationship between adenosine 3’: 5’-monophosphate-dependent endogenous phosphorylation of a specific protein and stimulation of calcium uptake in rat uterine microsomes, J. Biol. Chem. 254:6099.PubMedGoogle Scholar
  216. Ogawa, Y., and Ebashi, S., 1976, Ca-releasing action of y,ß-methylene adenosine triphosphate on fragmented sarcoplasmic reticulum, J. Biochem. 80:1179.Google Scholar
  217. Ohnoki, S., and Martonosi, A., 1980, Purification and characterization of the proteolipid of rabbit sarcoplasmic reticulum, Biochim. Biophys. Acta 626:170.PubMedGoogle Scholar
  218. Ostwald, T. J., and MacLennan, D. H., 1974, Isolation of a high affinity calcium-binding protein from sarcoplasmic reticulum, J. Biol. Chem. 249:974.PubMedGoogle Scholar
  219. Ostwald, T. J., MacLennan, D. H., and Dorrington, K. J., 1974, Effects of cation binding on the conformation of calsequestrin and the high affinity calcium binding protein of sarcoplasmic reticulum, J. Biol. Chem. 249:5867.PubMedGoogle Scholar
  220. Owens, K., Ruth, R. C., and Waglicki, W. B., 1972, Lipid composition of purified fragmented sarcoplasmic reticulum of the rabbit, Biochim. Biophys. Acta 288:479.PubMedGoogle Scholar
  221. Packer, L., Mehard, C. W., Meissner, G., Zahler, W. L., and Fleischer, S., 1974, The structural role of lipids in mitochondrial and sarcoplasmic reticulum membranes. Freeze-fracture electron microscopy studies, Biochim. Biophys. Acta 254:9754.Google Scholar
  222. Pennington, J., and Hokin, L. E., 1979, Effects of wheat germ agglutinin on the coupled transports of sodium and potassium in reconstituted (Na,K)-ATPase liposomes, J. Biol. Chem. 254:9754.PubMedGoogle Scholar
  223. Peters, K., and Richards, F. M., 1977, Chemical cross-linking reagents and proteins in studies of membrane structure, Annu. Rev. Biochem. 46:523.PubMedGoogle Scholar
  224. Pick, U., 1981, Dynamic interconversions of phosphorylated and non-phosphorylated intermediates of the Ca2+ ATPase from sarcoplasmic reticulum followed in a fluorescein-labeled enzyme, FEBS Lett. 123:131.PubMedGoogle Scholar
  225. Pick, U., and Bassilian, S., 1980, Modification of the ATP binding site of the Ca2+-ATPase from sarcoplasmic reticulum by fluorescein isothiocyanate, FEBS Lett. 123:127.Google Scholar
  226. Pick, U., and Karlish, S. J. D., 1980, Indications for an oligomeric structure and for conformation changes in sarcoplasmic reticulum Ca2+-ATPase labeled selectively with fluorescence, Biochim. Biophys. Acta 626:255.PubMedGoogle Scholar
  227. Pick, U., and Racker, E., 1979, Inhibition of the (Ca2+) ATPase from sarcoplasmic reticulum by dicyclohexyl carbodiimide. Evidence for location of the Ca’ binding site in a hydrophobic region, Biochemistry 18:108.PubMedGoogle Scholar
  228. Porter, K. P., and Palade, G. E., 1957, Studies on the endoplasmic reticulum. III. Its form and distribution in striated muscle cells, J. Biophys. Biochem. Cytol. 3:269–319.PubMedGoogle Scholar
  229. Quinn, P. J., Gomez, R., and Madden, T. D., 1980, Modification of membrane lipids of sarcoplasmic reticulum to probe the influence of bilayer fluidity on Ca2+ activated ATPase activity, Biochem. Soc. Trans. 8:38.PubMedGoogle Scholar
  230. Racker, E., 1972, Reconstitution of a calcium pump with phospholipids and a purified Ca2+ -adenosine triphosphatase from sarcoplasmic reticulum, J. Biol. Chem. 247:8798.Google Scholar
  231. Racker, E., and Eyton, E., 1975, A coupling factor from sarcoplasmic reticulum required for the translocation of Ca2+-ions in a reconstituted Ca2+-ATPase pump, J. Biol. Chem. 250:7533.PubMedGoogle Scholar
  232. Reithmeier, R. A. F., and MacLennan, D. H., 1981, The NH2 terminus of the (Ca2+ + Mg2+) adenosine triphosphatase is located on the cytoplasmic surface of the sarcoplasmic reticulum membrane, J. Biol. Chem. 256:5957.PubMedGoogle Scholar
  233. Reithmeier, R. A. F., de Leon, S., and MacLennan, D. H., 1980, Assembly of the sarcoplasmic reticulum. Cell-free synthesis of the Ca2+ + Mg2+ adenosine triphosphatase and calsequestrin, J. Biol. Chem. 255:11839.PubMedGoogle Scholar
  234. Repke, D. I., Spivak, J. C., and Katz, A. M., 1976, Reconstitution of an active calcium pump in sarcoplasmic reticulum, J. Biol. Chem. 251:3169.PubMedGoogle Scholar
  235. Rice, D. M., Meadows, M. D., Scheinman, A. O., Goni, F. M., Gomez-Fernandez, J. C., Moscarello, M. A., Chapman, D., and Oldfield, E., 1979, Protein—lipid interactions. A nuclear magnetic resonance study of sarcoplasmic reticulum Ca’, Mg’--ATPase, lipophilin, and proteolipid apoprotein-lecithin systems and a comparison with the effects of cholesterol, Biochemistry 18:5893.PubMedGoogle Scholar
  236. Rizzolo, L., Le Maire, M., Reynolds, J. A., and Tanford, C., 1976, Molecular weights and hydrophobicity of the polypeptide chain of sarcoplasmic reticulum calcium (II) adenosine triphosphatase and its primary tryptic fragments. Biochemistry 15:3433.PubMedGoogle Scholar
  237. Rosemblatt, M., Hidalgo, C., Vergara, C., and Ikemoto, N., 1981, Immunological and biochemical properties of transverse tubule membranes isolated from rabbit skeletal muscle, J. Biol. Chem. 256:8140.PubMedGoogle Scholar
  238. Roufa, D., Wu, F. S., and Martonosi, A., 1981, The effect of Ca2+ ionophores upon the synthesis of proteins in cultured skeletal muscle. Biochim. Biophys. Acta 674:225.PubMedGoogle Scholar
  239. Saito, A., Wang, C-T., and Fleischer, S.. 1978, Membrane asymmetry and enhanced ultrastructural detail of sarcoplasmic reticulum revealed with the use of tannic acid, J. Cell Biol. 79:601.PubMedGoogle Scholar
  240. Sarzala, M. G., and Michalak, M., 1978, Studies on the heterogeneity of sarcoplasmic reticulum vesicles, Biochim. Biophys. Acta 513:221.PubMedGoogle Scholar
  241. Sarzala, M. G., Zubrzycka, E., and Drabikowski, W., 1974, Characterization of the constituents of sarcoplasmic reticulum membrane, in: Calcium Binding Proteins (W. Drabikowski, M. Strzelecka-Golaszewska, and E. Carafoli, eds.), Elsevier, Amsterdam, p. 317.Google Scholar
  242. Sarzala, M. G., Zubrzycka, E.. and Michalak, M., 1975a, Comparison of some features of undeveloped and mature sarcoplasmic reticulum, in: Calcium Transport in Contraction and Secretion (E. Carafoli, F. Clementi, W. Drabikowski, and A. Margreth, eds.), Amsterdam, North-Holland, p. 329.Google Scholar
  243. Sarzala, M. G., Pilarska, M., Zubrzycka, E., and Michalak, M., 1975b, Changes in the structure, composition and function of sarcoplasmic reticulum membrane during development, Eur. J. Biochem. 57:25.Google Scholar
  244. Scales, D. J. and Inesi, G., 1976, Assembly of ATPase protein in sarcoplasmic reticulum membranes, Biophys. J. 16:735.PubMedGoogle Scholar
  245. Scales, D. J., and Sabbadini, R. A., 1979, Microsomal T system. A sterological analysis of purified microsomes derived from normal and dystrophic skeletal muscle, J. Cell Biol. 83:33.PubMedGoogle Scholar
  246. Schlesinger, M. J.. 1981, Proteolipids, Annu. Rev. Biochem. 50:193.PubMedGoogle Scholar
  247. Seelig, J., Tamm, L., Hymel, L., and Fleischer, S., 1981, Deuterium and phosphorus nuclear magnetic resonance and fluorescence depolarization studies of functional reconstituted sarcoplasmic reticulum membrane vesicles, Biochemistry 20:3922.PubMedGoogle Scholar
  248. Shamoo, A. E., 1978. Inophorous properties of the 20,000 dalton fragment of (Ca2+ + Mg2+)-ATPase in phosphatidylcholine: Cholesterol membranes, J. Membr. Biol. 43:227.PubMedGoogle Scholar
  249. Shamoo, A. E., and MacLennan, D. H., 1974, A Ca2+ dependent and selective ionophore as part of the Ca2+ + Mg2+ dependent adenosine triphosphatase of sarcoplasmic reticulum, Proc. Natl. Acad. Sci. USA 71:3522.PubMedGoogle Scholar
  250. Shamoo, A. E., Ryan, T. E., Stewart, P. S., and MacLennan, D. H., 1976, Localization of ionophore activity in a 50,000 dalton fragment of the adenosine triphosphatase of sarcoplasmic reticulum, J. Biol. Chem. 251:4147.PubMedGoogle Scholar
  251. Shigekawa, M., Finegan, J. A. M., and Katz, A. M., 1976, Calcium transport ATPase of canine cardiac sarcoplasmic reticulum. A comparison with that of rabbit fast skeletal muscle sarcoplasmic reticulum, J. Biol. Chem. 251:6894.PubMedGoogle Scholar
  252. Shoshan, V., and MacLennan, D. H., 1981, Quercetin interaction with the Ca2+ + Mg’ ATPase of sarcoplasmic reticulum, J. Biol. Chem. 256:887.PubMedGoogle Scholar
  253. Shoshan, V., Campbell, K. P., MacLennan, D. H., Frodis, W., and Britt, B. A., 1980, Quercetin inhibits Ca2+ uptake but not Ca2+ release by sarcoplasmic reticulum skinned muscle fibers, Proc. Natl. Acad. Sci. USA 77:4435.PubMedGoogle Scholar
  254. Shoshan, V., MacLennan, D. H., and Wood, D. S., 1981, A proton gradient controls a calcium release channel in sarcoplasmic reticulum, Proc. Natl. Acad. Sci. USA 78:4828.PubMedGoogle Scholar
  255. Somlyo, A. V., Gonzalez-Serratos, H., Shuman, H., McClellan, G., and Somlyo, A. P., 1981, Calcium release and ionic changes in the sarcoplasmic reticulum of tetamized muscle: An electron-probe study, J. Cell Biol. 90:577.PubMedGoogle Scholar
  256. Sommer, J., and Johnson, E., 1979, Ultrastructure of cardiac muscle, in: Handbook of Physiology, Vol. 1 (R. Berne, J. Sperelakis, and S. Geiger, eds.), Am. Physiol. Soc., Bethesda, Maryland, p. 113.Google Scholar
  257. Stephenson, E. W., and Podolsky, R. J., 1977, Influence of magnesium on chloride induced calcium release in skinned muscle fibers, J. Gen. Physiol. 69:17.PubMedGoogle Scholar
  258. Stewart, P. S., and MacLennan, D. H., 1974, Surface particles of sarcoplasmic reticulum membrane, Structural features of the adenosine triphosphatase, J. Biol. Chem. 249:985.PubMedGoogle Scholar
  259. Stewart, P. S., and MacLennan, D. H., 1975, Isolation and characterization of tryptic fragments of the sarcoplasmic reticulum adenosine triphosphatase, Ann. N.Y. Acad. Sci. 264:326.PubMedGoogle Scholar
  260. Stewart, P. S., MacLennan, D. H., and Shamoo, A. E., 1976, Isolation and characterization of tryptic fragments of the adenosine triphosphatase of sarcoplasmic reticulum, J. Biol. Chem. 251:712.PubMedGoogle Scholar
  261. Suko, J., and Hasselbach, W., 1976, Characterization of cardiac sarcoplasmic reticulum ATP—ADP phosphate exchange and phosphorylation of the calcium transport adenosine triphosphatase, Eur. J. Biochem. 64:123.PubMedGoogle Scholar
  262. Suzuki, S., and Sugi, H., 1982, Mechanisms of intracellular calcium translocation in muscle, in: The Role of Calcium in Biological Systems, Vol. I (L. J. Aughileri and A. M. Tuffet-Aughileri, eds.), CRC Press, Boca Raton, Florida, p. 201.Google Scholar
  263. Svaboda, G., Fritzsche, J., and Hasselbach, W., 1979, Effects of phospholipase A2 and albumine on the calcium dependent ATPase and the lipid composition of sarcoplasmic reticulum, Eur. J. Biochem. 95:77.Google Scholar
  264. Tada, M., and Katz, A. M., 1982, Phosphorylation of sarcoplasmic reticulum and sarcolemma, Annu. Rev. Physiol. 44:401.PubMedGoogle Scholar
  265. Tada, M., Yamamoto, T., and Tonomura, Y., 1978a, Molecular Mechanism of Active calcium transport by sarcoplasmic reticulum, Physiol. Rev. 58:1.Google Scholar
  266. Tada, M., Ohmori, F., Kinoshite, N., and Abe, H., 1978b, Cyclic AMP regulation of active calcium transport across membranes of sarcoplasmic reticulum: Role of the 22,000-dalton protein phospholamban, Adv. Cycl. Nuc. Res. 9:355.Google Scholar
  267. Tada, M., Ohmori, F., Yamada, M., and Abe, H., 1979, Mechanism of the stimulation of Ca2+ dependent ATPase of cardiac sarcoplasmic reticulum by adenosine 3’-5’-monophosphate dependent protein kinase. Role of the 22,000 dalton protein, J. Biol. Chem. 254:319.PubMedGoogle Scholar
  268. Tada, M., Yamada, M., Ohmori, F., Kuzuya, T., Inui, M., and Abe, H., 1980, Transient state kinetic studies of Ca2+ dependent ATPase and calcium transport by cardiac sarcoplasmic reticulum. Effect of cyclic AMP-dependent protein kinase catalyzed phosphorylation of phospholamban, J. Biol. Chem. 255:198.Google Scholar
  269. Tada, M., Yamamoto, M., Kadoma, M., Inui, M., and Ohmori, F., 1982, Calcium transport by cardiac sarcoplasmic reticulum and phosphorylation of phosphalamban, Mol. Cell. Biochem. 46:73.PubMedGoogle Scholar
  270. The, R., Husseini, S. H., and Hasselbach, W., 1981, Synthetic monoacylphospholipids as reactivators of the calcium dependent ATPase of enzymatically delipidated sarcoplasmic reticulum, Eur. J. Biochem. 118:223.PubMedGoogle Scholar
  271. Thomas, D. D., and Hidalgo, C., 1978, Rotational motion of the sarcoplasmic reticulum Ca2+-ATPase Proc. Natl. Acad. Sci. USA 75:5488.PubMedGoogle Scholar
  272. Thorley-Lawson, D. A., and Green, N. M., 1973, Studies on the location and orientation of proteins in the sarcoplasmic reticulum, Eur. J. Biochem. 40:403.PubMedGoogle Scholar
  273. Thorley-Lawson, D. A., and Green, N. M., 1975, Separation and characterization of tryptic fragments from the adenosine triphosphatase of sarcoplasmic reticulum, Eur. J. Biochem. 59:193.PubMedGoogle Scholar
  274. Thorley-Lawson, D. A., and Green, N. M., 1977, The reactivity of the thiol groups of the adenosine triphosphatase of sarcoplasmic reticulum and their location on tryptic fragments of the molecule, Biochem. J. 167:739.PubMedGoogle Scholar
  275. Tillack, T. W., Boland, R., and Martonosi, A., 1974, The ultrastructure of developing sarcoplasmic reticulum, J. Biol. Chem. 249:624.PubMedGoogle Scholar
  276. Tong, S. W., 1977, The aceylated NH2-terminus of Ca ATPase from rabbit skeletal muscle sarcoplasmic reticulum: A common NH2 termined acetylated methionyl sequence, Biochem. Biophys. Res. Commun. 74:1242.PubMedGoogle Scholar
  277. Tong, S. W., 1980, Studies on the structure of the calcium dependent adenosine triphosphatase from rabbit skeletal muscle sarcoplasmic reticulum, Arch. Biochem. Biophys. 203:780.PubMedGoogle Scholar
  278. Vale, M. G. P., 1977, Localization of the amino phospholipids in sarcoplasmic reticulum membranes revealed by trinitrobenzenesulfonate and fluorodinitrobenzene, Biochim. Biophys. Acta 417:39.Google Scholar
  279. Vanderkooi, J. M., lerokomas, A., Nakamura, H., and Martonosi, A., 1977, Fluorescence energy transfer between Ca2+ transport ATPase molecules in artificial membranes, Biochemistry 16:1262.PubMedGoogle Scholar
  280. Van Winkle, W. B., and Entman, M. L., 1979, Minireview. Comparative aspects of cardiac and skeletal muscle sarcoplasmic reticulum, Life Sci. 25:1189.PubMedGoogle Scholar
  281. Van Winkle, W. B., Phitts, B. J. R., and Entman, M. L., 1978, Rapid purification of canine cardiac sarcoplasmic reticulum Ca’ ATPase, J. Biol. Chem. 253:8671.PubMedGoogle Scholar
  282. Wang, C-T., Saito, A., and Fleischer, S., 1979, Correlation of ultrastructure of reconstituted sarcoplasmic reticulum membrane vesicles with variation in phospholipid to protein ratio, J. Biol. Chem. 254:9209.PubMedGoogle Scholar
  283. Warren, G. B., and Metcalf, J. G., 1976, The molecular architecture of a reconstituted calcium pump, in: Structural and Kinetic Approach to Plasma Membrane Functions (C. Nicolau and A. Parat, eds.), Springer-Verlag. Berlin, p. 188.Google Scholar
  284. Warren G. B., Toon, P. A., Birdsall, N. J. M., Lee, A. G., and Metcalf, J. C., 1974a, Reversible lipid titrations of the activity of pure adenosine triphosphatase lipid complexes, Biochemistry 13:5501.Google Scholar
  285. Warren, G. B., Toon, P. A., Birdsall, N. J. M., Lee, A. G., and Metcalfe, J. C., 1974b, Reconstitution of a calcium pump using defined membrane components, Proc. Natl. Acad. Sci. USA 71:622.Google Scholar
  286. Warren, G. B., Houslay, M. D., Metcalf, J. C., and Birdsall, N. J. M., 1975, Cholesterol is excluded from the phospholipid annulus surrounding an active calcium transport protein, Nature 255:684.PubMedGoogle Scholar
  287. Weber, K., and Osborn, M., 1969, The reliability of molecular weight determinations by dodecyl sulfatepolyacrylamide gel electrophoresis, J. Biol. Chem. 244:4406.PubMedGoogle Scholar
  288. Will, H., Blanck, J., Smettan, G., and Wollenberger, A., 1976, A quench flow kinetic investigation of calcium ion accumulation by isolated cardiac sarcoplasmic reticulum. Dependence of initial velocity on free calcium ion concentration and influence of preincubation with a protein kinase, MgATP and cyclic AMP, Biochim. Biophys. Acta 449:295.PubMedGoogle Scholar
  289. Winegrad, S., 1968, Intracellular calcium movements of frog skeletal muscle during recovery from tetanus, J. Gen. Phvsiol. 51:65.Google Scholar
  290. Winegrad, S., 1970, The intracellular site of calcium activation of contraction in frog skeletal muscle, J. Gen. Phvsiol. 55:77.Google Scholar
  291. Winegrad, S., 1982, Calcium release from cardiac sarcoplasmic reticulum, Annu. Rev. Physiol. 44:451.PubMedGoogle Scholar
  292. Wu, F. S., Park, Y. C., Roufa, D., and Martonosi, A., 1981, Selective stimulation of the synthesis of an 80,000-dalton protein by calcium ionophores, J. Biol. Chem. 256:5309.PubMedGoogle Scholar
  293. Yamamoto, T., and Tonomura, Y., 1968, Reaction mechanism of the Ca2+ +-dependent ATPase of sarcoplasmic reticulum from skeletal muscle. II. Intermediate formation of phosphoryl protein, J. Biochem. 64:789.Google Scholar
  294. Yamamoto, T., Yoda, A., and Tonomura, Y., 1971, Reaction mechanism of the Ca2+-dependent ATPase of sarcoplasmic reticulum from skeletal muscle. IV. Hydroxomate formation from a phosphorylated intermediate and 2-hydroxy-5-nitrobenzyl hydroxylamine, J. Biochem. 69:807.PubMedGoogle Scholar
  295. Yates, D. W., and Duance, V. C., 1976, The binding of nucleotides and bivalent cations to the calcium and magnesium ion-dependent adenosine triphosphatase from rabbit muscle sarcoplasmic reticulum, Biochem. J. 159:719.PubMedGoogle Scholar
  296. Zimniak, P., and Racker, E., 1978, Electrogenicity of Ca2+ -transport catalyzed by the Ca2+-ATPase from sarcoplasmic reticulum, J. Biol. Chem. 253:4631.PubMedGoogle Scholar
  297. Zubrzycka, E., and MacLennan, D. H., 1976, Assembly of the sarcoplasmic reticulum. Biosynthesis of calsequestrin in rat skeletal muscle cell cultures, J. Biol. Chem. 251:7733.PubMedGoogle Scholar
  298. Zubrzycka, E., Michalak, M., Kosk-Kosicka, O., and Sarzala, M. G., 1979, Properties of microsomal subfractions isolated from developing rabbit skeletal muscle, Eur. J. Biochem. 93:113.PubMedGoogle Scholar
  299. Zubrzycka, E., Campbell, K. P., MacLennan, D. H., and Jorgensen, A. O., 1983, Biosynthesis of intrinsic sarcoplasmic reticulum proteins during differentiation of the myogenic cell line, L6, J. Biol. Chem., 258:4576.Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Marek Michalak
    • 1
  1. 1.Bio LogicalsOttawaCanada

Personalised recommendations