The Bacterial Phosphoenolpyruvate:Sugar Phosphotransferase System

  • Norman D. Meadow
  • Maria A. Kukuruzinska
  • Saul Roseman

Abstract

The bacterial phosphoenolpyruvate: glycose phosphotransferase system, or PTS, plays a key role in several important physiological processes. Those PTS functions thus far identified include transport of PTS sugar substrates across the cytoplasmic membrane coupled with their phosphorylation, chemotaxis toward PTS sugar substrates, and regulation of the synthesis of enzymes and permeases required for the catabolism of certain non-PTS sugars. The latter function is achieved primarily by regulating both adenylate cyclase and the respective non-PTS sugar permeases.

Keywords

Adenosine Cyanide Tryptophan Succinate Galactose 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, B., Weigel, N., Kundig, W., and Roseman, S., 1971, Sugar transport. III. Purification and properties of a phosphocarrier protein (HPr) of the phosphoenolpyruvate-dependent phosphotransferase system of Escherichia coli, J. Biol. Chem. 246:7023–7033.PubMedGoogle Scholar
  2. Bachmann, B. J., 1983, Linkage map of Escherichia coli K-12, Edition 7, Microbiol. Rev. 47:180–230.PubMedGoogle Scholar
  3. Bayreuther, K., Raufuss, H., Schrecker, C., and Hengstenberg, H., 1977, The phosphoenolpyruvatedependent phosphotransferase system of Staphylococcus aureus. I. Amino acid sequence of phosphocarrier protein HPr, Eur. J. Biochem. 75:275–286.Google Scholar
  4. Begley, G. S., Hansen, D. E., Jacobson, G. R., and Knowles, J. R., 1982, Stereochemical course of the reactions catalyzed by the bacterial phosphoenolpyruvate:glucose phosphotransferase system, Biochemistry 21:5552–5556.PubMedGoogle Scholar
  5. Beneski, D. A., Misko, T. P., and Roseman, S., 1982a, Sugar transport by the bacterial phosphotransferase system. Preparation and characterization of membrane vesicles from mutant and wild type Salmonella ryphimurium, J. Biol. Chem. 257:14565–14575.Google Scholar
  6. Beneski, D. A., Nakazawa, A., Weigel, N., Hartman, P. E., and Roseman, S., 1982b, Sugar transport by the bacterial phosphotransferase system. Isolation and characterization of a phosphocarrier protein HPr from wild type and mutants of Salmonella typhimurium,J. Biol. Chem. 257:14492–14498.Google Scholar
  7. Boniface, J., and Koch, A. L., 1967, The interaction between permeases as a tool to find their relationship on the membrane, Biochim. Biophys. Acta 135:756–770.PubMedGoogle Scholar
  8. Bourd, G. I., Bol’shakova, T. N., Saprykina, T. P., Klyucheva, V. V., and Gershanovitch, V. N., 1971, Reduction in biosynthesis rate for RNA and protein in a thermosensitive E. coli K12 mutant defective in the Roseman phosphotransferase system, Mol. Biol. 5:384–389.Google Scholar
  9. Britton, P., Boronat, A., Hartley, D. A., Jones-Mortimer, M. C., Kornberg, H. L., and Pana, F., 1983, Phosphotransferase-mediated regulation of carbohydrate utilization in Escherichia coli K12. Location of the gsr (tgs) and iex (crr) genes by specialized transduction, J. Gen. Microbiol. 129:349–358.PubMedGoogle Scholar
  10. Brouwer, M., Elferink, M. G. L., and Robillard, G. T., 1982, Phosphoenolpyruvate-dependent fructose phosphotransferase system of Rhodopseudomonas sphaeroides: Purification and physicochemical and immunochemical characterization of a membrane-associated Enzyme I, Biochemistry 21:82–88.PubMedGoogle Scholar
  11. Chrambach, A., and Rodbard, D., 1971, Polyacrylamide gel electrophoresis, Science 172:440–451.PubMedGoogle Scholar
  12. Cordaro, C., 1976, Genetics of the bacterial phosphoenolpyruvate:glycose phosphotransferase system, Annu. Rev. Genet. 10:341–359.PubMedGoogle Scholar
  13. Cordaro, J. C., and Roseman, S., 1972, Deletion mapping of the genes coding for HPr and Enzyme I of the phosphoenolpyruvate:sugar phosphotransferase system in Salmonella typhimurium,J. Bacteriol. 112:17–29.PubMedGoogle Scholar
  14. Cordaro, J. C., Anderson, R. P., Grogan, E. W., Jr., Wenzel, D. J., Engler, M., and Roseman, S., 1974, Promoter-like mutation affecting HPr and Enzyme I of the phosphoenolpyruvate:sugar phosphotransferase system in Salmonella typhimurium, J. Bacteriol. 120:245–252.PubMedGoogle Scholar
  15. Curtis, S. J., and Epstein, W., 1975, Phosphorylation of D-glucose in Escherichia coli mutants defective in glucosephosphotransferase, mannosephosphotransferase, and glucokinase, J. Bacteriol. 122:1189–1199.PubMedGoogle Scholar
  16. del Campo, F. F., Hernandez-Asensio, M., and Ramirez, J. M., 1975, Transport of a-methyl glucoside in mutants of Escherichia coli K12 deficient in Ca2+, Mg2+ -activated adenosine triphosphatase, Biochem. Biophys. Res. Commun. 63:1099–1105.PubMedGoogle Scholar
  17. Dills, S. S., Apperson, A., Schmidt, M. R., and Saier, M. H., Jr., 1980, Carbohydrate transport in bacteria, Microbiol. Rev. 44:385–418.PubMedGoogle Scholar
  18. Dills, S. S., Schmidt, M. R., and Saier, M. H., Jr., 1982, Regulation of lactose transport by the phosphoenolpyruvate-sugar phosphotransferase system in membrane vesicles of Escherichia coli, J. Cell. Biochem. 18:239–244.PubMedGoogle Scholar
  19. Dooijewaard, G., Roossien, F. F., and Robillard, G. T., 1979, Escherichia coli phosphoenolpyruvate dependent phosphotransferase system. Copurification of HPr and al-6 glucan, Biochemistry 18:2990–2996.PubMedGoogle Scholar
  20. Egan, J. B., and Morse, M. L., 1966, Carbohydrate transport in Staphylococcus aureus III. Studies of the transport process, Biochim. Biophys. Acta 112:63–73.PubMedGoogle Scholar
  21. Emi, B., Trachsel, H., Postma, P. W., and Rosenbusch, J. P., 1982, Bacterial phosphotransferase system. Solubilization and purification of the glucose-specific enzyme II from membranes of Salmonella typhimurium, J. Biol. Chem. 257:13726–13730.Google Scholar
  22. Feucht, B. U., and Saier, M. H., Jr., 1980, Fine control of adenylate cyclase by the phosphoenolpyruvate:sugar phosphotransferase systems in Escherichia coli and Salmonella typhimurium, J. Bacteriol. 141:603–610.PubMedGoogle Scholar
  23. Fox, D. K., 1983, The purification and characterization of acetate kinase from Salmonella typhimurium,Ph.D. dissertation, The Johns Hopkins University, University Microfilms International, Ann Arbor, Michigan.Google Scholar
  24. Fox, D. K., and Roseman, S., 1983, Interaction between the PEP:glycose phosphotransferase system (PTS) and acetate kinase of Salmonella typhimurium, Fed. Proc. 42:1942.Google Scholar
  25. Fox, C. F., and Wilson, G., 1968, The role of a phosphoenolpyruvate-dependent kinase system in 3-glucoside catabolism in Escherichia coli, Proc. Natl. Acad. Sci. USA 59:988–995.PubMedGoogle Scholar
  26. Gachelin, G., 1970, Studies on the a-methylglucoside permease of Escherichia coli. A two step mechanism for the accumulation of a-methylglucoside 6-phosphate, Eur. J. Biochem. 16:342–357.PubMedGoogle Scholar
  27. Gershanovitch, V. N., Bourd, G. I., Jorovitzkaya, N. V., Skavronskaya, A. G., Klyucheva, V. V., and Shabolenko, V. P., 1967, β-Galactosidase induction in cells of Escherichia coli not utilizing glucose, Biochim. Biophys. Acta 134:188–190.Google Scholar
  28. Grill, H., Weigel, N., Gaffney, B. J., and Roseman, S., 1982, Sugar transport by the bacterial phosphotransferase system. Radioactive and electron paramagnetic resonance labeling of the Salmonella typhimurium phosphocarrier protein (HPr) at the N112-terminal methionine, J. Biol. Chem. 257:14510–14517.PubMedGoogle Scholar
  29. Guyer, M. S., 1978, The yS sequence of F is an insertion sequence, J. Mol. Biol. 126:347–365.PubMedGoogle Scholar
  30. Hagihira, H., Wilson, T. H., and Lin, E. C. C., 1963, Studies on the glucose-transport system in Escherichia coli with a-methylglucoside as substrate, Biochim. Biophys. Acta 78:505–515.PubMedGoogle Scholar
  31. Haguenauer-Tsapis, R., and Kepes, A., 1973, Changes in accessibility of the membrane bound transport enzyme glucose phosphotransferase of E. coli to protein group reagents in presence of substrate or absence of substrate or absence of energy source, Biochem. Biophys. Res. Commun. 54:1335–1341.PubMedGoogle Scholar
  32. Haguenauer-Tsapis, R., and Kepes, A., 1977a, Unmasking of an essential thiol during function of the membrane bound enzyme II of the phosphoenolpyruvate glucose phosphotransferase system of Escherichia coli, Biochim. Biophys. Acta 465:118–130.Google Scholar
  33. Haguenauer-Tsapis, R., and Kepes, A., 1977b, The role of enzyme I in the unmasking of an essential thiol of the membrane-bound enzyme II of the phosphoenolpyruvate-glucose phosphotransferase system of Escherichia coli, Biochim. Biophys. Acta 469:211–215.Google Scholar
  34. Haguenauer-Tsapis, R., and Kepes, A., 1980, Different sidedness of functionally homologous essential thiols in two membrane-bound phosphotransferase enzymes of Escherichia coli detected by permeant and nonpermeant thiol reagents, J. Biol. Chem. 255:5075–5081.PubMedGoogle Scholar
  35. Harwood, J. P., Gazdar, C., Prasad, C., and Peterkofsky, A., 1976, Involvement of the glucose Enzymes II of the sugar phosphotransferase system in the regulation of adenylate cyclase by glucose in Escherichia coli, J. Biol. Chem. 251:2462–2468.PubMedGoogle Scholar
  36. Hays, J. B., Simoni, R. D., and Roseman, S., 1973, Sugar transport. V. A trimeric lactose-specific phosphocarrier protein of the Staphylococcus aureus phosphotransferase system, J. Biol. Chem. 248:941–956.PubMedGoogle Scholar
  37. Hildenbrand, K., Brand, L., and Roseman, S., 1982, Sugar transport by the bacterial phosphotransferase system. Nanosecond fluorescence studies of the phosphocarrier protein (HPr) labeled at the NH2terminal methionine, J. Biol. Chem. 257:14518–14525.PubMedGoogle Scholar
  38. Hoffee, P., Englesberg, E., and Lamy, F., 1964, The glucose permease system in bacteria, Biochim. Biophys. Acta 79:337–350.PubMedGoogle Scholar
  39. Hoving, H., Lolkema, J. S., and Robillard, G. T., 1981, Escherichia coli phosphoenolpyruvate-dependent phosphotransferase system: Equilibrium kinetics and mechanism of enzyme I phosphorylation, Biochemistry 20:87–93.PubMedGoogle Scholar
  40. Hoving, H., Koning, J. H., and Robillard, G. T., 1982, Escherichia coli phosphoenolpyruvate-dependent phosphotransferase system: Role of divalent metals in the dimerization and phosphorylation of enzyme I, Biochemistry 21:3128–3135.PubMedGoogle Scholar
  41. Hoving, H., Nowak, T., and Robillard, G. T., 1983, Escherichia coli phosphoenolpyruvate-dependent phosphotransferase system: Stereospecificity of proton transfer in the phosphorylation of enzyme I from (Z)-phosphoenolbutyrate, Biochemistry 22:2832–2838.PubMedGoogle Scholar
  42. Hüdig, H., and Hengstenberg, W., 1980, The bacterial phosphoenolpyruvate dependent phosphotransferase system (PTS). Solubilisation and kinetic parameters of the glucose-specific membrane bound enzyme II component of Streptococcus faecalis, FEBS Lett. 114:103–106.PubMedGoogle Scholar
  43. Jablonski, E. G., Brand, L., and Roseman, S., 1983, Sugar transport by the bacterial phosphotransferase system. Preparation of a fluorescein derivative of the glucose-specific phosphocarrier protein III61c and its binding to the phosphocarrier protein HPr, J. Biol. Chem. 258:9690–9699.PubMedGoogle Scholar
  44. Jacobson, G. R., Lee, C. A., and Saier, M. H., Jr., 1979, Purification of the mannitol-specific enzyme II of the Escherichia coli phosphoenolpyruvate:sugar phosphotransferase system, J. Biol. Chem. 254: 249–252.PubMedGoogle Scholar
  45. Jacobson, G. R., Lee, C. A., Leonard, J. E., and Saier, M. H., Jr., 1983, Mannitol-specific enzyme II of the bacterial phosphotransferase system. I. Properties of the purified permease, J. Biol. Chem. 258:10748–10756.PubMedGoogle Scholar
  46. Kornberg, H. L., and Riordan, C.. 1976, Uptake of galactose into Escherichia coli by facilitated diffusion, J. Gen. Microbiol. 94:75–89.PubMedGoogle Scholar
  47. Komberg, H. L., and Watts, P. D., 1979, tgs and crr genes involved in catabolite inhibition and inducer exclusion in Escherichia coli, FEBS Lett. 104:313–316.Google Scholar
  48. Kornberg, H. L., Watts, P. D., and Brown, K., 1980, Mechanism of “inducer exclusion” by glucose, FEBS Lett. 117 (Suppl.):K28–K36.PubMedGoogle Scholar
  49. Kukuruzinska, M. A., Harrington, W. F., and Roseman, S., 1982, Sugar transport by the bacterial phosphotransferase system. Studies on the molecular weight and association of enzyme I, J. Biol. Chem. 257:14470–14476.PubMedGoogle Scholar
  50. Kundig, W., 1974, Molecular interactions in the bacterial phosphoenolpyruvate-phosphotransferase system (PTS), J. Supramol. Struct. 2:695–714.PubMedGoogle Scholar
  51. Kundig, W., and Roseman, S., 1971, Sugar transport. II. Characterization of constitutive membrane-bound Enzymes II of the Escherichia coli phosphotransferase system, J. Biol. Chem. 246:1407–1418.PubMedGoogle Scholar
  52. Kundig, W., Ghosh, S., and Roseman, S., 1964, Phosphate bound to histidine as an intermediate in a novel phospho-transferase system, Proc. Natl. Acad. Sci. USA 52:1067–1074.PubMedGoogle Scholar
  53. Lee, C. A., and Saier, M. H., Jr., 1983, Mannitol-specific enzyme II of the bacterial phosphotransferase system. III. The nucleotide sequence of the permease gene, J. Biol. Chem. 258:10761–10767.PubMedGoogle Scholar
  54. Lee, C. A., Jacobson, G. R., and Saier, M. H., Jr., 1981, Plasmid-directed synthesis of enzymes required for D-mannitol transport and utilization in Escherichia coli, Proc. Natl. Acad. Sci. USA 78:7336–7340.PubMedGoogle Scholar
  55. Leonard, J. E., and Saier, M. H., Jr., 1981, Genetic dissection of catalytic activities of the Salmonella typhimurium mannitol enzyme II, J. Bacteriol. 145:1106–1109.PubMedGoogle Scholar
  56. Leonard, J. E., and Saier, M. H., Jr., 1983, Mannitol-specific Enzyme II of the bacterial phosphotransferase system. II. Reconstitution of vectorial transphosphorylation in phospholipid vesicles, J. Biol. Chem. 258:10757–10760.PubMedGoogle Scholar
  57. Levine, R. L., and Federici, M. M., 1982, Quantitation of aromatic residues in proteins: Model compounds for second-derivative spectroscopy, Biochemistry 21:2600–2606.PubMedGoogle Scholar
  58. Lipmann, F., 1944, Enzymatic synthesis of acetyl phosphate, J. Biol. Chem. 155:55–70.Google Scholar
  59. Liu, K. D. F., and Roseman, S., 1983a, Kinetic properties and regulation of methyl a-glucoside uptake by Salmonella typhimurium membrane vesicles, Fed. Proc. 42:1941.Google Scholar
  60. Liu, K. D. F., and Roseman, S., 1983b, Kinetic characterization and regulation of phosphoenolpyruvatedependent methyl a-D-glucopyranoside transport by Salmonella typhimurium membrane vesicles, Proc. Natl. Acad. Sci. USA, 80:7142–7145.Google Scholar
  61. Magasanik, B., 1970, Glucose effects: Inducer exclusion and repression, in: The Lactose Operon (J. R. Beckwith and D. Zipser, eds.), Cold Spring Harbor Press, Cold Spring Harbor, New York, pp. 189–219.Google Scholar
  62. Makman, R. S., and Sutherland, E. W., 1965, Adenosine 3’,5’-phosphate in Escherichia coli, J. Biol. Chem. 240:1309–1314.PubMedGoogle Scholar
  63. Marquet, M., Creignou, M., and Dedoner, R., 1976, The phosphoenolpyruvate:methyl a-D-glucoside phosphotransferase system in Bacillus subtilis Marburg 168: Purification and identification of the phosphocarrier protein (HPr), Biochimie 58:435–441.PubMedGoogle Scholar
  64. Mason, P. W., Carbone, D. P., Cushman, R. A., and Waggoner, A. S., 1981, The importance of inorganic phosphate in regulation of energy metabolism of Streptococcus lactis, J. Biol. Chem. 256:1861–1866.PubMedGoogle Scholar
  65. Mattoo, R. L., and Waygood, E. B., 1983, Determination of the levels of HPr and enzyme I of the phosphoenolpyruvate-sugar phosphotransferase system in Escherichia coli and Salmonella typhimurium,Can. J. Biochem. Cell Biol. 61:29–37.PubMedGoogle Scholar
  66. Meadow, N. D., and Roseman, S., 1982, Sugar transport by the bacterial phosphotransferase system. Isolation and characterization of a glucose-specific phosphocarrier protein (III’) from Salmonella typhimurium, J. Biol. Chem. 257:14526–14537.PubMedGoogle Scholar
  67. Meadow, N. D., and Roseman, S., 1983, A protease in S. typhimurium membranes which processes III’, a protein of the phosphotransferase system, Fed. Proc. 42:1813.Google Scholar
  68. Meadow, N. D., Rosenberg, J. M., Pinkert, H. M., and Roseman, S., 1982a, Sugar transport by the bacterial phosphotransferase system. Evidence that crr is the structural gene for the Salmonella typhimurium glucose-specific phosphocarrier protein III’, J. Biol. Chem. 257:14538–14542.Google Scholar
  69. Meadow, N. D., Saffen, D. W., Dottin, R. P., and Roseman, S., 1982b, Molecular cloning of the crr gene and evidence that it is the structural gene for III’, a phosphocarrier protein of the bacterial phosphotransferase system, Proc. Natl. Acad. Sci. USA 79:2528–2532.Google Scholar
  70. Misko, T. P., 1983, Studies on the transport and regulatory functions of the phosphoenolpyruvate:glycose phosphotransferase system in Salmonella typhimurium,Ph.D. dissertation, The Johns Hopkins University, University Microfilms International, Ann Arbor, Michigan.Google Scholar
  71. Misset, O., and Robillard, G. T., 1982, Escherichia coli phosphoenolpyruvate-dependent phosphotransferase system: Mechanism of phosphoryl-group transfer from phosphoenolpyruvate to HPr, Biochemistry 21:3136–3142.PubMedGoogle Scholar
  72. Misset, O., Brouwer, M., and Robillard, G. T„ 1980, Escherichia coli phosphoenolpyruvate-dependent phosphotransferase system. Evidence that the dimer is the active form of enzyme I, Biochemistry 19:883–890.PubMedGoogle Scholar
  73. Mitchell, W. J., Misko, T. P., and Roseman, S., 1982, Sugar transport by the bacterial phosphotransferase system. Regulation of other transport systems (lactose and melibiose), J. Biol. Chem. 257:14553–14564.PubMedGoogle Scholar
  74. Nelson, S. O., Scholte, B. J., and Postma, P. W., 1982, Phosphoenolpyruvate: sugar phosphotransferase system-mediated regulation of carbohydrate metabolism in Salmonella typhimurium,J. Bacteriol. 150:604–615.PubMedGoogle Scholar
  75. Nelson, S. O., Wright, J. K., and Postma, P. W., 1983, The mechanism of inducer exclusion. Direct interaction between purified III61c of the phosphoenolpyruvate:sugar phosphotransferase system and the lactose carrier of Escherichia coli, Eur. Mol. Biol. Org. J. 2:715–720.Google Scholar
  76. Osumi, T., and Saier, M. H., Jr., 1982, Regulation of lactose permease activity by the phosphoenolpyruvate: sugar phosphotransferase system: Evidence for direct binding of the glucose-specific enzyme III to the lactose permease, Proc. Natl. Acad. Sci. USA 79:1457–1461.PubMedGoogle Scholar
  77. Parra, F., Jones-Mortimer, M. C., and Kornberg, H. L., 1983, Phosphotransferase mediated regulation of carbohydrate utilization in Escherichia coli K12. The nature of the iex (crr) and gsr (tgs) mutations, J. Gen. Microbiol. 129:337–348.PubMedGoogle Scholar
  78. Pastan, I., and Perlman, R., 1970, Cyclic adenosine monophosphate in bacteria, Science 169:339–344.PubMedGoogle Scholar
  79. Perret, J., and Gay, P., 1979, Kinetic study of a phosphoryl exchange reaction between fructose and fructose 1-phosphate catalyzed by the membrane-bound enzyme II of the phosphoenolpyruvate-fructose 1phosphotransferase system of Bacillus subtilis, Eur. J. Biochem. 102:237–246.PubMedGoogle Scholar
  80. Peterkofsky, A., and Gazdar, C., 1975, Interaction of Enzyme I of the phosphoenolpyruvate:sugar phosphotransferase system with adenylate cyclase of Escherichia coli, Proc. Natl. Acad. Sci. USA 72:2920–2924.PubMedGoogle Scholar
  81. Peterkofsky, A., and Gazdar, C., 1978, The Escherichia coil adenylate cyclase complex: Activation by phosphoenolpyruvate, J. Supramol. Struct. 9:219–230.PubMedGoogle Scholar
  82. Postma, P. W., 1976, Involvement of phosphotransferase system in galactose transport in Salmonella typhimurium, FEBS Lett. 61:49–53.PubMedGoogle Scholar
  83. Postma, P. W., 1981, Defective enzyme II-BOIc of the phosphoenolpyruvate:sugar phosphotransferase system leading to uncoupling of transport and phosphorylation in Salmonella typhimurium, J. Bacteriol. 147:382–389.PubMedGoogle Scholar
  84. Postma, P. W., 1982, Regulation of sugar in Salmonella typhimurium, Ann. Microbiol. (Inst. Pasteur) 133A:261–267.Google Scholar
  85. Postma, P. W., and Roseman, S., 1976, The bacterial phosphoenolpyruvate:sugar phosphotransferase system, Biochim. Biophys. Acta 457:213–257.Google Scholar
  86. Postma, P. W., and Stock, J. B., 1980, Enzymes II of the phosphotransferase system do not catalyze sugar transport in the absence of phosphorylation, J. Bacteriol. 141:476–484.PubMedGoogle Scholar
  87. Reider, E., Wagner, E. F., and Schweiger, M., 1979, Control of phosphoenolpyruvate-dependent phosphotransferase-mediated sugar transport in Escherichia coli by energization of the cell membrane, Proc. Natl. Acad. Sci. USA 76:5529–5533.PubMedGoogle Scholar
  88. Rephaeli, A. W., and Saler, M. H., Jr., 1978, Kinetic analyses of the sugar phosphate:sugar transphosphorylation reaction catalyzed by the glucose enzyme II complex of the bacterial phosphotransferase system, J. Biol. Chem. 253:7595–7597.PubMedGoogle Scholar
  89. Rephaeli, A. W., and Saier, M. H., Jr., 1980, Substrate specificity and kinetic characterization of sugar uptake and phosphorylation, catalyzed by the mannose enzyme II of the phosphotransferase system in Salmonella typhimurium, J. Biol. Chem. 255:8585–8591.PubMedGoogle Scholar
  90. Roberts, R. B., Cowie, D. B., Abelson, P. H., Bolton, E. T., and Britten, R. J., 1963, Studies of biosynthesis in Escherichia coli, Carnegie Institution of Washington Publication 607, Washington, D.C., pp. 515.Google Scholar
  91. Robillard, G. T., and Konings, W. N., 1981, Physical mechanism for regulation of phosphoenolpyruvatedependent glucose transport activity in Escherichia coli, Biochemistry 20:5025–5032.PubMedGoogle Scholar
  92. Robillard, G. T., and Lageveen, R. G., 1982, Non-vectorial phosphorylation by the bacterial PEP-dependent phosphotransferase system is an artifact of spheroplast and membrane vesicle preparation procedures, FEBS Lett. 147:143–148.PubMedGoogle Scholar
  93. Robillard, G. T., Dooijewaard, G., and Lolkema, J., 1979, Escherichia coli phosphoenolpyruvate dependent phosphotransferase system. Complete purification of Enzyme I by hydrophobic interaction chromatography, Biochemistry 18:2984–2989.Google Scholar
  94. Roossien, F. F., Dooijewaard, G., and Robillard, G. T., 1979, The Escherichia coli phosphoenolpyruvatedependent phosphotransferase system: Observation of heterogeneity in the amino acid composition of HPr, Biochemistry 18:5793–5797.PubMedGoogle Scholar
  95. Rose, S. P., and Fox, C. F., 1971, The 13-glucoside system of Escherichia coli. II. Kinetic evidence for a phosphoryl-enzyme II intermediate, Biochem. Biophys. Res. Commun. 45:376–380.PubMedGoogle Scholar
  96. Roseman, S., 1972, Carbohydrate transport in bacterial cells, in: Metabolic Transport, Vol. VI (L. E. Hokin, ed.), Academic Press, New York, pp. 41–89.Google Scholar
  97. Roseman, S., 1977, The transport of sugars across bacterial membranes, in: Biochemistry of Membrane Transport,FEBS-Symposium No. 42 (G. Semenza and E. Carafoli, eds.), Springer-Verlag, New York, pp. 582–597.Google Scholar
  98. Saier, M. H., Jr., 1977, Bacterial phosphoenolpyruvate:sugar phosphotransferase systems: Structural, functional, and evolutionary interrelationships, Bacteriol. Rev. 41:856–871.PubMedGoogle Scholar
  99. Saier, M. H., Jr., and Feucht, B. U., 1980, Regulation of carbohydrate transport activities in Salmonella typhimurium: Use of the phosphoglycerate transport system to energize solute uptake, J. Bacteriol. 141:611–617.PubMedGoogle Scholar
  100. Saier, M. H., Jr., and Moczydlowski, E. G., 1978, The regulation of carbohydrate transport in Escherichia coli and Salmonella typhimurium, in: Bacterial Transport (B. P. Rosen, ed.), Marcel Dekker, New York, pp. 103–125.Google Scholar
  101. Saier, M. H., Jr., and Newman, M. J., 1976, Direct transfer of the phosphoryl moiety of mannitol 1-phosphate to [14C]mannitol catalyzed by the enzyme II complexes of the phosphoenolpyruvate:mannitol phosphotransferase systems in Spirochaeta aurantia and Salmonella typhimurium, J. Biol. Chem. 251:3834–3837.PubMedGoogle Scholar
  102. Saier, M. H., Jr., and Roseman, S., 1976a, Sugar transport. The crr mutation: Its effect on repression of enzyme synthesis, J. Biol. Chem. 251:6598–6605.Google Scholar
  103. Saier, M. H., Jr., and Roseman, S., 1976b, Sugar transport. Inducer exclusion and regulation of the melibiose, maltose, glycerol, and lactose transport systems by the phosphoenolpyruvate:sugar phosphotransferase system, J. Biol. Chem. 251:6606–6615.Google Scholar
  104. Saier, M. H., Jr., and Schmidt, M. R., 1981, Vectorial and nonvectorial transphosphorylation catalyzed by enzymes II of the bacterial phosphotransferase system, J. Bacteriol. 145:391–397.PubMedGoogle Scholar
  105. Saier, M. H., Jr., Bromberg, F. G., and Roseman, S., 1973, Characterization of constitutive galactose permease mutants in Salmonella typhimurium, J. Bacteriol. 113:512–514.PubMedGoogle Scholar
  106. Saier, M. H., Jr., Simoni, R. D., and Roseman, S., 1976, Sugar transport. Properties of mutant bacteria defective in proteins of the phosphoenolpyruvate:sugar phosphotransferase system, J. Biol. Chem. 251:6584–6597.PubMedGoogle Scholar
  107. Saier, M. H., Jr., Cox, D. F., and Moczydlowski, E. G., 1977a, Sugar phosphate:sugar transphosphorylation coupled to exchange group translocation catalyzed by the enzyme II complexes of the phosphoenolpyruvate:sugar phosphotransferase system in membrane vesicles of Escherichia coli, J. Biol. Chem. 252:8908–8916.Google Scholar
  108. Saier, M. H., Jr., Feucht, B. U., and Mora, W. K., 1977b, Sugar phosphate:sugar transphosphorylation and exchange group translocation catalyzed by the enzyme II complexes of the bacterial phosphoenolpyruvate:sugar phosphotransferase system, J. Biol. Chem. 252:8899–8907.Google Scholar
  109. Saier, M. H., Jr., Newman, M. J., and Rephaeli, A. W., 1977c, Properties of a phosphoenolpyru- vate:mannitol phosphotransferase system in Spirochaeta aurantia, J. Biol. Chem. 252:8890–8898.Google Scholar
  110. Saier, M. H., Jr., Schmidt, M. R., and Lin, P., 1980, Phosphoryl exchange reaction catalyzed by enzyme I of the bacterial phosphoenolpyruvate:sugar phosphotransferase system. Kinetic characterization, J. Biol. Chem. 255:8579–8584.PubMedGoogle Scholar
  111. Saier, M. H., Jr., Keeler, D. K., and Feucht, B. U., 1982, Physiological desensitization of carbohydrate permeases and adenylate cyclase to regulation by the phosphoenolpyruvate:sugar phosphotransferase system in Escherichia coli and Salmonella typhimurium. Involvement of adenosine cyclic 3’,5’-phosphate and inducer, J. Biol. Chem. 257:2509–2517.PubMedGoogle Scholar
  112. Sanderson, K. E., and Roth, J. R., 1983, Linkage map of Salmonella typhimurium, Edition VI, Microbiol. Rev. 47:410–453.PubMedGoogle Scholar
  113. Schachter, H., 1973, On the interpretation of Michaelis constants for transport, J. Biol. Chem. 248:974–976.PubMedGoogle Scholar
  114. Scholte, B. J., and Postma, P. W., 1980, Mutation in the crp gene of Salmonella typhimurium which interferes with inducer exclusion, J. Bacteriol. 141:751–757.PubMedGoogle Scholar
  115. Scholte, B. J., and Postma, P. W., 1981, Competition between two pathways for sugar uptake by the phosphoenolpyruvate-dependent sugar phosphotransferase system in Salmonella typhimurium, Eur. J. Biochem. 114:51–58.PubMedGoogle Scholar
  116. Scholte, B. J., Schuitema, A. R., and Postma, P. W., 1981, Isolation of III’ of the phosphoenolpyruvatedependent glucose phosphotransferase system of Salmonella typhimurium, J. Bacteriol. 148:257–264.PubMedGoogle Scholar
  117. Scholte, B. J., Schuitema, A. R. J., and Postma, P. W., 1982, Characterization of Factor III’ in catabolite repression-resistant (crr) mutants of Salmonella typhimurium, J. Bacteriol. 149:576–586.PubMedGoogle Scholar
  118. Schrecker, O., Stein, R., Hengstenberg, W., Gassner, M., and Stehlik, D., 1975, The Staphylococcal PEP dependent phosphotransferase system, proton magnetic resonance (PMR) studies on the phosphoryl carrier protein HPr: Evidence for a phosphohistidine residue in the intact phospho-HPr molecule, FEBS Lett. 51:309–312.PubMedGoogle Scholar
  119. Silhavy, T. J., Ferenci, T., and Boos, W., 1978, Sugar transport systems in Escherichia coli, in: Bacterial Transport (B. P. Rosen, ed.), Marcel Dekker, New York, pp. 127–169.Google Scholar
  120. Simoni, R. D., and Roseman, S., 1973, Sugar transport. VII. Lactose transport in staphylococcus aureus, J. Biol. Chem. 248:966–976.PubMedGoogle Scholar
  121. Simoni, R. D., Levinthal, M., Kundig, F. D., Kundig, W., Anderson, B., Hartman, P. E., and Roseman, S., 1967, Genetic evidence for the role of a bacterial phosphotransferase system in sugar transport, Proc. Natl. Acad. Sci. USA 58:1963–1970.PubMedGoogle Scholar
  122. Simoni, R. D., Smith, M., and Roseman, S., 1968, Resolution of a Staphylococcal phosphotransferase system into four protein components and its relation to sugar transport, Biochem. Biophys. Res. Commun. 31:804–811.PubMedGoogle Scholar
  123. Simoni, R. D., Hays, J. B., Nakazawa, T., and Roseman, S., 1973a, Sugar transport. VI. Phosphoryl transfer in the lactose phosphotransferase system of Staphylococcus aureus, J. Biol. Chem. 248:957–965.Google Scholar
  124. Simoni, R. D., Nakazawa, T., Hays, J. B., and Roseman, S., 1973b, Sugar transport. IV. Isolation and characterization of the lactose phosphotransferase system in Staphylococcus aureus, J. Biol. Chem. 248:932–940.Google Scholar
  125. Solomon, E., Miyai, K., and Lin, E. C. C., 1973, Membrane translocation of mannitol in Escherichia coli without phosphorylation, J. Bacteriol. 114:723–728.PubMedGoogle Scholar
  126. Stein, R., Schrecker, O., Lauppe, H. F., and Hengstenberg, H., 1974, The Staphylococcal PEP dependent phosphotransferase system: Demonstration of a phosphorylated intermediate of the enzyme I component, FEBS Lett. 42:98–100.PubMedGoogle Scholar
  127. Stock, J. B., Waygood, E. B., Meadow, N. D., Postma, P. W., and Roseman, S., 1982, Sugar transport by the bacterial phosphotransferase system. The glucose receptors of the Salmonella typhimurium phosphotransferase system, J. Biol. Chem. 257:14543–14552.PubMedGoogle Scholar
  128. Tyler, B., and Magasanik, B., 1970, Physiological basis of transient repression of catabolic enzymes in Escherichia coli, J. Bacterial. 102:411–422.Google Scholar
  129. Ullah, A., and Cirillo, V., 1976, Mycoplasma phosphoenolpyruvate-dependent sugar phosphotransferase system: Purification and characterization of the phosphocarrier protein, J. Bacteriol. 127:1298–1306.PubMedGoogle Scholar
  130. Valdes, R., Jr., and Ackers, G. K., 1979, Study of protein subunit association equilibria by elution gelchromatography, Meth. Enzymol. 61:125–142.PubMedGoogle Scholar
  131. Wang, R. J., and Morse, M. L., 1968, Carbohydrate accumulation and metabolism in Escherichia coli I. Description of pleiotropic mutants. J. Mol. Biol. 32:59–66.PubMedGoogle Scholar
  132. Waygood, E. B., and Steeves, T., 1980, Enzyme I of the phosphoenolpyruvate:sugar phosphotransferasesystem of Escherichia coli. Purification to homogeneity and some properties, Can. J. Biochem. 58:40–48.PubMedGoogle Scholar
  133. Waygood, E. B., Cordaro, J. C., and Roseman, S., 1975, Pseudo-HPr, a substitute for HPr in the PEP:sugar phosphotransferase system, Proc. Can. Fed. Biol. Soc. 18:115.Google Scholar
  134. Waygood, E. B., Weigel, N., Nakazawa, A., Kukuruzinska, M., and Roseman, S., 1977, Purification and properties of Enzyme I of the PEP:glycose phosphotransferase system (PTS), Proc. Can. Fed. Biol. Soc. 20:54.Google Scholar
  135. Waygood, E. B., Meadow, N. D., and Roseman, S., 1979, Modified assay procedures for the phosphotransferase system in enteric bacteria, Anal. Biochem. 95:293–304.PubMedGoogle Scholar
  136. Weigel, N., Kukuruzinska, M. A., Nakazawa, A., Waygood, E. B., and Roseman, S., 1982a, Sugar transport by the bacterial phosphotransferase system. Phosphoryl transfer reactions catalyzed by enzyme I of Salmonella typhimurium, J. Biol. Chem. 257:14477–14491.Google Scholar
  137. Weigel, N., Powers, D. A., and Roseman, S., 1982b, Sugar transport by the bacterial phosphotransferase system. Primary structure and active site of a general phosphocarrier protein (HPr) from Salmonella typhimurium, J. Biol. Chem. 257:14499–14509.Google Scholar
  138. Weigel, N., Waygood, E. B., Kukuruzinska, M. A., Nakazawa, A., and Roseman, S., 1982c, Sugar transport by the bacterial phosphotransferase system. Isolation and characterization of enzyme I from Salmonella typhimurium, J. Biol. Chem. 257:14461–14469.Google Scholar
  139. Winkler, H. H., and Wilson, T. H., 1967, Inhibition of 3-galactoside transport by substrates of the glucose transport system in Escherichia coli, Biochim. Biophys. Acta 135:1030–1051.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Norman D. Meadow
    • 1
  • Maria A. Kukuruzinska
    • 1
  • Saul Roseman
    • 1
  1. 1.Department of Biology and the McCollum-Pratt InstituteThe Johns Hopkins UniversityBaltimoreUSA

Personalised recommendations