The Maltose-Maltodextrin-Transport System of Escherichia coli K-12

  • Howard A. Shuman
  • Nancy A. Treptow


Gram-negative bacteria inhabit a wide variety of environments and have evolved different strategies for capturing useful substances from the external milieu. Some active transport systems for sugars and amino acids are composed of a single polypeptide species. These systems usually function as secondary transporters that are energized by the electrochemical proton gradient. Examples of these are the permeases for ß-galactosides and glycerol-3-phosphate. In contrast to these “simple” systems, many growth substrates are transported by multicomponent systems that include a water-soluble substrate-binding protein in the periplasmic space, as well as proteins in the cytoplasmic membrane. These systems function as primary active transport systems that pump substrates into the cell at the expense of chemical energy. They are energized by an as yet undefined compound that is derived from the high-energy phosphoester pool of the cell (Berger, 1973; Berger and Heppel, 1974).


Outer Membrane Cytoplasmic Membrane Periplasmic Space Hybrid Protein Active Transport System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bavoil, P., and Nikaido, H., 1981, Physical interaction between the phage X receptor protein and the carrier-immobilized maltose binding protein of E. coli, J. Biol. Chem. 256: 11385–11388.PubMedGoogle Scholar
  2. Bavoil, P., Hofnung, M., and Nikaido, H., 1980, Identification of a cytoplasmic membrane associated omponent of the maltose transport system of Escherichia coli, J. Biol. Chem. 255: 8366–8369.PubMedGoogle Scholar
  3. Berger, E. A., 1973, Different mechanisms of energy coupling for the active transport of proline and glutamine in Escherichia coli, Proc. Natl. Acad. Sci. USA 70: 1514–1518.PubMedCrossRefGoogle Scholar
  4. Berger, E. A., and Heppel, L. A., 1974, Different mechanisms for energy coupling for the shock-sensitive and shock-resistant amino acid permeases of Escherichia coli, J. Biol.Chem. 249: 7747–7755.PubMedGoogle Scholar
  5. Boehler-Kohler, B. A., Boos, W., Dieterle, R., and Benz, R., 1979, Receptor for bacteriophage lambda of Escherichia coli forms larger pores in black lipid membranes than matrix protein (porin), J. Bacteriol. 138: 33–39.PubMedGoogle Scholar
  6. Boos, W., Ferenci, T., and Shuman, H. A., 1981, Formation and excretion of acetylmaltose after accumulation in E. coli, J. Bacteriol. 146: 725–732.PubMedGoogle Scholar
  7. Brass, J. M., Boos, W., and Hengge, R., 1981, Reconstitution of maltose transport in malB mutants of E. coli through calcium-induced disruptions of the outer membrane, J.Bacteriol. 146: 10–17.PubMedGoogle Scholar
  8. Brass, J. M., Ehmann, U., and Bukau, B., 1984, Reconstitution of maltose transport in Escherichia coli Conditions affecting import of maltose binding protein into the periplasm of calcium treated cells, J. Bacteriol.,in press.507–514Google Scholar
  9. Debarbouille, M., Shuman, H. A., Silhavy, T. J., and Schwartz, M., 1978, Dominant constitutive mutations in malT, the positive regulator gene of the maltose regulon in Escherichia coli, J. Mol. Biol. 124: 359–371.PubMedCrossRefGoogle Scholar
  10. Dietzel, I., Kolb, V., and Boos, W., 1978, Pole cap formation in Escherichia coli following induction of the maltose binding protein, Arch. Mikrobiol. 118: 207–218.Google Scholar
  11. Emr, S. D., and Silhavy, T. J., 1980, Mutations affecting localization of an Escherichia coli outer membrane protein, the bacteriophage lambda receptor, J . Mol. Biol. 141: 63–90.PubMedCrossRefGoogle Scholar
  12. Ferenci, T., 1980a, Methyl-a-maltoside and 5-thiomaltose: Analogs of maltose transported by the Escherichia coli maltose transport system, J. Bacteriol. 144: 7–11.PubMedGoogle Scholar
  13. Ferenci, T., 1980b, The recognition of maltodextrins by Escherichia coli, Eur. J. Biochem. 108: 631–636.PubMedCrossRefGoogle Scholar
  14. Ferenci, T., and Boos, W., 1980, The role of the Escherichia coli X receptor in the transport of maltose and maltodextrins, J. Supramol. Struct. 13: 101–116.PubMedCrossRefGoogle Scholar
  15. Ferenci, T., and Klotz, U., 1978, Affinity chromatographic isolation of the periplasmic maltose binding protein of Escherichia coli, FEBS Leu. 94: 213–217.CrossRefGoogle Scholar
  16. Ferenci, T., Schwentorat, M., Ullrich, S., and Vilmart, J., 1980, Lambda receptor in the outer membrane of Escherichi coli as a binding protein for maltodextrins and starch polysaccharides, J. Bacteriol. 142: 521–526.PubMedGoogle Scholar
  17. Gabay, J., and Yasunaka, K., 1980, Interaction of the LamB protein with the peptidoglycan layer in E. coli K-12, Eur. J. Biochem. 104: 13–18.PubMedCrossRefGoogle Scholar
  18. Gabay, J., Benson, S., and Schwartz, M., 1983, Genetic mapping of antigenic determinants on a membrane protein, J. Biol. Chem. 258: 2410–2414.PubMedGoogle Scholar
  19. Gilson, E., Nikaido, H., and Hofnung, M., 1982a, Sequence of the malK gene of E. coli K-12, Nucleic Acids Res. 10: 7449–7458.PubMedCrossRefGoogle Scholar
  20. Gilson, E., Higgins, C. F., Hofnung, M., Ferro-Luzzi Ames, and Nikaido, H., 1982b, Extensive homology between membrane associated components of histidine and maltose transport systems of Salmonella typhimurium and Escherichia coli, J. Biol. Chem. 257: 9915–9918.PubMedGoogle Scholar
  21. Heuzenroeder, M. W., and Reeves, P., 1980, Periplasmic maltose binding protein confers specificity on the outer membrane maltose pore of Escherichia coli, J. Bacteriol. 141: 431–435.PubMedGoogle Scholar
  22. Kellermann, O., and Szmelcman, S., 1974, Active transport of maltose in Escherichia coli K-12: Involvement of a “periplasmic maltose binding protein, ” Eur. J. Biochem. 47: 139–149.PubMedCrossRefGoogle Scholar
  23. Koiwai, O., and Hayashi, H., 1979, Studies on bacterial chemotaxis: VI. Interaction of maltose receptor with membrane bound chemosensing component, J. Biochem. (Tokyo) 86: 27–34.PubMedGoogle Scholar
  24. Luckey, M., and Nikaido, H., 1980, Specificity of diffusion channels produced by X-phage receptor protein of Escherichia coli, Proc. Natl. Acad. Sci. USA 77: 167–171.Google Scholar
  25. Nakae, T., and Ishii, J. M., 1980, Permeability properties of Escherichia coli outer membrane containing pore forming proteins: Comparison between lambda receptor protein and porin for saccharide permeation, J . Bacteriol. 142: 735–740.PubMedGoogle Scholar
  26. Nakae, T., and Ishii, J. M., 1982, Molecular weights and subunit structure of LamB proteins, Ann. Microbiol. (Inst. Pasteur) 133A: 21–25.CrossRefGoogle Scholar
  27. Neu, H. C., and Heppel, L., 1965, The release of enzymes from E. coli by osmotic shock and during the formation of spheroplasts, J. Biol. Chem. 240: 3685–3692.PubMedGoogle Scholar
  28. Neuhaus, J. M., 1982, The receptor protein of phage X: Purification, characterization and preliminary electrical studies in planar lipid bilayers, Ann. Microbiol. (Inst. Pasteur) 133A: 27–32.Google Scholar
  29. Parues, J. R., and Boos, W., 1973, Undirectional transport activity mediated by the galactose binding protein of Escherichia coli, J. Biol. Chem. 248: 4436–4445.Google Scholar
  30. Raibaud, O., Roa, M., Braun-Breton, C., and Schwartz, M., 1979, Structure of the ma1B region in Escherichia coli K-12 I. Genetic map of the malK-lamB operon, Mol. Gen. Genet. 174: 241–248.PubMedCrossRefGoogle Scholar
  31. Randall-Hazelbauer, L. L., and Schwartz, M., 1973, Isolation of the bacteriophage lambda receptor from Escherichia coli K-12, J. Bacteriol. 116: 1436 - -1446.PubMedGoogle Scholar
  32. Roa, M., and Clement, J. M., 1980, Location of a phage binding site on an outer membrane protein, FEBS Lett. 121: 127–129.PubMedCrossRefGoogle Scholar
  33. Robbins, A., and Rotman, B., 1975, Evidence for binding protein-independent substrate translocation by the r3-methyl galactoside transport system of Escherichia coli K-12, Proc. Natl. Acad. Sci. USA 72: 423–427.PubMedCrossRefGoogle Scholar
  34. Schwartz, M., 1966, Location of the maltose A and B loci on the genetic map of Escherichia coli, J. Bacteriol. 92: 1083–1089.PubMedGoogle Scholar
  35. Schwartz, M., 1967, Sur l’existence chez Escherichia coli K-12 d’une regulation commune a la biosynthése des recepteurs du bacteriophage lambda et au metabolisme du maltose, Ann. de !’Institut Pasteur 113: 685–704.Google Scholar
  36. Schwartz, M., 1980, Interaction of phages with their receptor proteins, in: Virus Receptors, Vol. 7 ( L. L. Randal and L. Philipson, eds.), Chapman and Hall, London, pp. 61–94.Google Scholar
  37. Schwartz, M., Kellerman, O., Szmelcman, S., and Hazelbauer, G., 1976, Further studies on the binding of maltose to the maltose binding protein of Escherichia coli, Eur. J. Biochem. 71: 167–170.PubMedCrossRefGoogle Scholar
  38. Shuman, H. A., 1982, Active transport of maltose in Escherichia coli K-I2: Role of the periplasmic maltose binding protein and evidence for a substrate recognition site in the cytoplasmic membrane, J. Biol. Chem. 257: 5455–5461.PubMedGoogle Scholar
  39. Shuman, H. A., and Beckwith, J. R., 1979, Mutants of Escherichia coli K-12 that allow transport of maltose via the 3-galactoside transport system, J. Bacteriol. 137: 365–373.PubMedGoogle Scholar
  40. Shuman, H. A., and Silhavy, T. J., 1981, Identification of the malK gene product: A peripheral membrane component of the E. coli maltose transport system, J. Biol. Chem. 256: 560–562.PubMedGoogle Scholar
  41. Shuman, H. A., Silhavy, T. J., and Beckwith, J., 1980, Labeling proteins with (3-galactosidase by gene fusion: Identification of a cytoplasmic membrane component of the Escherichia coli maltose transport system, J. Biol. Chem. 255: 168–174.PubMedGoogle Scholar
  42. Silhavy, T. J., Casadaban, M., Shuman, H. A., and Beckwith, J. R., 1976, Conversion of 3-galactosidase to a membrane-bound state by gene fusion, Proc. Natl. Acad. Sci. USA 73: 3423–3427.PubMedCrossRefGoogle Scholar
  43. Silhavy, T. J., Brickman, E., Bassford, P., Casadaban, M. J., Shuman, H. A., Schwartz, V., Guarente, L., Schwartz, M., and Beckwith, J. R., 1979, Structure of the malB region in Escherichia coli K-12 II. Genetic map of the malE,F,G operon, Mol. Gen. Gen. 174: 249–259.CrossRefGoogle Scholar
  44. Szmelcman, S., and Hofnung, M., 1975, Maltose transport in Escherichia coli K-12: Involvement of the bacteriophage lambda receptor, J. Bacteriol. 124: 112–118.PubMedGoogle Scholar
  45. Szmelcman, S., Schwartz, M., Silhavy, M., and Boos, W., 1976, Maltose transport in Escherichia coli K-I2: A comparison of transport kinetics in wild-type and K-resistant mutants with the dissociation constants of the maltose binding protein as measured by fluorescence quenching, Eur. J. Biochem. 65: 13–19.PubMedCrossRefGoogle Scholar
  46. Walker, J. E., Saraste, M., Runswick, M. J., and Gay, N. J., 1982, Distantly related sequences in the a and 13 subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold, Eur. Mol. Biol. Org. J. 1: 945–951.Google Scholar
  47. Wandersmann, C., Schwartz, M., and Ferenci, T., 1979, Mutants of Escherichia coli impaired in the transport of maltodextrins, J. Bacteriol. 140: 1–13.Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Howard A. Shuman
    • 1
  • Nancy A. Treptow
    • 1
  1. 1.Department of Microbiology, College of Physicians and SurgeonsColumbia UniversityNew YorkUSA

Personalised recommendations