Skip to main content

The Bacterial Phosphoenolpyruvate:Sugar Phosphotransferase System

  • Chapter

Abstract

The bacterial phosphoenolpyruvate: glycose phosphotransferase system, or PTS, plays a key role in several important physiological processes. Those PTS functions thus far identified include transport of PTS sugar substrates across the cytoplasmic membrane coupled with their phosphorylation, chemotaxis toward PTS sugar substrates, and regulation of the synthesis of enzymes and permeases required for the catabolism of certain non-PTS sugars. The latter function is achieved primarily by regulating both adenylate cyclase and the respective non-PTS sugar permeases.

The authors were supported by Program Project Grant CA21901 from the National Cancer Institute of the NIH. Contribution 1247 from the McCollum—Pratt Institute.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, B., Weigel, N., Kundig, W., and Roseman, S., 1971, Sugar transport. III. Purification and properties of a phosphocarrier protein (HPr) of the phosphoenolpyruvate-dependent phosphotransferase system of Escherichia coli, J. Biol. Chem. 246:7023–7033.

    PubMed  CAS  Google Scholar 

  • Bachmann, B. J., 1983, Linkage map of Escherichia coli K-12, Edition 7, Microbiol. Rev. 47:180–230.

    PubMed  CAS  Google Scholar 

  • Bayreuther, K., Raufuss, H., Schrecker, C., and Hengstenberg, H., 1977, The phosphoenolpyruvatedependent phosphotransferase system of Staphylococcus aureus. I. Amino acid sequence of phosphocarrier protein HPr, Eur. J. Biochem. 75:275–286.

    Google Scholar 

  • Begley, G. S., Hansen, D. E., Jacobson, G. R., and Knowles, J. R., 1982, Stereochemical course of the reactions catalyzed by the bacterial phosphoenolpyruvate:glucose phosphotransferase system, Biochemistry 21:5552–5556.

    PubMed  CAS  Google Scholar 

  • Beneski, D. A., Misko, T. P., and Roseman, S., 1982a, Sugar transport by the bacterial phosphotransferase system. Preparation and characterization of membrane vesicles from mutant and wild type Salmonella ryphimurium, J. Biol. Chem. 257:14565–14575.

    CAS  Google Scholar 

  • Beneski, D. A., Nakazawa, A., Weigel, N., Hartman, P. E., and Roseman, S., 1982b, Sugar transport by the bacterial phosphotransferase system. Isolation and characterization of a phosphocarrier protein HPr from wild type and mutants of Salmonella typhimurium,J. Biol. Chem. 257:14492–14498.

    CAS  Google Scholar 

  • Boniface, J., and Koch, A. L., 1967, The interaction between permeases as a tool to find their relationship on the membrane, Biochim. Biophys. Acta 135:756–770.

    PubMed  CAS  Google Scholar 

  • Bourd, G. I., Bol’shakova, T. N., Saprykina, T. P., Klyucheva, V. V., and Gershanovitch, V. N., 1971, Reduction in biosynthesis rate for RNA and protein in a thermosensitive E. coli K12 mutant defective in the Roseman phosphotransferase system, Mol. Biol. 5:384–389.

    Google Scholar 

  • Britton, P., Boronat, A., Hartley, D. A., Jones-Mortimer, M. C., Kornberg, H. L., and Pana, F., 1983, Phosphotransferase-mediated regulation of carbohydrate utilization in Escherichia coli K12. Location of the gsr (tgs) and iex (crr) genes by specialized transduction, J. Gen. Microbiol. 129:349–358.

    PubMed  CAS  Google Scholar 

  • Brouwer, M., Elferink, M. G. L., and Robillard, G. T., 1982, Phosphoenolpyruvate-dependent fructose phosphotransferase system of Rhodopseudomonas sphaeroides: Purification and physicochemical and immunochemical characterization of a membrane-associated Enzyme I, Biochemistry 21:82–88.

    PubMed  CAS  Google Scholar 

  • Chrambach, A., and Rodbard, D., 1971, Polyacrylamide gel electrophoresis, Science 172:440–451.

    PubMed  CAS  Google Scholar 

  • Cordaro, C., 1976, Genetics of the bacterial phosphoenolpyruvate:glycose phosphotransferase system, Annu. Rev. Genet. 10:341–359.

    PubMed  CAS  Google Scholar 

  • Cordaro, J. C., and Roseman, S., 1972, Deletion mapping of the genes coding for HPr and Enzyme I of the phosphoenolpyruvate:sugar phosphotransferase system in Salmonella typhimurium,J. Bacteriol. 112:17–29.

    PubMed  CAS  Google Scholar 

  • Cordaro, J. C., Anderson, R. P., Grogan, E. W., Jr., Wenzel, D. J., Engler, M., and Roseman, S., 1974, Promoter-like mutation affecting HPr and Enzyme I of the phosphoenolpyruvate:sugar phosphotransferase system in Salmonella typhimurium, J. Bacteriol. 120:245–252.

    PubMed  CAS  Google Scholar 

  • Curtis, S. J., and Epstein, W., 1975, Phosphorylation of D-glucose in Escherichia coli mutants defective in glucosephosphotransferase, mannosephosphotransferase, and glucokinase, J. Bacteriol. 122:1189–1199.

    PubMed  CAS  Google Scholar 

  • del Campo, F. F., Hernandez-Asensio, M., and Ramirez, J. M., 1975, Transport of a-methyl glucoside in mutants of Escherichia coli K12 deficient in Ca2+, Mg2+ -activated adenosine triphosphatase, Biochem. Biophys. Res. Commun. 63:1099–1105.

    PubMed  CAS  Google Scholar 

  • Dills, S. S., Apperson, A., Schmidt, M. R., and Saier, M. H., Jr., 1980, Carbohydrate transport in bacteria, Microbiol. Rev. 44:385–418.

    PubMed  CAS  Google Scholar 

  • Dills, S. S., Schmidt, M. R., and Saier, M. H., Jr., 1982, Regulation of lactose transport by the phosphoenolpyruvate-sugar phosphotransferase system in membrane vesicles of Escherichia coli, J. Cell. Biochem. 18:239–244.

    PubMed  CAS  Google Scholar 

  • Dooijewaard, G., Roossien, F. F., and Robillard, G. T., 1979, Escherichia coli phosphoenolpyruvate dependent phosphotransferase system. Copurification of HPr and al-6 glucan, Biochemistry 18:2990–2996.

    PubMed  CAS  Google Scholar 

  • Egan, J. B., and Morse, M. L., 1966, Carbohydrate transport in Staphylococcus aureus III. Studies of the transport process, Biochim. Biophys. Acta 112:63–73.

    PubMed  CAS  Google Scholar 

  • Emi, B., Trachsel, H., Postma, P. W., and Rosenbusch, J. P., 1982, Bacterial phosphotransferase system. Solubilization and purification of the glucose-specific enzyme II from membranes of Salmonella typhimurium, J. Biol. Chem. 257:13726–13730.

    Google Scholar 

  • Feucht, B. U., and Saier, M. H., Jr., 1980, Fine control of adenylate cyclase by the phosphoenolpyruvate:sugar phosphotransferase systems in Escherichia coli and Salmonella typhimurium, J. Bacteriol. 141:603–610.

    PubMed  CAS  Google Scholar 

  • Fox, D. K., 1983, The purification and characterization of acetate kinase from Salmonella typhimurium,Ph.D. dissertation, The Johns Hopkins University, University Microfilms International, Ann Arbor, Michigan.

    Google Scholar 

  • Fox, D. K., and Roseman, S., 1983, Interaction between the PEP:glycose phosphotransferase system (PTS) and acetate kinase of Salmonella typhimurium, Fed. Proc. 42:1942.

    Google Scholar 

  • Fox, C. F., and Wilson, G., 1968, The role of a phosphoenolpyruvate-dependent kinase system in 3-glucoside catabolism in Escherichia coli, Proc. Natl. Acad. Sci. USA 59:988–995.

    PubMed  CAS  Google Scholar 

  • Gachelin, G., 1970, Studies on the a-methylglucoside permease of Escherichia coli. A two step mechanism for the accumulation of a-methylglucoside 6-phosphate, Eur. J. Biochem. 16:342–357.

    PubMed  CAS  Google Scholar 

  • Gershanovitch, V. N., Bourd, G. I., Jorovitzkaya, N. V., Skavronskaya, A. G., Klyucheva, V. V., and Shabolenko, V. P., 1967, β-Galactosidase induction in cells of Escherichia coli not utilizing glucose, Biochim. Biophys. Acta 134:188–190.

    Google Scholar 

  • Grill, H., Weigel, N., Gaffney, B. J., and Roseman, S., 1982, Sugar transport by the bacterial phosphotransferase system. Radioactive and electron paramagnetic resonance labeling of the Salmonella typhimurium phosphocarrier protein (HPr) at the N112-terminal methionine, J. Biol. Chem. 257:14510–14517.

    PubMed  CAS  Google Scholar 

  • Guyer, M. S., 1978, The yS sequence of F is an insertion sequence, J. Mol. Biol. 126:347–365.

    PubMed  CAS  Google Scholar 

  • Hagihira, H., Wilson, T. H., and Lin, E. C. C., 1963, Studies on the glucose-transport system in Escherichia coli with a-methylglucoside as substrate, Biochim. Biophys. Acta 78:505–515.

    PubMed  CAS  Google Scholar 

  • Haguenauer-Tsapis, R., and Kepes, A., 1973, Changes in accessibility of the membrane bound transport enzyme glucose phosphotransferase of E. coli to protein group reagents in presence of substrate or absence of substrate or absence of energy source, Biochem. Biophys. Res. Commun. 54:1335–1341.

    PubMed  CAS  Google Scholar 

  • Haguenauer-Tsapis, R., and Kepes, A., 1977a, Unmasking of an essential thiol during function of the membrane bound enzyme II of the phosphoenolpyruvate glucose phosphotransferase system of Escherichia coli, Biochim. Biophys. Acta 465:118–130.

    CAS  Google Scholar 

  • Haguenauer-Tsapis, R., and Kepes, A., 1977b, The role of enzyme I in the unmasking of an essential thiol of the membrane-bound enzyme II of the phosphoenolpyruvate-glucose phosphotransferase system of Escherichia coli, Biochim. Biophys. Acta 469:211–215.

    CAS  Google Scholar 

  • Haguenauer-Tsapis, R., and Kepes, A., 1980, Different sidedness of functionally homologous essential thiols in two membrane-bound phosphotransferase enzymes of Escherichia coli detected by permeant and nonpermeant thiol reagents, J. Biol. Chem. 255:5075–5081.

    PubMed  CAS  Google Scholar 

  • Harwood, J. P., Gazdar, C., Prasad, C., and Peterkofsky, A., 1976, Involvement of the glucose Enzymes II of the sugar phosphotransferase system in the regulation of adenylate cyclase by glucose in Escherichia coli, J. Biol. Chem. 251:2462–2468.

    PubMed  CAS  Google Scholar 

  • Hays, J. B., Simoni, R. D., and Roseman, S., 1973, Sugar transport. V. A trimeric lactose-specific phosphocarrier protein of the Staphylococcus aureus phosphotransferase system, J. Biol. Chem. 248:941–956.

    PubMed  CAS  Google Scholar 

  • Hildenbrand, K., Brand, L., and Roseman, S., 1982, Sugar transport by the bacterial phosphotransferase system. Nanosecond fluorescence studies of the phosphocarrier protein (HPr) labeled at the NH2terminal methionine, J. Biol. Chem. 257:14518–14525.

    PubMed  CAS  Google Scholar 

  • Hoffee, P., Englesberg, E., and Lamy, F., 1964, The glucose permease system in bacteria, Biochim. Biophys. Acta 79:337–350.

    PubMed  CAS  Google Scholar 

  • Hoving, H., Lolkema, J. S., and Robillard, G. T., 1981, Escherichia coli phosphoenolpyruvate-dependent phosphotransferase system: Equilibrium kinetics and mechanism of enzyme I phosphorylation, Biochemistry 20:87–93.

    PubMed  CAS  Google Scholar 

  • Hoving, H., Koning, J. H., and Robillard, G. T., 1982, Escherichia coli phosphoenolpyruvate-dependent phosphotransferase system: Role of divalent metals in the dimerization and phosphorylation of enzyme I, Biochemistry 21:3128–3135.

    PubMed  CAS  Google Scholar 

  • Hoving, H., Nowak, T., and Robillard, G. T., 1983, Escherichia coli phosphoenolpyruvate-dependent phosphotransferase system: Stereospecificity of proton transfer in the phosphorylation of enzyme I from (Z)-phosphoenolbutyrate, Biochemistry 22:2832–2838.

    PubMed  CAS  Google Scholar 

  • Hüdig, H., and Hengstenberg, W., 1980, The bacterial phosphoenolpyruvate dependent phosphotransferase system (PTS). Solubilisation and kinetic parameters of the glucose-specific membrane bound enzyme II component of Streptococcus faecalis, FEBS Lett. 114:103–106.

    PubMed  Google Scholar 

  • Jablonski, E. G., Brand, L., and Roseman, S., 1983, Sugar transport by the bacterial phosphotransferase system. Preparation of a fluorescein derivative of the glucose-specific phosphocarrier protein III61c and its binding to the phosphocarrier protein HPr, J. Biol. Chem. 258:9690–9699.

    PubMed  CAS  Google Scholar 

  • Jacobson, G. R., Lee, C. A., and Saier, M. H., Jr., 1979, Purification of the mannitol-specific enzyme II of the Escherichia coli phosphoenolpyruvate:sugar phosphotransferase system, J. Biol. Chem. 254: 249–252.

    PubMed  CAS  Google Scholar 

  • Jacobson, G. R., Lee, C. A., Leonard, J. E., and Saier, M. H., Jr., 1983, Mannitol-specific enzyme II of the bacterial phosphotransferase system. I. Properties of the purified permease, J. Biol. Chem. 258:10748–10756.

    PubMed  CAS  Google Scholar 

  • Kornberg, H. L., and Riordan, C.. 1976, Uptake of galactose into Escherichia coli by facilitated diffusion, J. Gen. Microbiol. 94:75–89.

    PubMed  CAS  Google Scholar 

  • Komberg, H. L., and Watts, P. D., 1979, tgs and crr genes involved in catabolite inhibition and inducer exclusion in Escherichia coli, FEBS Lett. 104:313–316.

    Google Scholar 

  • Kornberg, H. L., Watts, P. D., and Brown, K., 1980, Mechanism of “inducer exclusion” by glucose, FEBS Lett. 117 (Suppl.):K28–K36.

    PubMed  Google Scholar 

  • Kukuruzinska, M. A., Harrington, W. F., and Roseman, S., 1982, Sugar transport by the bacterial phosphotransferase system. Studies on the molecular weight and association of enzyme I, J. Biol. Chem. 257:14470–14476.

    PubMed  CAS  Google Scholar 

  • Kundig, W., 1974, Molecular interactions in the bacterial phosphoenolpyruvate-phosphotransferase system (PTS), J. Supramol. Struct. 2:695–714.

    PubMed  CAS  Google Scholar 

  • Kundig, W., and Roseman, S., 1971, Sugar transport. II. Characterization of constitutive membrane-bound Enzymes II of the Escherichia coli phosphotransferase system, J. Biol. Chem. 246:1407–1418.

    PubMed  CAS  Google Scholar 

  • Kundig, W., Ghosh, S., and Roseman, S., 1964, Phosphate bound to histidine as an intermediate in a novel phospho-transferase system, Proc. Natl. Acad. Sci. USA 52:1067–1074.

    PubMed  CAS  Google Scholar 

  • Lee, C. A., and Saier, M. H., Jr., 1983, Mannitol-specific enzyme II of the bacterial phosphotransferase system. III. The nucleotide sequence of the permease gene, J. Biol. Chem. 258:10761–10767.

    PubMed  CAS  Google Scholar 

  • Lee, C. A., Jacobson, G. R., and Saier, M. H., Jr., 1981, Plasmid-directed synthesis of enzymes required for D-mannitol transport and utilization in Escherichia coli, Proc. Natl. Acad. Sci. USA 78:7336–7340.

    PubMed  CAS  Google Scholar 

  • Leonard, J. E., and Saier, M. H., Jr., 1981, Genetic dissection of catalytic activities of the Salmonella typhimurium mannitol enzyme II, J. Bacteriol. 145:1106–1109.

    PubMed  CAS  Google Scholar 

  • Leonard, J. E., and Saier, M. H., Jr., 1983, Mannitol-specific Enzyme II of the bacterial phosphotransferase system. II. Reconstitution of vectorial transphosphorylation in phospholipid vesicles, J. Biol. Chem. 258:10757–10760.

    PubMed  CAS  Google Scholar 

  • Levine, R. L., and Federici, M. M., 1982, Quantitation of aromatic residues in proteins: Model compounds for second-derivative spectroscopy, Biochemistry 21:2600–2606.

    PubMed  CAS  Google Scholar 

  • Lipmann, F., 1944, Enzymatic synthesis of acetyl phosphate, J. Biol. Chem. 155:55–70.

    CAS  Google Scholar 

  • Liu, K. D. F., and Roseman, S., 1983a, Kinetic properties and regulation of methyl a-glucoside uptake by Salmonella typhimurium membrane vesicles, Fed. Proc. 42:1941.

    Google Scholar 

  • Liu, K. D. F., and Roseman, S., 1983b, Kinetic characterization and regulation of phosphoenolpyruvatedependent methyl a-D-glucopyranoside transport by Salmonella typhimurium membrane vesicles, Proc. Natl. Acad. Sci. USA, 80:7142–7145.

    CAS  Google Scholar 

  • Magasanik, B., 1970, Glucose effects: Inducer exclusion and repression, in: The Lactose Operon (J. R. Beckwith and D. Zipser, eds.), Cold Spring Harbor Press, Cold Spring Harbor, New York, pp. 189–219.

    Google Scholar 

  • Makman, R. S., and Sutherland, E. W., 1965, Adenosine 3’,5’-phosphate in Escherichia coli, J. Biol. Chem. 240:1309–1314.

    PubMed  CAS  Google Scholar 

  • Marquet, M., Creignou, M., and Dedoner, R., 1976, The phosphoenolpyruvate:methyl a-D-glucoside phosphotransferase system in Bacillus subtilis Marburg 168: Purification and identification of the phosphocarrier protein (HPr), Biochimie 58:435–441.

    PubMed  CAS  Google Scholar 

  • Mason, P. W., Carbone, D. P., Cushman, R. A., and Waggoner, A. S., 1981, The importance of inorganic phosphate in regulation of energy metabolism of Streptococcus lactis, J. Biol. Chem. 256:1861–1866.

    PubMed  CAS  Google Scholar 

  • Mattoo, R. L., and Waygood, E. B., 1983, Determination of the levels of HPr and enzyme I of the phosphoenolpyruvate-sugar phosphotransferase system in Escherichia coli and Salmonella typhimurium,Can. J. Biochem. Cell Biol. 61:29–37.

    PubMed  CAS  Google Scholar 

  • Meadow, N. D., and Roseman, S., 1982, Sugar transport by the bacterial phosphotransferase system. Isolation and characterization of a glucose-specific phosphocarrier protein (III’) from Salmonella typhimurium, J. Biol. Chem. 257:14526–14537.

    PubMed  CAS  Google Scholar 

  • Meadow, N. D., and Roseman, S., 1983, A protease in S. typhimurium membranes which processes III’, a protein of the phosphotransferase system, Fed. Proc. 42:1813.

    Google Scholar 

  • Meadow, N. D., Rosenberg, J. M., Pinkert, H. M., and Roseman, S., 1982a, Sugar transport by the bacterial phosphotransferase system. Evidence that crr is the structural gene for the Salmonella typhimurium glucose-specific phosphocarrier protein III’, J. Biol. Chem. 257:14538–14542.

    CAS  Google Scholar 

  • Meadow, N. D., Saffen, D. W., Dottin, R. P., and Roseman, S., 1982b, Molecular cloning of the crr gene and evidence that it is the structural gene for III’, a phosphocarrier protein of the bacterial phosphotransferase system, Proc. Natl. Acad. Sci. USA 79:2528–2532.

    CAS  Google Scholar 

  • Misko, T. P., 1983, Studies on the transport and regulatory functions of the phosphoenolpyruvate:glycose phosphotransferase system in Salmonella typhimurium,Ph.D. dissertation, The Johns Hopkins University, University Microfilms International, Ann Arbor, Michigan.

    Google Scholar 

  • Misset, O., and Robillard, G. T., 1982, Escherichia coli phosphoenolpyruvate-dependent phosphotransferase system: Mechanism of phosphoryl-group transfer from phosphoenolpyruvate to HPr, Biochemistry 21:3136–3142.

    PubMed  CAS  Google Scholar 

  • Misset, O., Brouwer, M., and Robillard, G. T„ 1980, Escherichia coli phosphoenolpyruvate-dependent phosphotransferase system. Evidence that the dimer is the active form of enzyme I, Biochemistry 19:883–890.

    PubMed  CAS  Google Scholar 

  • Mitchell, W. J., Misko, T. P., and Roseman, S., 1982, Sugar transport by the bacterial phosphotransferase system. Regulation of other transport systems (lactose and melibiose), J. Biol. Chem. 257:14553–14564.

    PubMed  CAS  Google Scholar 

  • Nelson, S. O., Scholte, B. J., and Postma, P. W., 1982, Phosphoenolpyruvate: sugar phosphotransferase system-mediated regulation of carbohydrate metabolism in Salmonella typhimurium,J. Bacteriol. 150:604–615.

    PubMed  CAS  Google Scholar 

  • Nelson, S. O., Wright, J. K., and Postma, P. W., 1983, The mechanism of inducer exclusion. Direct interaction between purified III61c of the phosphoenolpyruvate:sugar phosphotransferase system and the lactose carrier of Escherichia coli, Eur. Mol. Biol. Org. J. 2:715–720.

    CAS  Google Scholar 

  • Osumi, T., and Saier, M. H., Jr., 1982, Regulation of lactose permease activity by the phosphoenolpyruvate: sugar phosphotransferase system: Evidence for direct binding of the glucose-specific enzyme III to the lactose permease, Proc. Natl. Acad. Sci. USA 79:1457–1461.

    PubMed  CAS  Google Scholar 

  • Parra, F., Jones-Mortimer, M. C., and Kornberg, H. L., 1983, Phosphotransferase mediated regulation of carbohydrate utilization in Escherichia coli K12. The nature of the iex (crr) and gsr (tgs) mutations, J. Gen. Microbiol. 129:337–348.

    PubMed  CAS  Google Scholar 

  • Pastan, I., and Perlman, R., 1970, Cyclic adenosine monophosphate in bacteria, Science 169:339–344.

    PubMed  CAS  Google Scholar 

  • Perret, J., and Gay, P., 1979, Kinetic study of a phosphoryl exchange reaction between fructose and fructose 1-phosphate catalyzed by the membrane-bound enzyme II of the phosphoenolpyruvate-fructose 1phosphotransferase system of Bacillus subtilis, Eur. J. Biochem. 102:237–246.

    PubMed  CAS  Google Scholar 

  • Peterkofsky, A., and Gazdar, C., 1975, Interaction of Enzyme I of the phosphoenolpyruvate:sugar phosphotransferase system with adenylate cyclase of Escherichia coli, Proc. Natl. Acad. Sci. USA 72:2920–2924.

    PubMed  CAS  Google Scholar 

  • Peterkofsky, A., and Gazdar, C., 1978, The Escherichia coil adenylate cyclase complex: Activation by phosphoenolpyruvate, J. Supramol. Struct. 9:219–230.

    PubMed  CAS  Google Scholar 

  • Postma, P. W., 1976, Involvement of phosphotransferase system in galactose transport in Salmonella typhimurium, FEBS Lett. 61:49–53.

    PubMed  CAS  Google Scholar 

  • Postma, P. W., 1981, Defective enzyme II-BOIc of the phosphoenolpyruvate:sugar phosphotransferase system leading to uncoupling of transport and phosphorylation in Salmonella typhimurium, J. Bacteriol. 147:382–389.

    PubMed  CAS  Google Scholar 

  • Postma, P. W., 1982, Regulation of sugar in Salmonella typhimurium, Ann. Microbiol. (Inst. Pasteur) 133A:261–267.

    CAS  Google Scholar 

  • Postma, P. W., and Roseman, S., 1976, The bacterial phosphoenolpyruvate:sugar phosphotransferase system, Biochim. Biophys. Acta 457:213–257.

    CAS  Google Scholar 

  • Postma, P. W., and Stock, J. B., 1980, Enzymes II of the phosphotransferase system do not catalyze sugar transport in the absence of phosphorylation, J. Bacteriol. 141:476–484.

    PubMed  CAS  Google Scholar 

  • Reider, E., Wagner, E. F., and Schweiger, M., 1979, Control of phosphoenolpyruvate-dependent phosphotransferase-mediated sugar transport in Escherichia coli by energization of the cell membrane, Proc. Natl. Acad. Sci. USA 76:5529–5533.

    PubMed  CAS  Google Scholar 

  • Rephaeli, A. W., and Saler, M. H., Jr., 1978, Kinetic analyses of the sugar phosphate:sugar transphosphorylation reaction catalyzed by the glucose enzyme II complex of the bacterial phosphotransferase system, J. Biol. Chem. 253:7595–7597.

    PubMed  CAS  Google Scholar 

  • Rephaeli, A. W., and Saier, M. H., Jr., 1980, Substrate specificity and kinetic characterization of sugar uptake and phosphorylation, catalyzed by the mannose enzyme II of the phosphotransferase system in Salmonella typhimurium, J. Biol. Chem. 255:8585–8591.

    PubMed  CAS  Google Scholar 

  • Roberts, R. B., Cowie, D. B., Abelson, P. H., Bolton, E. T., and Britten, R. J., 1963, Studies of biosynthesis in Escherichia coli, Carnegie Institution of Washington Publication 607, Washington, D.C., pp. 515.

    Google Scholar 

  • Robillard, G. T., and Konings, W. N., 1981, Physical mechanism for regulation of phosphoenolpyruvatedependent glucose transport activity in Escherichia coli, Biochemistry 20:5025–5032.

    PubMed  CAS  Google Scholar 

  • Robillard, G. T., and Lageveen, R. G., 1982, Non-vectorial phosphorylation by the bacterial PEP-dependent phosphotransferase system is an artifact of spheroplast and membrane vesicle preparation procedures, FEBS Lett. 147:143–148.

    PubMed  CAS  Google Scholar 

  • Robillard, G. T., Dooijewaard, G., and Lolkema, J., 1979, Escherichia coli phosphoenolpyruvate dependent phosphotransferase system. Complete purification of Enzyme I by hydrophobic interaction chromatography, Biochemistry 18:2984–2989.

    CAS  Google Scholar 

  • Roossien, F. F., Dooijewaard, G., and Robillard, G. T., 1979, The Escherichia coli phosphoenolpyruvatedependent phosphotransferase system: Observation of heterogeneity in the amino acid composition of HPr, Biochemistry 18:5793–5797.

    PubMed  CAS  Google Scholar 

  • Rose, S. P., and Fox, C. F., 1971, The 13-glucoside system of Escherichia coli. II. Kinetic evidence for a phosphoryl-enzyme II intermediate, Biochem. Biophys. Res. Commun. 45:376–380.

    PubMed  CAS  Google Scholar 

  • Roseman, S., 1972, Carbohydrate transport in bacterial cells, in: Metabolic Transport, Vol. VI (L. E. Hokin, ed.), Academic Press, New York, pp. 41–89.

    Google Scholar 

  • Roseman, S., 1977, The transport of sugars across bacterial membranes, in: Biochemistry of Membrane Transport,FEBS-Symposium No. 42 (G. Semenza and E. Carafoli, eds.), Springer-Verlag, New York, pp. 582–597.

    Google Scholar 

  • Saier, M. H., Jr., 1977, Bacterial phosphoenolpyruvate:sugar phosphotransferase systems: Structural, functional, and evolutionary interrelationships, Bacteriol. Rev. 41:856–871.

    PubMed  CAS  Google Scholar 

  • Saier, M. H., Jr., and Feucht, B. U., 1980, Regulation of carbohydrate transport activities in Salmonella typhimurium: Use of the phosphoglycerate transport system to energize solute uptake, J. Bacteriol. 141:611–617.

    PubMed  CAS  Google Scholar 

  • Saier, M. H., Jr., and Moczydlowski, E. G., 1978, The regulation of carbohydrate transport in Escherichia coli and Salmonella typhimurium, in: Bacterial Transport (B. P. Rosen, ed.), Marcel Dekker, New York, pp. 103–125.

    Google Scholar 

  • Saier, M. H., Jr., and Newman, M. J., 1976, Direct transfer of the phosphoryl moiety of mannitol 1-phosphate to [14C]mannitol catalyzed by the enzyme II complexes of the phosphoenolpyruvate:mannitol phosphotransferase systems in Spirochaeta aurantia and Salmonella typhimurium, J. Biol. Chem. 251:3834–3837.

    PubMed  CAS  Google Scholar 

  • Saier, M. H., Jr., and Roseman, S., 1976a, Sugar transport. The crr mutation: Its effect on repression of enzyme synthesis, J. Biol. Chem. 251:6598–6605.

    CAS  Google Scholar 

  • Saier, M. H., Jr., and Roseman, S., 1976b, Sugar transport. Inducer exclusion and regulation of the melibiose, maltose, glycerol, and lactose transport systems by the phosphoenolpyruvate:sugar phosphotransferase system, J. Biol. Chem. 251:6606–6615.

    CAS  Google Scholar 

  • Saier, M. H., Jr., and Schmidt, M. R., 1981, Vectorial and nonvectorial transphosphorylation catalyzed by enzymes II of the bacterial phosphotransferase system, J. Bacteriol. 145:391–397.

    PubMed  CAS  Google Scholar 

  • Saier, M. H., Jr., Bromberg, F. G., and Roseman, S., 1973, Characterization of constitutive galactose permease mutants in Salmonella typhimurium, J. Bacteriol. 113:512–514.

    PubMed  CAS  Google Scholar 

  • Saier, M. H., Jr., Simoni, R. D., and Roseman, S., 1976, Sugar transport. Properties of mutant bacteria defective in proteins of the phosphoenolpyruvate:sugar phosphotransferase system, J. Biol. Chem. 251:6584–6597.

    PubMed  CAS  Google Scholar 

  • Saier, M. H., Jr., Cox, D. F., and Moczydlowski, E. G., 1977a, Sugar phosphate:sugar transphosphorylation coupled to exchange group translocation catalyzed by the enzyme II complexes of the phosphoenolpyruvate:sugar phosphotransferase system in membrane vesicles of Escherichia coli, J. Biol. Chem. 252:8908–8916.

    CAS  Google Scholar 

  • Saier, M. H., Jr., Feucht, B. U., and Mora, W. K., 1977b, Sugar phosphate:sugar transphosphorylation and exchange group translocation catalyzed by the enzyme II complexes of the bacterial phosphoenolpyruvate:sugar phosphotransferase system, J. Biol. Chem. 252:8899–8907.

    CAS  Google Scholar 

  • Saier, M. H., Jr., Newman, M. J., and Rephaeli, A. W., 1977c, Properties of a phosphoenolpyru- vate:mannitol phosphotransferase system in Spirochaeta aurantia, J. Biol. Chem. 252:8890–8898.

    CAS  Google Scholar 

  • Saier, M. H., Jr., Schmidt, M. R., and Lin, P., 1980, Phosphoryl exchange reaction catalyzed by enzyme I of the bacterial phosphoenolpyruvate:sugar phosphotransferase system. Kinetic characterization, J. Biol. Chem. 255:8579–8584.

    PubMed  CAS  Google Scholar 

  • Saier, M. H., Jr., Keeler, D. K., and Feucht, B. U., 1982, Physiological desensitization of carbohydrate permeases and adenylate cyclase to regulation by the phosphoenolpyruvate:sugar phosphotransferase system in Escherichia coli and Salmonella typhimurium. Involvement of adenosine cyclic 3’,5’-phosphate and inducer, J. Biol. Chem. 257:2509–2517.

    PubMed  CAS  Google Scholar 

  • Sanderson, K. E., and Roth, J. R., 1983, Linkage map of Salmonella typhimurium, Edition VI, Microbiol. Rev. 47:410–453.

    PubMed  CAS  Google Scholar 

  • Schachter, H., 1973, On the interpretation of Michaelis constants for transport, J. Biol. Chem. 248:974–976.

    PubMed  CAS  Google Scholar 

  • Scholte, B. J., and Postma, P. W., 1980, Mutation in the crp gene of Salmonella typhimurium which interferes with inducer exclusion, J. Bacteriol. 141:751–757.

    PubMed  CAS  Google Scholar 

  • Scholte, B. J., and Postma, P. W., 1981, Competition between two pathways for sugar uptake by the phosphoenolpyruvate-dependent sugar phosphotransferase system in Salmonella typhimurium, Eur. J. Biochem. 114:51–58.

    PubMed  CAS  Google Scholar 

  • Scholte, B. J., Schuitema, A. R., and Postma, P. W., 1981, Isolation of III’ of the phosphoenolpyruvatedependent glucose phosphotransferase system of Salmonella typhimurium, J. Bacteriol. 148:257–264.

    PubMed  CAS  Google Scholar 

  • Scholte, B. J., Schuitema, A. R. J., and Postma, P. W., 1982, Characterization of Factor III’ in catabolite repression-resistant (crr) mutants of Salmonella typhimurium, J. Bacteriol. 149:576–586.

    PubMed  CAS  Google Scholar 

  • Schrecker, O., Stein, R., Hengstenberg, W., Gassner, M., and Stehlik, D., 1975, The Staphylococcal PEP dependent phosphotransferase system, proton magnetic resonance (PMR) studies on the phosphoryl carrier protein HPr: Evidence for a phosphohistidine residue in the intact phospho-HPr molecule, FEBS Lett. 51:309–312.

    PubMed  CAS  Google Scholar 

  • Silhavy, T. J., Ferenci, T., and Boos, W., 1978, Sugar transport systems in Escherichia coli, in: Bacterial Transport (B. P. Rosen, ed.), Marcel Dekker, New York, pp. 127–169.

    Google Scholar 

  • Simoni, R. D., and Roseman, S., 1973, Sugar transport. VII. Lactose transport in staphylococcus aureus, J. Biol. Chem. 248:966–976.

    PubMed  CAS  Google Scholar 

  • Simoni, R. D., Levinthal, M., Kundig, F. D., Kundig, W., Anderson, B., Hartman, P. E., and Roseman, S., 1967, Genetic evidence for the role of a bacterial phosphotransferase system in sugar transport, Proc. Natl. Acad. Sci. USA 58:1963–1970.

    PubMed  CAS  Google Scholar 

  • Simoni, R. D., Smith, M., and Roseman, S., 1968, Resolution of a Staphylococcal phosphotransferase system into four protein components and its relation to sugar transport, Biochem. Biophys. Res. Commun. 31:804–811.

    PubMed  CAS  Google Scholar 

  • Simoni, R. D., Hays, J. B., Nakazawa, T., and Roseman, S., 1973a, Sugar transport. VI. Phosphoryl transfer in the lactose phosphotransferase system of Staphylococcus aureus, J. Biol. Chem. 248:957–965.

    CAS  Google Scholar 

  • Simoni, R. D., Nakazawa, T., Hays, J. B., and Roseman, S., 1973b, Sugar transport. IV. Isolation and characterization of the lactose phosphotransferase system in Staphylococcus aureus, J. Biol. Chem. 248:932–940.

    CAS  Google Scholar 

  • Solomon, E., Miyai, K., and Lin, E. C. C., 1973, Membrane translocation of mannitol in Escherichia coli without phosphorylation, J. Bacteriol. 114:723–728.

    PubMed  CAS  Google Scholar 

  • Stein, R., Schrecker, O., Lauppe, H. F., and Hengstenberg, H., 1974, The Staphylococcal PEP dependent phosphotransferase system: Demonstration of a phosphorylated intermediate of the enzyme I component, FEBS Lett. 42:98–100.

    PubMed  CAS  Google Scholar 

  • Stock, J. B., Waygood, E. B., Meadow, N. D., Postma, P. W., and Roseman, S., 1982, Sugar transport by the bacterial phosphotransferase system. The glucose receptors of the Salmonella typhimurium phosphotransferase system, J. Biol. Chem. 257:14543–14552.

    PubMed  CAS  Google Scholar 

  • Tyler, B., and Magasanik, B., 1970, Physiological basis of transient repression of catabolic enzymes in Escherichia coli, J. Bacterial. 102:411–422.

    CAS  Google Scholar 

  • Ullah, A., and Cirillo, V., 1976, Mycoplasma phosphoenolpyruvate-dependent sugar phosphotransferase system: Purification and characterization of the phosphocarrier protein, J. Bacteriol. 127:1298–1306.

    PubMed  CAS  Google Scholar 

  • Valdes, R., Jr., and Ackers, G. K., 1979, Study of protein subunit association equilibria by elution gelchromatography, Meth. Enzymol. 61:125–142.

    PubMed  CAS  Google Scholar 

  • Wang, R. J., and Morse, M. L., 1968, Carbohydrate accumulation and metabolism in Escherichia coli I. Description of pleiotropic mutants. J. Mol. Biol. 32:59–66.

    PubMed  CAS  Google Scholar 

  • Waygood, E. B., and Steeves, T., 1980, Enzyme I of the phosphoenolpyruvate:sugar phosphotransferasesystem of Escherichia coli. Purification to homogeneity and some properties, Can. J. Biochem. 58:40–48.

    PubMed  CAS  Google Scholar 

  • Waygood, E. B., Cordaro, J. C., and Roseman, S., 1975, Pseudo-HPr, a substitute for HPr in the PEP:sugar phosphotransferase system, Proc. Can. Fed. Biol. Soc. 18:115.

    Google Scholar 

  • Waygood, E. B., Weigel, N., Nakazawa, A., Kukuruzinska, M., and Roseman, S., 1977, Purification and properties of Enzyme I of the PEP:glycose phosphotransferase system (PTS), Proc. Can. Fed. Biol. Soc. 20:54.

    Google Scholar 

  • Waygood, E. B., Meadow, N. D., and Roseman, S., 1979, Modified assay procedures for the phosphotransferase system in enteric bacteria, Anal. Biochem. 95:293–304.

    PubMed  CAS  Google Scholar 

  • Weigel, N., Kukuruzinska, M. A., Nakazawa, A., Waygood, E. B., and Roseman, S., 1982a, Sugar transport by the bacterial phosphotransferase system. Phosphoryl transfer reactions catalyzed by enzyme I of Salmonella typhimurium, J. Biol. Chem. 257:14477–14491.

    CAS  Google Scholar 

  • Weigel, N., Powers, D. A., and Roseman, S., 1982b, Sugar transport by the bacterial phosphotransferase system. Primary structure and active site of a general phosphocarrier protein (HPr) from Salmonella typhimurium, J. Biol. Chem. 257:14499–14509.

    CAS  Google Scholar 

  • Weigel, N., Waygood, E. B., Kukuruzinska, M. A., Nakazawa, A., and Roseman, S., 1982c, Sugar transport by the bacterial phosphotransferase system. Isolation and characterization of enzyme I from Salmonella typhimurium, J. Biol. Chem. 257:14461–14469.

    CAS  Google Scholar 

  • Winkler, H. H., and Wilson, T. H., 1967, Inhibition of 3-galactoside transport by substrates of the glucose transport system in Escherichia coli, Biochim. Biophys. Acta 135:1030–1051.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

Meadow, N.D., Kukuruzinska, M.A., Roseman, S. (1985). The Bacterial Phosphoenolpyruvate:Sugar Phosphotransferase System. In: Martonosi, A.N. (eds) The Enzymes of Biological Membranes. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4601-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4601-2_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4603-6

  • Online ISBN: 978-1-4684-4601-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics