Potassium Pathways in Escherichia coli

  • Adam Kepes
  • Jean Meury
  • Aline Robin


Prokaryotes and Escherichia coli in particular do not possess (Na, K) ATPase in their plasma membrane like higher eukaryotes. Nevertheless, K+ is the predominant cytoplasmic cation and it is essential for growth. The reason for the absolute requirement for potassium in prokaryotes as in eukaryotes is not entirely understood. One role of potassium is, however, probably specific to bacteria, namely the necessity to maintain an osmotic pressure in the cytoplasm in excess of the osmotic pressure in the medium, so that a hydrostatic pressure, the turgor pressure, keeps the plasma membrane in close contact with the rigid murein layer.


Osmotic Pressure Turgor Pressure Carbon Starvation Potassium Transport Triphenyl Phosphonium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Apontoweil, P., and Berends, W., 1975a, Glutathione biosynthesis in Escherichia coli K12. Properties of the enzymes and regulation, Biochim. Biophys. Acta 399:1–9.CrossRefGoogle Scholar
  2. Apontoweil, P., and Berends, W., 1975b, Isolation and initial characterization of glutathione-deficient mutants of Escherichia coli K12, Biochim. Biophys. Acta 399:10–22.CrossRefGoogle Scholar
  3. Bakker, E. P., and Mangerich, W. E., 1982, N-Ethylmaleimide induces K’-H’ antiport activity in Escherichia coli K-12, FEBS Lett. 140:177–180.PubMedCrossRefGoogle Scholar
  4. Brey, R. N., Rosen, B. P. and Sorensen, E. N., 1980, Cation/proton antiport systems in Escherichia coli, J. Biol. Chem. 255:39–44.PubMedGoogle Scholar
  5. Epstein, W., and Davies, M., 1970, Potassium-dependent mutants of Escherichia coli K-12, J. Bacteriol. 101:836–843.PubMedGoogle Scholar
  6. Epstein, W., Witelaw, V., and Hesse, J., 1978, A K+ transport ATPase in Escherichia coli,J. Biol. Chem. 253:6666–6668.PubMedGoogle Scholar
  7. Fox, C. F., and Kennedy, E. P., 1965, Specific labeling and partial purification of the M protein, a component of the 3-galactoside transport system of Escherichia coli,Proc. Natl. Acad. Sci. USA 54:891–899.PubMedCrossRefGoogle Scholar
  8. Haguenauer-Tsapis, R., and Kepes, A., 1973, Changes in accessibility of the membrane-bound transport enzyme glucose-phosphotransferase of E. coli to protein group reagents in presence of substrate or absence of energy source, Biochem. Biophys. Res. Commun. 54:1335–1341.PubMedCrossRefGoogle Scholar
  9. Haguenauer-Tsapis, R., and Kepes, A., 1980, Different sidedness of functionally homologous essential thiols in two membrane-bound phosphotransferase enzymes of Escherichia coli detected by permeant and nonpermeant thiol reagents, J. Biol. Chem. 255:5075–5081.PubMedGoogle Scholar
  10. Helmer, G. L., Laimins, L. A., and Epstein, W., 1982, Mechanisms of potassium transport in bacteria, in: Membranes and Transport, Vol. 2 (A. Martonosi, ed.), Plenum Press, New York and London, pp. 123–128.Google Scholar
  11. Jimeno-Abendano, J., and Kepes, A., 1973, Sensitization of o-glucuronic acid transport system of E. coli to protein group reagents in presence of substrate or absence of energy source, Biochem. Biophys. Res. Commun. 54:1342–1346.CrossRefGoogle Scholar
  12. Kepes, A., 1960, Etudes cinétiques sur la galactoside-permease d’Escherichia cob, Biochim. Biophys. Acta 40:70–84.PubMedCrossRefGoogle Scholar
  13. Kepes, A., Meury, J., Robin, A., and Jimeno, J., 1977, Some ion transport systems in E. coli (transport of potassium and anionic sugars), in: Biochemistry of Membrane Transport,FEBS Symposium 42 (G. Semenza and E. Carafoli, eds.), Springer-Verlag, Berlin, Heidelberg, pp. 633–647.CrossRefGoogle Scholar
  14. Kessler, R. J., Tyson, C. A., and Green, D., 1976, Mechanism of uncoupling in mitochondria: Uncouplers as ionophores for cycling cations and protons, Proc. Natl. Acad. Sci. USA 73:3141–3145.PubMedCrossRefGoogle Scholar
  15. Laimins, L. A., Rhoads, D. B., Altendorf, K., and Epstein, W., 1978, Identification of the structural proteins of an ATP-driven potassium transport system in Escherichia coli,Proc. Natl. Acad. Sci. USA 75:3216–3219.PubMedCrossRefGoogle Scholar
  16. Laimins, L. A., Rhoads, D. B., and Epstein, W., 1981, Osmotic control of Kdp operon expression in Escherichia coli, Proc. Natl. Acad. Sci. USA 78:464–468.PubMedCrossRefGoogle Scholar
  17. Meury, J., and Kepes, A., 1982, Glutathione and the gated potassium channels of Escherichia coli, Eur. Mol. Biol. Org. J. 1:339–343.Google Scholar
  18. Meury, J., Lebail, S., and Kepes, A., 1980, Opening of potassium channels in Escherichia coli membranes by thiol reagents and recovery of potassium tightness, Eur. J. Biochem. 113:33–38.PubMedCrossRefGoogle Scholar
  19. Neu, H. C., and Heppel, L. A., 1965, The release of enzymes from Escherichia coli by osmotic shock and during the formation of spheroplasts, J. Biol. Chem. 240:3685–3692.PubMedGoogle Scholar
  20. Plack, R. H., Jr., and Rosen, B. P., 1980, Cation/proton antiport systems in Escherichia coli,J. Biol. Chem. 255:3824–3825.PubMedGoogle Scholar
  21. Requena, J., Haydon, D. A., and Hladky, S. B., 1975, Lenses and the compression of black lipid membranes by an electric field, Biophys. J. 15:77–81.CrossRefGoogle Scholar
  22. Rhoads, D. B., and Epstein, W., 1977, Energy coupling to net K+ transport in Escherichia coli K-12*, J. Biol. Chem. 252:1394–1401.PubMedGoogle Scholar
  23. Rhoads, D. B., Water, F. B., and Epstein, W., 1976, Cation transport in Escherichia coli. VIII. Potassium transport mutants, J. Gen. Physiol. 67:325–341.PubMedCrossRefGoogle Scholar
  24. Robin, A., and Kepes, A., 1975, Inducible gluconate pemease in a gluconate kinase deficient mutant of Escherichia coli, Biochim. Biophys. Acta 406:50–54.PubMedCrossRefGoogle Scholar
  25. Silver, S., 1978, Transport of cations and anions, in: Bacterial Transport (B. Rosen, ed.), Marcel Dekker, New York, pp. 221–324.Google Scholar
  26. Sorensen, E. N., and Rosen, B. P., 1980, Effects of sodium and lithium ions on the potassium ion transport systems of Escherichia coli,Biochemistry 19:1458–1462.PubMedCrossRefGoogle Scholar
  27. Tsapis, A., and Kepes, A., 1977, Transient breakdown of the permeability barrier of the membrane of Escherichia coli upon hypoosmotic shock, Biochim. Biophys. Acta 469:1–12.PubMedCrossRefGoogle Scholar
  28. Tsuchiya, T., and Rosen, B. P., 1976, Calcium transport driven by a proton gradient in inverted membrane vesicles of Escherichia coli, J. Biol. Chem. 251:962–967.PubMedGoogle Scholar
  29. Vorisek, J., and Kepes, A., 1972, Galactose transport in Escherichia coli and the galactose-binding protein, Eur. J. Biochem. 28:364–372.PubMedCrossRefGoogle Scholar
  30. Wieczorek, L., and Altendorf, K., 1979, Potassium transport in Escherichia coli. Evidence for a K’-transport adenosine-5’-triphosphatase, FEBS Lett. 98:233–235.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Adam Kepes
    • 1
  • Jean Meury
    • 1
  • Aline Robin
    • 1
  1. 1.Laboratoire des BiomembranesInstitut Jacques MonodParis Cédex 05France

Personalised recommendations