The Iron-Transport Systems of Escherichia coli

  • Volkmar Braun


Cells of E. coli like those of the other gram-negative bacteria are surrounded by two membranes, the outer membrane and the cytoplasmic membrane. Between these two membranes is situated the murein or peptidoglycan layer which confers rigidity to the cells. It is part of the periplasmic space from which water-soluble proteins can be released without release of the cytoplasmic proteins by a treatment called osmotic shock. Solutes which are taken up by the cells have therefore to be translocated through two membranes, the periplasmic space and the murein layer. The latter two are not considered to form a permeability barrier.


Outer Membrane Receptor Protein Human Milk Cytoplasmic Membrane Outer Membrane Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aisen, A., and Leibman, A., 1972, Lactoferrin and transferrin: A comparative study, Biochim. Biophys. Acta 257: 314–323.PubMedGoogle Scholar
  2. Argast, M., and Boos, W., 1980, Co-regulation in Escherichia coli of a novel transport system for snglycerol-3-phosphate and outer membrane protein Ic(e,E) with alkaline phosphatase and phosphate binding protein, J. Bacteritol. 143: 142–150.Google Scholar
  3. Arnold, R. R., Cole, M. F., and McGhee, J. R., 1977, A bactericidal effect for human lactoferrin, Science 197: 163–265.Google Scholar
  4. Bauminger, E. R., Cohen, S. G., Dickson, D. P. E., Levy, A., Ofer, S., and Jariv, J. Y., 1980, Mössbauer spectroscopy of Escherichia coli and its iron storage protein, Biochim. Biophys. Acta 623: 237–242.PubMedGoogle Scholar
  5. Bavoil, P., and Nikaido, H., 1981, Physical interaction between the phage X receptor protein and the carrier-immobilized maltose-binding protein of Escherichia coli, J. Biol. Chem. 256: 11385–11388.PubMedGoogle Scholar
  6. Bennett, J. L., Jr., Eddie-Quartey, A. C., and Holt, P. J. L., 1973, Lactoferrin—an iron binding protein in synovial fluid, Arthr. Rheum. 16: 186–190.Google Scholar
  7. Benz, R., Janko, K., and Läuger, P., 1979, Ionic selectivity of pores formed by the matrix protein (porin) of Escherichia coli, Biochim. Biophys. Acta 551: 238–247.PubMedGoogle Scholar
  8. Benz, G., Schrder, T., Kurz, J., Wunsch, C., Karl, W., Steffens, G., Pfitzner, J., and Schmidt, D., 1982, Konstitution der Desferriform der Albomycine, Angew. Chem. Suppl. 1322–1335.Google Scholar
  9. Betke, K., 1981, Eisenprophylaxe beim normalen Säugling? Pädiat. Pädol. 16: 115–119.Google Scholar
  10. Bindereif, A., Braun, V., and Hantke, K., 1982, The cloacin receptor of Co1V-bearing Escherichia coli is part of the Fei+-aerobactin transport system, J. Bacteriol. 150: 1472–1475.PubMedGoogle Scholar
  11. Binns, M. M., Davies, D. L., and Hardy, K. G., 1979, Cloned fragments of the CoIV, I-K94 specifying virulence and serum resistance, Nature 279: 778–781.PubMedGoogle Scholar
  12. Boesman-Finkelstein, M., and Finkelstein, R. A., 1982, Sequential purification of lactoferrin, lysozyme and secretory immunoglobulin A from human milk, FEBS Lett. 144: 1–5.PubMedGoogle Scholar
  13. Boyd, A., and Holland, I. B., 1979, Regulation of the synthesis of surface protein in the cell cycle of E. coli B/r, Cell 18: 287–296.PubMedGoogle Scholar
  14. Braun, V., 1978, Structure—function relationships of the gram-negative bacterial cell envelope, in: Relations between Structure and Function in the Prokaryotic Cell (R. Y. Stanier, H. J. Rogers, and B. J. Ward, eds. ), Cambridge University Press, pp. 111–138.Google Scholar
  15. Braun, V., 1981, Escherichia coli cells containing the plasmid Co1V produce the iron ionophore aerobactin, FEMS Microbiol. Lett. 11: 225–228.Google Scholar
  16. Braun, V., and Burkhardt, R., 1982, Regulation of the CoIV plasmid-determined iron(III)-aerobactin transport system in Escherichia coli, J. Bacteriol. 152: 223–231.PubMedGoogle Scholar
  17. Braun, V., and Hantke, K., 1977, Bacterial receptors for phages and colicins as constituents of specific transport systems, in: Microbial Interactions: Receptors and Recognition, Series B, Vol. 3 ( J. L. Reissig, ed.), Chapman and Hall, London, pp. 101–130.Google Scholar
  18. Braun, V., and Hantke, K., 1981, Bacterial cell surface receptors, in: Organization of Prokaryotic Cell Membranes, Vol. II ( B. K. Ghosh, ed.), CRC Press, Boca Raton, pp. 1–74.Google Scholar
  19. Braun, V., and Hantke, K., 1982, Receptor-dependent transport systems in Escherichia coli for iron complexes and vitamin B12, in: Membranes and Transport, Vol. 2 ( A. N. Martonosi, ed.), Plenum Press, New York and London, pp. 107–113.Google Scholar
  20. Braun, V., and Krieger-Brauer, H. J., 1977, Interrelationship of the phage X receptor protein and maltose transport in mutants of Escherichia colt K12, Biochim. Biophys. Acta 469: 89–98.PubMedGoogle Scholar
  21. Braun, V., Schaller, K., and Wolff, H., 1973, A common receptor protein for phage T5 and colicin M in the outer membrane of Escherichia coli, Biochim. Biophys. Acta 328: 87–97.Google Scholar
  22. Braun, V., Hancock, R. E. W., Hantke, K., and Hartmann, A., 1976, Functional organization of the outer membrane of Escherichia coli: Phage and colicin receptors as components of iron uptake systems, J. Supramol. Struct. 5: 37–58.PubMedGoogle Scholar
  23. Braun, V., Frenz, S., Hantke, K., and Schaller, K., 1980, Penetration of colicin M into cells of Escherichia coli, J. Bacteriol. 142: 162–168.PubMedGoogle Scholar
  24. Braun, V., Burkhardt, R., Schneider, R., and Zimmermann, L., 1982, Chromosomal genes for Co1V plasmid-determined Fei+-aerobactin transport in Escherichia coli, J. Bacteriol. 152: 553–559.Google Scholar
  25. Bremer, E., Cole, S. T., Hindennach, I., Henning, U., Beck, E., Kurz, C., and Schaller, K., 1982, Export of a protein into the outer membrane of Escherichia coli K12. Stable incorporation of the OmpA protein requires less than 193 amino-terminal amino acid residues, Eur. J. Biochem. 122: 220–231.Google Scholar
  26. Bryce, G. F., and Brot, N., 1971, Iron transport in Escherichia coli and its relation to the repression of 2,3-dihydroxy-N-benzoyl-L-serine synthetase, Arch. Biochem. Biophys. 142: 399–406.PubMedGoogle Scholar
  27. Buck, M., and Griffith, E., 1982, Iron mediated methylthiolation of tRNA as a regulator of operon expression in Escherichia coli, Nucleic Acids Res. 10: 2609–2623.PubMedGoogle Scholar
  28. Bullen, J. J., 1976, Iron-binding proteins and other factors in milk responsible for resistance to Escherichia colt, in: Acute Diarrhoea in Childhood, Ciba Foundation Symposium 42, Elsevier/Excerpta Medical North-Holland, Amsterdam, pp. 149–169.Google Scholar
  29. Bullen, J. J., Leigh, L. C., and Rogers, H. J., 1968, The effect of iron compounds on the virulence of Escherichia coli for guinea pigs, Immunology 15: 581–588.PubMedGoogle Scholar
  30. Casadaban, M. J., and Cohen, S. N., 1979, Lactose genes fused to exogenous promoters in one step using a Mu-lac bacteriophage: In vivo probe for transcriptional control sequences, Proc. Natl. Acad. Sci. USA 76: 4530–4533.PubMedGoogle Scholar
  31. Clancy, J., and Savage, D. C., 1981, Another colicin V phenotype: In vitro adhesion of Escherichia coli to mouse intestinal epithelium, J. Infect. Immunol. 32: 343–352.Google Scholar
  32. Coulton, J. W., and Braun, V., 1979, Protein II* influences ferrichrome-iron transport in Escherichia coli K12, J. Gen. Microbiol. 110: 211–220.PubMedGoogle Scholar
  33. Coulton, J. W., Naegeli, H.-U., and Braun, V., 1979, Iron supply of Escherichia coli with polymer-bound ferricrocin, Eur. J. Biochem. 99: 39–47.PubMedGoogle Scholar
  34. Dietz, G. W., Jr., 1976, The hexose phosphate transport system of Escherichia colt, in: Advances in Enzymology, Vol. 44 ( A. Meister, ed.), John Wiley, New York, pp. 237–259.Google Scholar
  35. DiRienzo, J. M., Nakamura, K., and Inouye, M., 1978, The outer membrane proteins of gram-negative bacteria: Biosynthesis, assembly and functions, Annu. Rev. Biochem. 47: 481–532.PubMedGoogle Scholar
  36. Eaton, J. W., Brandt, P., Mahoney, J. R., and Lee, J. T., Jr., 1982, Haptoglobin: A natural bacteriostat, Science 215: 691–693.PubMedGoogle Scholar
  37. Ernst, J. F., Bennett, R. L., and Rothfield, L. I., 1978, Constitutive expression of the iron-enterochelin and ferrichrome uptake systems in a mutant strain of Salmonella typhimurium, J. Bacteriol. 135: 928–934.PubMedGoogle Scholar
  38. Ferenci, T., 1980, The recognition of maltodextrins by Escherichia coli, Eur. J. Biochem. 108: 631–636.PubMedGoogle Scholar
  39. Ferenci, T., and Boos, W., 1980, The role of the Escherichia coli X receptor in the transport of maltose and maltodextrins, J. Supramol. Struct. 13: 101–116.PubMedGoogle Scholar
  40. Ferenci, T., Schwentorat, M., Ullrich, S., and Vilmart, J., 1980, Lambda receptor in the outer membrane of Escherichia coli as a binding protein for maltodextrins and starch polysaccharides, J. Bacteriol. 142: 521–526.PubMedGoogle Scholar
  41. Fitzgerald, S. P., and Rogers, H. J., 1980, Bacteriostatic effect of serum: Role of antibody to lipopolysaccharide, Infect. Immunol. 27: 302–308.Google Scholar
  42. Fletcher, J., and Goldstein, E., 1970, The effect of parenteral iron preparations on experimental pyelonephritis, Arch. J. Exp. Pathol. 51: 280–285.Google Scholar
  43. Franklin, N. C., Dove, W. F., and Yanofsky, C., 1965, The linear insertion of a prophage into the chromosome of E. coli shown by deletion mapping, Biochem. Biophys. Res. Commun. 18: 910–923.Google Scholar
  44. Frost, G. E., and Rosenberg, H., 1973, The inducible citrate-dependent iron transport system in Escherichia coli K12, Biochim. Biophys. Acta 330: 90–101.PubMedGoogle Scholar
  45. Frost, G. E., and Rosenberg, H., 1975, Relationship between the tonB locus and iron transport in Escherichia coli, J. Bacteriol. 124: 704–712.PubMedGoogle Scholar
  46. Funakoshi, S., Doi, T., Nakajima, T., Suyama, T., and Tokuda, M., 1982, Antimicrobial effect of human serum IgA, Microbiol. Immunol. 26: 227–239.PubMedGoogle Scholar
  47. Ganzoni, A. M., and Puschmann, M., 1977, Iron status and host defense, in: Proteins of Iron Metabolism ( E. B. Brown, P. Aisen, J. Fielding, and R. C. Crichton, eds.), Grune & Stratton, New York, pp. 427–432.Google Scholar
  48. Gibson, F., and Magrath, D. J., 1969, The isolation and characterization of a hydroxamic acid (aerobactin) formed by Aerobacter aerogenes 62–1, Biochim. Biophys. Acta 192: 175–184.PubMedGoogle Scholar
  49. Glusker, J. P., 1980, Citrate conformation and chelation: Enzymatic implications, Acc. Chem. Res. 13: 345–352.Google Scholar
  50. Goebel, W., and Hedgpeth, J., 1982, Cloning and functional characterization of the plasmid-encoded hemolysin determinant of Escherichia coli, J. Bacteriol. 151: 1290–1298.PubMedGoogle Scholar
  51. Gratia, J.-P., 1964, Résistance â la colicine B chez Eschérichia coli. Relations de spécificité entre colicine B, I, et phage Tl. Etude génétique, Ann. Inst. Pasteur (Paris) 107: 132–151.Google Scholar
  52. Greenwood, K. T., and Luke, R. K. J., 1976, Studies on the enzymatic synthesis of enterochelin in Escherichia coli K-12. Four polypeptides involved in the conversion of 2,3-dihydroxy-benzoate to enterochelin, Biochim. Biophys. Acta 454: 285–287.PubMedGoogle Scholar
  53. Greenwood, K. T., and Luke, R. K. J., 1978, Enzymatic hydrolysis of enterochelin and its iron complex in Escherichia coli K-12. Properties of enterochelin esterase, Biochim. Biophys. Acta 525: 209–218.PubMedGoogle Scholar
  54. Grevai, K. K., Warner, P. J., and Williams, P. H., 1982, An inducible outer membrane protein involved in aerobactin-mediated iron transport by CoIV strains of Escherichia coli, FEBS Lett. 140: 27–30.Google Scholar
  55. Griffith, E., and Humphreys, J., 1980, Isolation of enterochelin from the peritoneal washings of guinea pigs lethally infected with Escherichia coli, Infect. Immunol. 28: 286–289.Google Scholar
  56. Griffith, E., Stevenson, P., and Joyce, P., 1983, Pathogenic Escherichia coli express new outer membrane proteins when growing in vivo, FEMS Microbiol. Lett. 16: 95–99.Google Scholar
  57. Guterman, S. K., 1971, Inhibition of colicin B by enterochelin, Biochem. Biophys. Res. Commun. 44: 1149–1155.PubMedGoogle Scholar
  58. Guterman, S., and Luria, S., 1969, Escherichia coli: Strains that excrete an inhibitor of colicin B, Science 164: 1414.Google Scholar
  59. Hall, B., 1982, Chromosomal mutation for citrate utilization by Escherichia coli K-12, J. Bacteriol. 151: 269–273.PubMedGoogle Scholar
  60. Hamed, M. Y., Hider, R. C., and Silver, J., 1982, The competition between enterobactin and glutathione for iron, Inorg. Chim. Acta 66: 13–18.Google Scholar
  61. Hancock, R. E. W., and Braun, V., 1976, Nature of the energy requirement for the irreversible adsorption of bacteriophages TI and 080 to Escherichia coil K-12, J. Bacteriol. 125: 409–415.PubMedGoogle Scholar
  62. Hancock, R. E. W., Hantke, K., and Braun, V., 1976, Iron transport in Escherichia coli K-12: Involvement of the colicin B receptor and of a citrate-inducible protein, J. Bacteriol. 127: 1370–1375.PubMedGoogle Scholar
  63. Hancock, R. E. W., Hantke, K., and Braun, V., 1977, Iron transport in Escherichia coli K-12. 2,3-dihydroxybenzoate-promoted iron uptake, Arch. Microbiol. 114: 231–239.PubMedGoogle Scholar
  64. Hantke, K., 1976, Phage T6-colicin K receptor and nucleoside transport in Escherichia coli, FEBS Lett. 70: 109–112.PubMedGoogle Scholar
  65. Hantke, K., 1981, Regulation of ferric iron transport in Escherichia coli K-12: Isolation of a constitutive mutant, Mol. Gen. Gen. 182: 288–292.Google Scholar
  66. Hantke, K., 1982, Negative control of iron uptake systems in Escherichia coli, FEMS Microbiol. Lett. 15: 83–86.Google Scholar
  67. Hantke, K., and Braun, V., 1975a, A function common to iron enterochelin transport and actions of colicins B,I,V in Escherichia coli, FEBS Lett. 59: 277–281.PubMedGoogle Scholar
  68. Hantke, K., and Braun, V., 1975b, Membrane receptor dependent iron transport in Escherichia coli, FEBS Lett. 49: 301–305.PubMedGoogle Scholar
  69. Hantke, K., and Braun, V., 1978, Functional interaction of the tonA/tonB receptor system in Escherichia coli, J. Bacteriol. 135: 190–197.PubMedGoogle Scholar
  70. Hantke, K., and Zimmermann, L., 1981, The importance of the exbB gene for vitamin B12 and ferric iron transport, FEMS Microbiol. Lett. 12: 31–35.Google Scholar
  71. Hanis, W. R., Carrano, C. J., and Raymond, K. N., 1979a, Coordination chemistry of microbial iron transport compounds. Isolation, characterization, and formation constants of ferric aerobactin, J. Am. Chem. Soc. 101:2722–2727.Google Scholar
  72. Harris, W. R., Carrano, C. J., Cooper, S. R., Sofen, S. R., Avdeef, A. E., McArdle, J. V., and Raymond, K. N., 1979b, Coordination chemistry of microbial iron transport compounds. 19. Stability constants and electrochemical behavior of ferric enterobactin and model complexes, J. Am. Chem. Soc. 101: 6097–6104.Google Scholar
  73. Hartmann, A., and Braun, V., 1979, Uptake and conversion of the antibiotic albomycin by Escherichia coli K-12, Eur. J. Biochem. 99: 517–524.PubMedGoogle Scholar
  74. Hartmann, A., and Braun, V., 1980, Iron transport in Escherichia cols: Uptake and modification of ferrichrome, J. Bacteriol. 143: 246–255.PubMedGoogle Scholar
  75. Hartmann, A., and Braun, V., 1981, Iron uptake and iron limited growth of Escherichia cols K-12, Arch. Microbiol. 130: 353–356.PubMedGoogle Scholar
  76. Hazelbauer, G. L., and Parkinson, J. S., 1977, Bacterial chemotaxis, in: Microbial Interactions: Receptors and Recognition, Series B, Vol. 3 ( J. L. Reissig, ed.), Chapman and Hall, London, pp. 61–98.Google Scholar
  77. Heidinger, S., Braun, V., Pecoraro, V. L., and Raymond, K. N., 1983, Iron supply to Escherichia coli by synthetic analogs of enterochelin, J. Bacteriol. 153: 109–115.PubMedGoogle Scholar
  78. Heuzenroeder, M. W., and Reeves, P., 1980, Periplasmic maltose-binding protein confers specificity on the outer membrane maltose pore of Escherichia coli, J. Bacteriol. 141: 431–435.PubMedGoogle Scholar
  79. Hider, R. C., Silver, J., Neilands, J. B., Morrison, I. E. G., and Rees, L. V. E., 1979, Identification of iron(II) enterobactin and its possible role in Escherichia coli iron transport, FEBS Lett. 102: 325–328.PubMedGoogle Scholar
  80. Hollifield, W. C., and Neilands, J. B., 1978, Ferric enterobactin transport system in Escherichia cols K12. Extraction, assay, and specificity of the outer membrane receptor, Biochemistry 17: 1922–1928.PubMedGoogle Scholar
  81. Hussein, S., Hantke, K., and Braun, V., 1981, Citrate-dependent iron transport system of Escherichia coil K-12, Eur. J. Biochem. 117: 431–437.PubMedGoogle Scholar
  82. Ichihara, S., and Mizushima, S., 1978, Identification of an outer membrane protein responsible for the binding of the Fe-enterochelin complex to Escherichia cols cells, J. Biochem. 83: 137–140.PubMedGoogle Scholar
  83. Kadner, R. J., and Bassford, P. J., Jr., 1978, The role of the outer membrane in active transport, in: Bacterial Transport ( B. P. Rosen, ed.), Marcel Dekker, New York, pp. 413–462.Google Scholar
  84. Kadner, R. J., Heller, K., Coulton, J. W., and Braun, V., 1980, Genetic control of hydroxamate-mediated iron uptake in Escherichia coli, J. Bacteriol. 143: 256–264.PubMedGoogle Scholar
  85. Klebba, P. E., McIntosh, M. A., and Neilands, J. B., 1982, Kinetics of biosynthesis of iron-regulated membrane proteins in Escherichia coli, J. Bacteriol. 149: 880–888.PubMedGoogle Scholar
  86. Kochan, I., 1973, The role of iron in bacterial infections with special consideration of host-tubercle bacillus interactions, Curr. Top. Microbiol. Immunol. 60: 1–30.PubMedGoogle Scholar
  87. Kochan, I., Krach, J. T., and Wiles, T. I., 1977, Virulence-associated acquisition of iron in mammalian serum by Escherichia coli, J. Infect. Dis. 135: 623–632.PubMedGoogle Scholar
  88. Konisky, J., 1979, Specific transport systems and receptors for colicins and phages, in: Bacterial Outer Membranes. Biogenesis and Functions ( M. Inouye, ed.), John Wiley & Sons, New York, pp. 319–359.Google Scholar
  89. Konisky, J., 1982, Colicins and other bacteriocins with established modes of action, Annu. Rev. Microbiol. 36: 125–144.PubMedGoogle Scholar
  90. Krieger-Brauer, H. J., and Braun, V., 1980, Functions related to the receptor protein specified by the tsx gene of Escherichia coli, Arch. Microbiol. 114: 233–242.Google Scholar
  91. Laird, A. J., and Young, I. G., 1980, Tn5 mutagenesis of the enterochelin gene cluster of Escherichia coli, Gene 11: 359–366.PubMedGoogle Scholar
  92. Laird, A. J., Ribbons, D. W., Woodrow, G. C., and Young, I. G., 1980, Bacteriophage Mu-mediated gene transposition and in vitro cloning of the enterochelin gene cluster of Escherichia coli, Gene 11: 347–357.PubMedGoogle Scholar
  93. Langmann, L., Young, I. G., Frost, G. E., Rosenberg, H., and Gibson, F., 1972, Enterochelin system of iron transport in Escherichia coli: Mutations affecting ferric enterochelin esterase, J. Bacteriol. 112: 1142–1149.Google Scholar
  94. Lingwood, M. A., and Ingram, P. L., 1982, The role of alpha haemolysin in the virulence of Escherichia coli for mice, J. Med. Microbiol. 15: 23–30.Google Scholar
  95. Lodge, J. S., Gaines, C. G., Arceneaux, J. E. L., and Byers, B. R., 1980, Non-hydrolytic release of iron from ferrienterobactin analogs by extracts of Bacillus subtilis, Biochem. Biophys. Res. Commun. 17: 1291–1295.Google Scholar
  96. Luckey, M., and Nikaido, H., 1980, Specificity of diffusion channels produced by X phage receptor protein of Escherichia coli, Proc. Natl. Acad. Sci. USA 77: 167–171.PubMedGoogle Scholar
  97. Luckey, M., Wayne, R., and Neilands, J. B., 1975, In vitro competition between ferrichrome and phage for the outer membrane T5 receptor complex of Escherichia coli, Biochem. Biophys. Res. Commun. 64: 687–693.PubMedGoogle Scholar
  98. Lugtenberg, B., and van Alphen, L., 1983, Molecular architecture and functioning of the outer membrane of Escherichia coli and other gram-negative bacteria, Biochim. Biophys. Acta. 737: 51–115.PubMedGoogle Scholar
  99. Lugtenberg, B., Meijers, J., Peters, R., van der Hoek, P., and van Alphen, L., 1975, Electrophoretic resolution of the major outer membrane protein of Escherichia coli K12 into four bands, FEBS Leu. 58: 254–258.Google Scholar
  100. Martonosi, A. N. (ed.), 1982, Membranes and Transport, Plenum Press, New York, London.Google Scholar
  101. Masson, P. L., Heremans, J. F., and Dive, C., 1966, An iron-binding protein common to many external excretions, Clin. Chim. Acta 14: 735–739.Google Scholar
  102. McIntosh, M. A., and Earhart, C. F., 1977, Coordinate regulation by iron of the synthesis of phenolate compounds and three outer membrane proteins in Escherichia coli, J. Bacteriol. 131: 331–339.PubMedGoogle Scholar
  103. McIntosh, M. A., Chenault, S. S., and Earhart, C. F., 1979, Genetic and physiological studies on the relationship between colicin B resistance and ferrienterochelin uptake in Escherichia coli K-12. J. Bacteriol. 137: 653–657.PubMedGoogle Scholar
  104. Mellencamp, M. W., McCabe, M. A., and Kochan, I., 1981, The growth-promoting effect of bacterial iron for serum-exposed bacteria, Immunology 43: 483–491.PubMedGoogle Scholar
  105. Michaelis, S., and Beckwith, J., 1982, Mechanism of incorporation of cell envelope proteins in Escherichia coli, Annu. Rev. Microbiol. 36: 435–465.PubMedGoogle Scholar
  106. Moore, D. G., and Earhart, C. F., 1981, Specific inhibition of Escherichia coli ferrienterochelin uptake by a normal human serum immunoglobulin, Infect. Immunol. 31: 631–635.Google Scholar
  107. Moore, D. G., Yancey, J., Lankford, C. E., and Earhard, C. F., 1980, Bacteriostatic enterochelin-specific immunoglobulin from human serum, Infect. Immunol. 27: 418–423.Google Scholar
  108. Murray, G. J., Clark, G. E. D., Parniak, M. A., and Viswanatha, T., 1977, Effect of metabolites on EN-hydroxylysine formation in cell-free extracts of Aerobacter aerogenes 62–1, Can. J. Biochem. 55: 625–629.PubMedGoogle Scholar
  109. Neilands, J. B., 1981, Microbial iron compounds, Annu. Rev. Biochem. 50: 715–731.PubMedGoogle Scholar
  110. Neilands, J. B., 1982, Microbial envelope proteins related to iron, Annu. Rev. Microbiol. 36: 285–309.PubMedGoogle Scholar
  111. Nikaido, H., 1982, Proteins forming large channels in biological membranes, in: Membranes and Transport, Vol. 2 ( A. N. Martonosi, ed.), Plenum Press, New York and London, pp. 265–270.Google Scholar
  112. Nikaido, H., and Nakae, T., 1979, The outer membrane of gram-negative bacteria, in: Advances in Microbial Physiology, Vol. 20 ( A. H. Rose and J. G. Morris, eds.), Academic Press, London, pp. 163–250.Google Scholar
  113. Norrestam, R., Stensland, B., and Bränden, C.-J., 1975, On the conformation of cyclic iron-containing hexapeptides: The crystal structure and molecular structure of ferrichrysin, J. Mol. Biol. 99: 501–506.PubMedGoogle Scholar
  114. Osborn, M. J., and Wu, H., 1980, Proteins of the outer membrane of gram-negative bacteria, Annu. Rev. Microbiol. 34: 369–422.PubMedGoogle Scholar
  115. Overbeeke, N., and Lugtenberg, B., 1982, Recognition site for phosphorus-containing compounds and other negatively charged solutes on the PhoE protein pore of the outer membrane of Escherichia coli K-12, Eur. J. Biochem. 126: 113–118.PubMedGoogle Scholar
  116. Pappenheimer, A. M., 1977, Diphtheria toxin, Annu. Rev. Biochem. 46: 69–94.PubMedGoogle Scholar
  117. Pamiak, M. A., Jackson, G. E. D., Murray, G. J., and Viswanatha, T., 1979, Studies on the formation ofN -hydroxylysine in cell-free extracts of Aerobacteraerogenes 62–1, Biochim. Biophys. Acta 569: 99–108.Google Scholar
  118. Payne, S. M., 1980, Synthesis and utilization of siderophore by Shigella fiexneri, J. Bacteriol. 143: 1420–1424.PubMedGoogle Scholar
  119. Perry, R. D., and San Clemente, C. L., 1979, Siderophore synthesis in Klebsiella pneumoniae and Shigella sonnei during iron deficiency, J. Bacteriol. 140: 1129–1132.PubMedGoogle Scholar
  120. Plastow, G. S., and Holland, I. B., 1979, Identification of an Escherichia coil inner membrane polypeptide specified by a X-tonB transducing bacteriophage, Biochem. Biophys. Res. Commun. 90: 1007–1014.PubMedGoogle Scholar
  121. Postle, K., and Reznikoff, W., 1979, Identification of the Escherichia coli tonB gene product in minicells containing tonB hybrid plasmids, J. Mol. Biol. 131: 619–636.PubMedGoogle Scholar
  122. Pugsley, A. P., 1977, Map location of the cbr gene coding for production of the outer membrane receptor for ferrienterochelin and colicins B and D in Escherichia coil K-12, FEMS Microbiol. Letts. 2: 275–277.Google Scholar
  123. Pugsley, A. P., and Reeves, P., 1976, Characterization of colicin B-resistant mutants of Escherichia coli K-12: Colicin resistance and the role of enterochelin, J. Bacteriol. 127: 218–228.PubMedGoogle Scholar
  124. Pugsley, A. P., and Reeves, P., 1977, The role of colicin receptors in the uptake of ferrienterochelin by Escherichia coli K-12, Biochem. Biophys. Res. Commun. 74: 903–911.PubMedGoogle Scholar
  125. Raymond, K. N., Harris, W. R., Carrano, C. J., and Weitl, F. L., 1982, The synthesis, thermodynamic behaviour, and biological properties of metal-iron-specific sequestering agents for iron and the actinides, in: The Biological Chemistry of Iron ( H. B. Dunford, D. Dolphin, K. N. Raymond, and L. Sieker, eds.), D. Reidel, Dortrecht, Boston, London, pp. 85–105.Google Scholar
  126. Reuser, A. J. J., and Postma, P. W., 1973, The induction of translocators for di-and tricarboxylic-acid anions in Azotobacter vinelandii, Eur. J. Biochem. 33: 584–592.PubMedGoogle Scholar
  127. Reynolds, P. R., Mottur, G. P., and Bradbeer, C., 1980, Transport of vitamin B12 in Escherichia coli. Some observations of the roles of the gene products of btuC and tonB, J. Biol. Chem. 255: 4313–4319.PubMedGoogle Scholar
  128. Rogers, H. J., 1973, Iron binding catechols and virulence in Escherichia coli, Infect. Immunol. 7:445–456.Google Scholar
  129. Rogers, H. J., and Synge, C., 1978, Bacteriostatic effect of human milk on Escherichia coli: The role of IgA, Immunology 34: 19–28.Google Scholar
  130. Rosenberg, H., and Young, I. G., 1974, Iron transport in the enteric bacteria, in: Microbial Iron Metabolism (J. B. Neilands, ed.), Academic Press, New York, London, pp. 67–82.Google Scholar
  131. Schneider, R., Hartmann, A., and Braun, V., 1981, Transport of the iron ionophore ferrichrome in Escherichia coli and Salmonella typhimurium LT2, FEMS Microbiol. Lett. 11: 115–119.Google Scholar
  132. Sillen, L. G., and Martell, A. E., 1964, Stability Constants of Metal—Ion Complexes, The Chemical Society, London.Google Scholar
  133. Spiro, T. G., Pape, L., and Saltman, P., 1967, The hydrolytic polymerization of ferric citrate. I. The chemistry of the polymer, J. Am. Chem. Soc. 89: 5555–5559.Google Scholar
  134. Stephens, S., Dolby, J. M., Montreuil, J., and Spik, G., 1980, Differences in inhibition of the growth of commensal and enteropathogenic strains of Escherichia coli by lactotransferrin and secretory immunoglobulin A isolated from human milk, Immunology 41: 597–603.PubMedGoogle Scholar
  135. Stuart, S. J., Greenwood, K. T., and Luke, R. K. J., 1980, Hydroxamate-mediated transport of iron controlled by Co1V plasmids, J. Bacteriol. 143: 35–42.PubMedGoogle Scholar
  136. Szmelcman, S., and Hofnung, M., 1975, Maltose transport in Escherichia coli K-12. Involvement of the bacteriophage lambda receptor, J. Bacteriol. 124: 112–118.PubMedGoogle Scholar
  137. Szmelcman, S., Schwartz, M., Silhavy, T. J., and Boos, W., 1976, Maltose transport in Escherichia coli K-12. A comparison of transport kinetics in wild-type and X-resistant mutants with the dissociation constants of the maltose-binding protein as measured by fluorescence quenching, Eur. J. Biochem. 65: 13–19.PubMedGoogle Scholar
  138. Tidmarsh, G. F., and Rosenberg, L. T., 1981, Acquisition of iron from transferrin by Salmonella paratyphi B, Curr. Microbiol. 6: 217–220.Google Scholar
  139. van der Helm, D., Baker, J. R., Eng-Wilmot, D. L., Hossain, M. B., and Loghry, R. A., 1980, Crystal structure of ferrichrome and a comparison with the structure of ferrichrome A, J. Am. Chem. Soc. 104: 4224–4231.Google Scholar
  140. van Tiel-Menkveld, G. J., Mentjox-Vervuurt, J. M., Oudega, B., and de Graaf, F., 1982, Siderophore production by Enterobacter cloacae and a common receptor protein for the uptake of aerobactin and cloacin DF13, J. Bacteriol. 150: 490–497.PubMedGoogle Scholar
  141. Wagegg, W., and Braun, V., 1981, Ferric citrate transport in Escherichia coil requires outer membrane receptor protein FecA, J. Bacteriol. 145: 156–163.PubMedGoogle Scholar
  142. Wandersman, C., Schwartz, M., and Ferenci, T., 1979, Escherichia coli mutants impaired in maltodextrin transport, J. Bacteriol. 140: 1–13.Google Scholar
  143. Wang, C. C., and Newton, A., 1971, An additional step in the transport of iron defined by the tonB locus of Escherichia coli, J. Biol. Chem. 246: 2147–2151.PubMedGoogle Scholar
  144. Warner, P. J., Williams, P. H., Bindereif, A., and Neilands, J. B., 1981, CoIV plasmid-specified aerobactin synthesis by invasive strains of Escherichia coli, Infect. Immunol. 33: 540–545.Google Scholar
  145. Weinberg, E. D., 1974, Iron and susceptibility to infectious disease, Science 184:952–956. Weinberg, E. D., 1978, Iron and infection, Microbiol. Rev. 42: 45–66.Google Scholar
  146. Welch, R. A., Dellinger, E. P., Minshew, A., and Falkow, S., 1981, Haemolysin contributes to virulence of extraintestinal E. coli infections, Nature 294: 665–667.PubMedGoogle Scholar
  147. Williams, P., 1979, Novel iron uptake system specified by ColV plasmids: An important component in the virulence of invasive strains of Escherichia coli, Infect. Immunol. 26: 925–932.Google Scholar
  148. Williams, P., and Warner, P. J., 1980, CoIV plasmid-mediated, colicin V-independent iron uptake system of invasive strains of Escherichia coli, Infect. Immunol. 29: 411–416.Google Scholar
  149. Woodrow, G. C., Langman, L., Young, I. G., and Gibson, F., 1978, Mutations affecting the citrate-dependent iron uptake system in Escherichia coli, J. Bacteriol. 133: 1524–1526.PubMedGoogle Scholar
  150. Woodrow, C. W., Young, I. G., and Gibson, F., 1979, Biosynthesis of enterochelin in Escherichia coli K-12. Separation of the polypeptides coded by the entD, E, F and G genes, Biochim. Biophys. Acta 582: 145–153.PubMedGoogle Scholar
  151. Wookey, P., 1982, The tonB gene product in Escherichia coli. Energy-coupling or molecular processing of permeases, FEBS Lett. 139: 145–154.PubMedGoogle Scholar
  152. Wookey, P., and Rosenberg, H., 1978, Involvement of inner and outer membrane components in the transport of iron and in colicin B action in Escherichia coli, J. Bacteriol. 133: 661–666.PubMedGoogle Scholar
  153. Wookey, P., Hussein, S., and Braun, V., 1981, Functions in outer and inner membranes of Escherichia coli for femchrome transport, J. Bacteriol. 146: 1158–1161.PubMedGoogle Scholar
  154. Worsham, P. L., and Konisky, J., 1981, Use of cir-lac operon fusions to study transcriptional regulation of the colicin la receptor in Escherichia coli K-12, J. Bacteriol. 145: 647–650.PubMedGoogle Scholar
  155. Yancey, R. J., Breeding, S. A. L., and Lankford, C., 1979, Enterochelin (enterobactin): Virulence factor for Salmonella typhimurium, Infect. Immunol. 24: 174–180.Google Scholar
  156. Yariv, J., Kalb, J. A., Sperling, R., Bauminger, E. R., Cohen, S. G., and Ofer, S., 1981, The composition and the structure of bacterioferritin of Escherichia coli, Biochem. J. 197: 171–175.PubMedGoogle Scholar
  157. Young, I. G., 1976, Preparation of enterochelin from Escherichia coli, Prep. Biochem. 6: 123–131.PubMedGoogle Scholar
  158. Zähner, H., Keller-Schierlein, W., Hütter, R., Hess-Leisinger, K., and Deér, A., 1963, Sideramine von Mikroorganismen. Sideramine aus Aspergillaceen, Arch. Microbiol. 45: 119–135.Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Volkmar Braun
    • 1
  1. 1.Mikrobiologie IIUniversität TübingenTübingenWest Germany

Personalised recommendations