Advertisement

Hexose Transport and Its Regulation in Mammalian Cells

  • Jeffrey E. Pessin
  • Michael P. Czech

Abstract

The uptake of solutes across the cell-surface membrane can occur by either an active or passive transport mechanism. Active transport mechanisms are characterized by the uptake of solutes against their concentration gradient at the expense of metabolic energy. Active transport of hexoses occurs in two major tissues in mammals, kidney and intestine, and will not be dealt with in this review. Passive transport can be subdivided into the two categories of simple diffusion or facilitative diffusion. In both cases, the movement of solutes across the cell membrane is driven solely by the concentration gradient between the intracellular and extracellular environment without any metabolic energy being required. Net uptake ceases when the concentration of solutes between the inside and outside of the cell has reached equilibrium. Facilitative diffusion differs from simple diffusion in that the former process is mediated by membrane-bound proteins which exhibit a high degree of specificity and whose activity is competitively inhibited with appropriate analogues. The difference in transport rate between simple and facilitative diffusion is dramatically exemplified by the permeability of d-glucose across synthetic lipid bilayers with a permeability coefficient of 10−9–10−10 cm/sec (Lidgard and Jones, 1975; Jung, 1971a), whereas for the intact erythrocyte, the permeability coefficient is approximately 10−4 cm/sec (Jung, 1971b).

Keywords

Insulin Receptor Insulin Action Human Erythrocyte Insulin Binding Chicken Embryo Fibroblast 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albert, S. G., 1982, The effect of insulin on glucose transport in rabbit erythrocytes and reticulocytes, Life Sci. 31: 265–271.PubMedGoogle Scholar
  2. Amatruda, J. M., and Finch, E. D., 1979, Modulation of hexose uptake and insulin action by cell membrane fluidity, J. Biol. Chem. 254: 2619–2625.PubMedGoogle Scholar
  3. Angel, A., and Farkas, J., 1970, Structural and chemical compartments in adipose cells, in: Hormone and Metabolic Research, Supplement 2. Adipose Tissue, Regulation and Metabolic Functions ( B. Jeanrenaud and D. Hepp, eds.), Academic Press, New York, pp. 152–161.Google Scholar
  4. Baldwin, S. A., and Baldwin, J. M., 1981, The stoichiometry of cytochalasin B binding to the human erythrocyte glucose transporter, Fed. Proc. 40:1983.Google Scholar
  5. Baldwin, S. A., and Lienhard, G. E., 1980, Immunological identification of the human erythrocyte monosaccharide transporter, Biochem. Biophys. Res. Commun. 94: 1401–1408.PubMedGoogle Scholar
  6. Baldwin, S. A., and Lienhard, G. E., 1981, Glucose transport across plasma membranes: Facilitated diffusion systems, TIBS 6: 208–211.Google Scholar
  7. Baldwin, S. A., Baldwin, J. M., Gorga, F. R., and Lienhard, G. E., 1979, Purification of the cytochalasin B binding component of the human erythrocyte monosaccharide transport system, Biochim. Biophys. Acta 552: 183–188.PubMedGoogle Scholar
  8. Baldwin, S. A., Baldwin, J. M., and Lienhard, G. E., 1982, Monosaccharide transport of the human erythrocyte: Characterization of an improved preparation, Biochemistry 21: 3836–3849.PubMedGoogle Scholar
  9. Barnett, J. E. G., Holmon, G. D., and Munday, K. A., 1973, Structural requirement for binding to the sugar-transport system of the human erythrocyte, Biochem. J. 131: 211–221.PubMedGoogle Scholar
  10. Basketter, D. A., and Widdas, W. F., 1977, Competitive inhibition of hexose transfer in human erythrocytes by cytochalasin B, J. Physiol. 265: 39 P.Google Scholar
  11. Batt, E. R., Abbott, R. E., and Schachter, D., 1975, Two types of sulfhydryl groups involved in erythrocyte hexose transport, Fed. Proc. 34: 250.Google Scholar
  12. Batt, E. R., Abbott, R. E., and Schachter, D., 1976, Impermeant maleimides, J. Biol. Chem. 251:7184–7190. Bihler, I., 1971, Ionic effects in the regulation of sugar transport in muscle, in: The Role of Membranes in Metabolic Regulation ( M. A. Mehlman and R. W. Hanson, eds.), Academic Press, New York, pp. 411–422.Google Scholar
  13. Bihler, I. 1974, Mechanisms regulating the membrane transport of sugars in the myocardium, in: Recent Advances in Studies on Cardiac Structure and Metabolism (N. S. Dhalla, ed.), University Park Press, Baltimore, pp. 209–216.Google Scholar
  14. Binder, M., and Tamm, C., 1973, The cytochalasins: A new class of biologically active microbial metabolites, Angew. Chem. 12: 370–380.Google Scholar
  15. Blecher, M., 1968, Action of insulin on a glucose transport mechanism in the plasma membrane of the isolated adipose cell. Participation of membrane phospholipids and cyclic adenosine monophosphate in the transport processes, Gumma Symp. Endocrinol. 5: 145–161.Google Scholar
  16. Bloch, R., 1973, Inhibition of glucose transport in the human erythrocyte by cytochalasin B, Biochemistry 12: 4779–4801.Google Scholar
  17. Bonne, D., Belhadj, O., and Cohen, P., 1977, Modulation by calcium of the insulin action and of the insulin-like effect of oxytocin on isolated rat adipocytes, Eur. J. Biochem. 75: 101–105.PubMedGoogle Scholar
  18. Bonne, D., Belhadj, O., and Cohen, P., 1978, Calcium as modulator of the hormonal-receptors-biological-response coupling system. Eur. J. Biochem. 86: 261–266.PubMedGoogle Scholar
  19. Carruthers, A., and Melchior, D. L., 1983, Asymmetric or symmetric cytosolic modulation of human erythrocyte hexose transfer, Biochim. Biophys. Acta 727: 421–434.Google Scholar
  20. Carter, J. R., and Martin, D. B., 1969, The effect of sulfhydryl blockade on insulin action and glucose transport in isolated adipose tissue cells, Biochim. Biophys. Acta 177: 521–526.PubMedGoogle Scholar
  21. Carter-Su, C., Pillion, D. J., and Czech, M. P., 1980, Reconstituted D-glucose transport from the adipocyte plasma membrane: Chromatographic resolution of transport activity from membrane glycoproteins using immobilized concanavalin A, Biochemistry 19: 2374–2385.PubMedGoogle Scholar
  22. Carter-Su, C., Pilch, P. F., and Czech, M. P., 1981, Chromatographic resolution of insulin receptor from insulin-sensitive D-glucose transporter of adipocyte plasma membranes, Biochemistry 20: 216–221.PubMedGoogle Scholar
  23. Carter-Su, C., Pessin, J. E., Mora, R., Gitomer, W., and Czech, M. P., 1982, Photoaffinity labeling of the human erythrocyte D-glucose transporter, J. Biol. Chem. 257: 5419–5425.PubMedGoogle Scholar
  24. Chandramouli, V., Milligan, M., and Carter, J. R., Jr., 1977, Insulin stimulation of glucose transport in adipose cells. An energy-dependent process, Biochemistry 16: 1151–1158.PubMedGoogle Scholar
  25. Christopher, C. W., 1977, Hexose transport regulation in cultured hamster cells, J. Supramol. Struct. 6: 485–494.PubMedGoogle Scholar
  26. Christopher, C. W., Kohlbacher, M. S., and Amos, H., 1976a, Derepression and carrier turnover: Evidence for two regulators in animal cells, Biochem. J. 158: 439–450.PubMedGoogle Scholar
  27. Christopher, C. W., Colby, W. W., and Ullrey, D., 1976b, Transport of sugars in chick-embryo fibroblasts, J. Cell Physiol. 89: 683–692.PubMedGoogle Scholar
  28. Christopher, C. W., Ullrey, D., Colby, W., and Kalckar, H. M., 1976c, Paradoxical effects of cycloheximide and cytochalasin B on hamster cell hexose uptake, Proc. Natl. Acad. Sci. USA 73: 2429–2433.PubMedGoogle Scholar
  29. Ciaraldi, T. P., and Olefsky, J. M., 1979, Coupling of insulin receptors to glucose transport: A temperature-dependent time lag in activation of transport, Arch. Biochem. Biophys. 193: 221–231.PubMedGoogle Scholar
  30. Ciaraldi, T. P., and Olefsky, J. M., 1980, Relationship between deactivation of insulin-stimulated glucose transport and insulin dissociation in isolated rat adipocytes, J. Biol. Chem. 255: 327–330.PubMedGoogle Scholar
  31. Ciaraldi, T. P., and Olefsky, J. M., 1982a, Kinetic relationship between insulin receptor binding and effects on glucose transport in isolated rat adipocytes, Biochemistry 21: 3475–3480.PubMedGoogle Scholar
  32. Ciaraldi, T. P., and Olefsky, J. M., 1982b, Comparison of the effects of insulin and H202 on adipocyte glucose transport, J. Cell Physiol. 110: 323–328.PubMedGoogle Scholar
  33. Clausen, T., 1977a, Calcium, glucose transport and insulin action, in: Biochemistry of Membrane Transport, FEBS Symposium No. 42 ( G. Semenza and E. Carafoli, eds.), Springer-Verlag, New York.Google Scholar
  34. Clausen, T., 1977b, The role of calcium in the action of insulin, in: Membrane Proteins, FEBS 11th Meeting Copenhagen, Vol. 45, Symposium A4.Google Scholar
  35. Clausen, T., and Martin, B. R., 1977, The effect of insulin on the washout of (45Calcalcium from adipocytes and soleus muscle of the rat, Biochem. J. 164: 251–255.PubMedGoogle Scholar
  36. Clausen, T., Elbrink, J., and Martin, B. R., 1974, Insulin controlling calcium distribution in muscle and fat cells, Acta Endocrinol. 77 (Suppl. 191): 137–143.Google Scholar
  37. Cuatrecasas, P., 1973a, Interaction of wheat germ agglutinin and concanavalin A with isolated fat cells, Biochemistry 12: 1312–1323.PubMedGoogle Scholar
  38. Cuatrecasas, P., 1973b, Interaction of concanavalin A and wheat germ agglutinin with the insulin receptor of fat cells and liver, J. Biol. Chem. 248: 3528–3534.PubMedGoogle Scholar
  39. Cuatrecasas, P., and Illiano, G., 1971, Membrane sialic acid and the mechanism of insulin action in adipose tissue cells. Effect of digestion with neuraminidase, J. Biol. Chem. 246: 4938–4946.PubMedGoogle Scholar
  40. Cuatrecasas, P., and Tell, G. P. E., 1973, Insulin-like activity of concanavalin A and wheat germ agglutinin-direct interactions with insulin receptors, Proc. Natl. Acad. Sci. USA 70: 485–489.PubMedGoogle Scholar
  41. Czech, M. P., 1976a, Regulation of the D-glucose transport system in isolated fat cells, Mol. Cell. Biochem. 11: 51–63.PubMedGoogle Scholar
  42. Czech, M. P., 1976b, Differential effect of sulthydryl reagents on activation and deactivation of the fat cell hexose transport system, J. Biol. Chem. 251: 1164–1170.PubMedGoogle Scholar
  43. Czech, M. P., 1976c, Current status of the thiol redox model for the regulation of hexose transport by insulin, J. Cell Physiol. 89: 661–668.PubMedGoogle Scholar
  44. Czech, M. P., 1977, Molecular basis of insulin action, Annu. Rev. Biochem. 46: 359–384.PubMedGoogle Scholar
  45. Czech, M. P., 1980, Insulin action and the regulation of hexose transport, Diabetes 29: 399–409.PubMedGoogle Scholar
  46. Czech, M. P., 1981, Insulin Action: Second Messengers, Handbook of Diabetes Mellitus; Islet Cell Function/Insulin Action (M. Brownlee, ed.), Garland Press, New York, pp. 117–149.Google Scholar
  47. Czech, M. P., and Lynn, W. S., 1973, Stimulation of glucose metabolism by lectins in isolated white fat cells, Biochim. Biophys. Acta 217: 386–397.Google Scholar
  48. Czech, M. P., Lynn, D. G., and Lynn, W. S., 1973, Cytochalasin B-sensitive 2-Deoxyglucose transport in adipose cell ghosts, J. Biol. Chem. 248: 3636–3641.PubMedGoogle Scholar
  49. Czech, M. P., Lawrence, J. C., Jr., and Lynn, W. S., 1974a, Hexose transport in isolated brown fat cells. A model system for investigating insulin action on membrane transport, J. Biol. Chem. 249: 5421–5427.PubMedGoogle Scholar
  50. Czech, M. P., Lawrence, J. C., and Lynn, W. S., 1974b, Evidence for electron transfer reactions involved in the Cu’ -dependent thiol activation of fat cell glucose utilization, J. Biol. Chem. 249: 1001–1006.PubMedGoogle Scholar
  51. Czech, M. P., Lawrence, J. C., and Lynn, W. S., 1974c, Activation of hexose transport by concanavalin A in isolated brown fat cells. Effects of cell surface modification with neuraminidase and trypsin on lectin and insulin action, J. Biol. Chem. 249: 7499–7505.PubMedGoogle Scholar
  52. Czech, M. P., Lawrence, J. C., and Lynn, W. S., 1974d, Evidence for the involvement of sulfhydrylGoogle Scholar
  53. oxidation in the regulation of cell hexose transport by insulin, Proc. Natl. Acad. Sci. USA 71:4173–4177.Google Scholar
  54. Davidson, M. B., and Frank, H. J. L., 1980, Decreased spare hepatic receptors for insulin: Possible importance for insulin action, Diabetes 29 (Suppl. 2): 39A.Google Scholar
  55. Dolberg, D. S., Bassham, J. A., and Bissell, M. J., 1975, Selective inhibition of the facilitated mode of sugar uptake by cytochalasin B in cultured chick fibroblasts, Exp. Cell Res. 96: 129–137.PubMedGoogle Scholar
  56. Dubyak, G. R., and Kleinzeller, A., 1980, The insulinomimetic effects of vanadate in isolated rat adipocytes, J. Biol. Chem. 255: 5306–5312.PubMedGoogle Scholar
  57. Eady, R. P., and Widdas, W. F., 1973, The use of sugars and fluorodinitrobenzene (FDNB) to differentially label red cell membrane components involved in hexose transfers, Quart. J. Exp. Physiol. 58: 59–66.PubMedGoogle Scholar
  58. Eisenman, G., Ciani, S. M., and Szabo, G., 1968, Some theoretically expected and experimentally observed properties of lipid bilayer membranes containing neutral molecular carries of ions, Fed. Proc. 27: 1289–1304.PubMedGoogle Scholar
  59. Ezaki, O., and Kono, T., 1982, Effects of temperature on basal and insulin-stimulated glucose transport activities in fat cells, J. Biol. Chem. 257: 14306–14310.PubMedGoogle Scholar
  60. Fain, J. N., Kovacev, V. P., and Scow, R. O., 1966, Antilipolytic effect of insulin in isolated fat cells of the rat, Endocrinology 78: 773–778.PubMedGoogle Scholar
  61. Fairbanks, G., Steck, T. L., and Wallach, D. F. H., 1971, Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane, Biochemistry 10: 2606–2616.PubMedGoogle Scholar
  62. Fehlmann, M., and Freychet, P., 1981, Insulin and glucagon stimulation of (Na’ -K ’)-ATPase transport activity in isolated rat hepatocytes, J. Biol. Chem. 256: 7449–7453.PubMedGoogle Scholar
  63. Finkelstein, A., and Cass, A., 1968, Permeability and electrical properties of thin lipid membranes, J. Gen. Physiol. 52: 145–173.PubMedGoogle Scholar
  64. Flier, J. S., Kahn, C. R., Roth, J., and Bar, R. S., 1975, Antibodies that impair insulin receptor binding in an unusual diabetic syndrome with severe insulin resistance, Science 190: 63–65.PubMedGoogle Scholar
  65. Flier, J. S., Kahn, C. R., Jarrett, D. B., and Roth, J., 1976a, The immunology of the insulin receptor, Immunol. Commun. 5: 361–373.PubMedGoogle Scholar
  66. Flier, J. S., Kahn, C. R., Jarrett, D. B., and Roth, J., I976b, Characterization of antibodies to the insulin receptor; a cause of insulin-resistant diabetes in man, J. Clin. Invest. 58:1442–1449.Google Scholar
  67. Franchi, A., Silvestre, P., and Pouyssegur, 1978, “Carrier activation” and glucose transport in Chinese hamster fibroblasts, Biochem. Biophys. Res. Commun. 85:1526–1534.Google Scholar
  68. Fraser, T., and Russell, M. D., 1975, Is insulin’s second messenger calcium? Proc. Roy. Soc. Med. 68: 785–791.PubMedGoogle Scholar
  69. Gliemann, J., Osterlind, K., Vinten, J., and Gammeltoff, S., 1972, A procedure for measurement of distribution space in isolated fat cells, Biochim. Biophys. Acta 286: 1–9.PubMedGoogle Scholar
  70. Goldin, S. M., and Rhoden, V., 1979, Reconstitution and “transport specificity fractionation” of the human erythrocyte glucose transport system, J. Biol. Chem. 253: 2575–2583.Google Scholar
  71. Gorga, J. C., and Lienhard, G. E., 1982, Insulin stimulation of glucose transport in adipocytes, Fed. Proc. 41: 627.Google Scholar
  72. Gorga, F. R., Baldwin, S. A., and Lienhard, G. E., 1979, The monosaccharide transporter from human erythrocytes is heterogeneously glycosylated, Biochem. Biophys. Res. Commun. 91: 995–961.Google Scholar
  73. Gould, M. K., and Chaudry, I. H., 1970, The action of insulin on glucose uptake by isolated rat soleus muscle, I. Effects of cations, Biochim. Biophys. Acta 215: 247–249.Google Scholar
  74. Griffin, J. F., Rampal, A. L., and Jung, C. Y., 1982, Inhibition of glucose transport in human erythrocytes by cytochalasins: A model based on diffraction studies, Proc. Natl. Acad. Sci. USA 79:3759–3763.Google Scholar
  75. Grinstein, S., and Erlij, D., 1976, Action of insulin and cell calcium: Effect of ionophore A23187, J. Membr. Biol. 29: 313–328.PubMedGoogle Scholar
  76. de Haen, C., Muchmore, D. B., and Little, S. A., 1980, Stimulation of intracellular H202 production in rat epididymal adipocytes by insulin, insulin fragments, and other hormones and growth factors with insulin-like activities, Insulin Chemistry, Structure and Function of Insulin and Related Hormones (D. Brandenburg and A. Wollmer, eds.), Walter de Gruyter and Co., New York, pp. 461–468.Google Scholar
  77. Hall, S., Keo, L., Yu, K. T., and Gould, M. K., 1982, Effect of ionophore A23187 on basal and insulin-stimulated sugar transport by rat soleus muscle, Diabetes 31: 846–850.PubMedGoogle Scholar
  78. Haring, H. U., Kemmler, W., Renner, R., and Hepp, H. D., 1978, Initial lagphase in the action of insulin on glucose transport and cAMP levels in fat cells, FEBS Lett. 95: 177–180.PubMedGoogle Scholar
  79. Haring, H. U., Biermann, E., and Kemmler, W., 1981, Coupling of insulin binding and insulin action on glucose transport in fat cells, Am. J. Physiol. 240: E556 - E565.PubMedGoogle Scholar
  80. Hatanka, M., 1974, Transport of sugars in tumor cell membranes, Biochim. Biophys. Acta 355: 77–104.Google Scholar
  81. Hatanaka, M., 1976, Saturable and nonsaturable process of sugar uptake: Effect of oncogenic transformation in transport and uptake of nutrients, J. Cell Physiol. 89: 745–750.PubMedGoogle Scholar
  82. Hladky, S. B., and Haydon, D. A., 1970, Discreteness of conductance change in bimolecular lipid membranes in the presence of certain antibiotics, Nature 225: 451–453.PubMedGoogle Scholar
  83. Hokin, L. E., 1981, Reconstitution of “carriers” in artificial membranes, J. Membr. Biol. 60:77–93. Hollos`zy, J. O., and Narahara, H. H., 1966, Enhanced permeability to sugar associated with muscle contraction, J. Gen. Physiol. 50: 551–562.Google Scholar
  84. Holloszy, J. O., and Narahara, H. H., 1967, Studies in tissue permeability: X. Changes in permeability to 3-O-methylglucose associated with contraction of isolated frog muscle, J. Biol. Chem. 240: 3493–3500.Google Scholar
  85. Holman, G. D., and Reis, W. D., 1982, Side-specific analogues for the rat adipocyte sugar transport system, Biochim. Biophys. Acta 685: 78–86.PubMedGoogle Scholar
  86. Innui, K.-I., Tillotson, L. G., and Isselbacher, K. J., 1980, Hexose and amino acid transport by chicken embryo fibroblasts infected with temperature-sensitive mutant of Rous sarcoma virus, Biochim. Biophys. Acta 598: 616–627.Google Scholar
  87. Jacobs, B. O., and Krahl, M. E., 1973, The effects of divalent cations and insulin on protein synthesis in adipose cells, Biochim. Biophys. Acta 319: 410–415.PubMedGoogle Scholar
  88. Jacobs, S., Chang, K., and Cuatrecasas, P., 1978, Antibodies to purified insulin receptors have insulin-like activity, Science 200: 1283–1285.PubMedGoogle Scholar
  89. Jarett, L., and Smith, R. M., 1974, Electron microscopic demonstration of insulin receptors on adipocyte plasma membranes utilizing a ferritin-insulin conjugate, J. Biol. Chem. 249: 7024–7031.PubMedGoogle Scholar
  90. Jarett, L., and Smith, R. M., 1975, Ultrastructural localization of insulin receptors on adipocytes, Proc. Natl. Acad. Sci. USA 72:3526–3530.Google Scholar
  91. Jarett, L., and Smith, R. M., 1977, The natural occurrence of insulin receptors in groups on adipocyte plasma membranes as demonstrated with monomeric ferritin-insulin, J. Supramol. Struct. 6: 45–59.PubMedGoogle Scholar
  92. Jarett, L., and Smith, R. M., 1979, Effect of cytochalasin B and D on groups of insulin receptors and on insulin action in rat adipocytes, Clin. Invest. 6: 571–579.Google Scholar
  93. Jarrett, D. B., Roth, J., Kahn, C. R., and Flier, J. S., 1976, Direct method for detection and characterization of cell surface receptors for insulin by means of 125I-labeled autoantibodies against the insulin receptors, Proc. Natl. Acad. Sci. USA 73: 4115–4119.PubMedGoogle Scholar
  94. Jones, M. N., and Nickson, J. K., 1978, Electrical properties and glucose permeability of bilayer lipid membranes on incorporation of erythrocyte membrane extracts, Biochim. Biophys. Acta 509: 260–271.PubMedGoogle Scholar
  95. Jones, M. N., and Nickson, J. K., 1981, Monosaccharide transport proteins of the human erythrocyte membrane, Biochim. Biophys. Acta 650: 1–20.PubMedGoogle Scholar
  96. Jung, C. Y, 1971a, Evidence of high stability of the glucose transport carrier function in human red cell ghosts extensively washed in various media, Arch. Biochem. Biophys. 146: 215–226.PubMedGoogle Scholar
  97. Jung, C. Y., 1971b, Permeability of bimolecular membranes made from lipid extracts of human red cell ghosts to sugars, J. Membr. Biol. 5: 200–214.Google Scholar
  98. Jung, C. Y., and Carlson, L. M., 1975, Glucose transport carrier in human erythrocyte membranes, J. Biol. Chem. 250: 3217–3220.PubMedGoogle Scholar
  99. Jung, C. Y., and Rampal, A. L., 1977, Cytochalasin B binding sites and glucose transport carrier in human erythrocyte ghosts, J. Biol. Chem. 252: 5456–5463.PubMedGoogle Scholar
  100. Jung, C. Y., Hsu, T. L., Hah, J. S., Cha, C., and Haas, M. N., 1980, Glucose transport carrier of human erythrocytes, J. Biol. Chem. 253: 361–364.Google Scholar
  101. Kahlenberg, A., and Zala, C. A., 1977, Reconstitution of D-glucose transport in vesicles composed of lipids and intrinsic protein (zone 4.5) of the human erythrocyte membrane, J. Supramol. Struct. 7: 287–300.PubMedGoogle Scholar
  102. Kahn, C. R., Flier, J. S., Bar, R. S., Archer, J. A., Gorden, P., Martin, M. M., and Roth, J., 1976, The syndromes of insulin resistance and acanthosis nigricans, Insulin-receptor disorders in man, N. Engl. J. Med. 294: 739–745.PubMedGoogle Scholar
  103. Kahn, C. R., Baird, K., Flier, J. S., and Jarrett, D. B., 1977, Effects of autoantibodies to the insulin receptor on isolated adipocytes. Studies of insulin binding and insulin action, J. Clin. Invest. 60: 1094–1106.PubMedGoogle Scholar
  104. Kahn, C. R., Baird, K., Baird, R., Jarrett, D. B., and Flier, J. S., 1978a, Direct demonstration that receptor cross-linking or aggregation is important in insulin action, Proc. Natl. Acad. Sci. USA 75: 4209–4213.PubMedGoogle Scholar
  105. Kahn, C. R., Baird, K., Jarrett, D. B., and Flier, J. S., 1978b, Monovalent anti-receptor antibodies regain insulinomimetic actions when crosslinked by a second antibody, Diabetes 27 (Suppl. 2): 449.Google Scholar
  106. Kalckar, H. M., and Ullrey, D., 1973, Two distinct types of enhancement of glucose uptake into hamster cells: Tumor-virus transformation and hexose starvation, Proc. Nat!. Acad. Sci. USA 70: 2502–2504.PubMedGoogle Scholar
  107. Kalckar, H. M., Ullrey, D., Kijomoto, S., and Hakomori, S., 1973, Carbohydrate catabolism and the enhancement of uptake of galactose in hamster cells transformed by polyoma virus, Proc. Natl. Acad. Sci. USA 70: 839–843.PubMedGoogle Scholar
  108. Karnieli, E., Zamowski, M. J., Hissin, P. J., Simpson, I. A., Salans, L. B., and Cushman, S. W., 1981, Insulin-stimulated translocation of glucose transport systems in the isolated rat adipose cell, J. Biol. Chem. 256: 4772–4777.PubMedGoogle Scholar
  109. Kasahara, M., and Hinkle, P. C., 1976, Reconstitution of D-glucose transport catalyzed by a protein fraction from human erythrocytes in sonicated liposomes, Proc. Natl. Acad. Sci. USA 73: 396–400.PubMedGoogle Scholar
  110. Kasahara, M., and Hinkle, P. C., 1977, Reconstitution and purification of the D-glucose transporter from human erythrocytes, J. Biol. Chem. 252: 7384–7390.PubMedGoogle Scholar
  111. Katzen, H. M., and Soderman, D. D., 1975, Interaction of carbohydrate binding sites on concanavalin Aagarose with receptors on adipocytes studied by buoyant density method, Biochemistry 14: 2293–2298.PubMedGoogle Scholar
  112. Kawai, S., and Hanafusa, H., 1971, The effects of reciprocal changes in temperature on the transformed state of cells infected with a Rous sarcoma virus mutant, Virology 46: 470–479.PubMedGoogle Scholar
  113. Kiechle, F. L., Jarett, L., Kotagal, N., and Popp, D. A., 1981, Partial purification from rat adipocyte plasma membranes of a chemical mediator which stimulates the action of insulin on pyruvate dehydrogenase, J. Biol. Chem. 256: 2945–2951.PubMedGoogle Scholar
  114. King, G. L., Rechler, M. M., and Kahn, C. R., 1982, Interactions between the receptors for insulin and the insulin-like growth factors on adipocytes, J. Biol. Chem. 257: 10001–10006.PubMedGoogle Scholar
  115. Kissebah, A. H., Hope-Gill, H., Vydelingum, N., Tulloch, B., Clarke, P., and Fraser, T. R., 1975, Mode of insulin action, Lancet 1: 144–147.PubMedGoogle Scholar
  116. Kletzien, R. F., and Perdue, J. F., 1974, Sugar transport in chick embryo fibroblasts, J. Biol. Chem. 249: 3375–3382.PubMedGoogle Scholar
  117. Kletzien, R. F., and Perdue, J. F., 1975a, Regulation of sugar transport in chick embryo fibroblasts infected with a temperature-sensitive mutant of RSV, Cell 6: 513–520.Google Scholar
  118. Kletzien, R. F., and Perdue, J. F., 1975b, Induction of sugar transport in chick embryo fibroblasts by hexose starvation, J. Biol. Chem. 250: 593–600.PubMedGoogle Scholar
  119. Kono, T., and Barham, F. W., 1971a, Insulin-like effects of trypsin on fat cells. Localization of the metabolic steps and the cellular site affected by the enzymes, J. Biol. Chem. 246: 6204–6209.PubMedGoogle Scholar
  120. Kono, T., and Barham, F. W., 1971b, The relationship between the insulin-binding capacity of fat cells and the cellular response to insulin, J. Biol. Chem. 246: 6210–6216.PubMedGoogle Scholar
  121. Kono, T., Robinson, F. W., Sarver, J. A., Vega, F. V., and Pointer, R. A., 1977a, Action of insulin in fat cells. Effects of low temperature, uncouplers of oxidative phosphorylation, and respiratory inhibitors, J. Biol. Chem. 252: 2226–2233.PubMedGoogle Scholar
  122. Kono, T., Vega, F. V., Raines, K. B., and Shumway, S. J., 1977b, Deactivation of the once stimulated sugar transport reaction in fat cells, Fed. Proc. 36: 341.Google Scholar
  123. Kono, T., Suzuki, K., Dansey, L. E., Robinson, F. W., and Blevins, T. L., 1981, Energy-dependent and protein synthesis-independent recycling of the insulin-sensitive glucose transport mechanism in fat cells, J. Biol. Chem. 256: 6400–6407.PubMedGoogle Scholar
  124. Krasne, S., Eisenman, G., and Szabo, G., 1971, Freezing and melting of lipid bilayers and the mode of action of nonactin, valinomycin, and gramicidin, Science 174: 412–415.PubMedGoogle Scholar
  125. Lacko, L., Wittke, B., and Kromphardt, H., 1972, Zur kinetik der glucose-aufnahme in erythrocyten effekt der trans-konzentration, Eur. J. Biochem. 25: 447–454.PubMedGoogle Scholar
  126. Lawrence, J. C., Jr., and Lamer, J., 1978, Effects of insulin, methoxamine, and calcium and glycogen synthase in rat adipocytes, Mol. Pharamacol. 14: 1079–1091.Google Scholar
  127. Le Fevre, P. G., 1961, Sugar transport in the red blood cells: Structure-activity relationships in substrates and antagonists, Pharmacol. Rev. 13: 39–45.Google Scholar
  128. Letarte, J., and Reynold, A. E., 1969, Ionic effects on glucose transport and metabolism by isolated mouse fat cells incubated with or without insulin. I. Lack of effect of medium Ca’, Mg2+ or PO43. Biochim. Biophys. Acta 183: 350–356.PubMedGoogle Scholar
  129. Lidgard, G. P., and Jones, M. N., 1975, D-Glucose permeability of black lipid membranes modified by human erythrocyte membrane fractions, J. Membr. Biol. 21: 1–10.PubMedGoogle Scholar
  130. Lienhard, G. E., Gorga, F. R., Orasky, J. E., and Zoccol, M. A., 1977, Monosaccharide transport system of the human erythrocyte: Identification of the cytochalasin B binding component, Biochemistry 16: 4921–4926.PubMedGoogle Scholar
  131. Lin, S., and Snyder, C. E., Jr., 1977, High affinity cytochalasin B binding to red cell membrane proteins which are unrelated to sugar transport, J. Biol. Chem. 252: 5464–5471.PubMedGoogle Scholar
  132. Lin, S., and Spudich, J. A., 1974a, Binding of cytochalasin B to a red cell membrane protein, Biochem. Biophys. Res. Commun. 61: 1471–1476.PubMedGoogle Scholar
  133. Lin, S., and Spudich, J. A., 1974b, Biochemical studies on the mode of action of cytochalain B, J. Biol. Chem. 249: 5578–5783.Google Scholar
  134. Lin, S., Santi, D. V., and Spudich, J. A., 1974, Biochemical studies on the mode of action of cytochalasin B, J. Biol. Chem. 249: 2268–2274.PubMedGoogle Scholar
  135. Lockwood, D. H., and East, L. E., 1974, Studies of the insulin-like actions of polyamines on lipid and glucose metabolism in adipose tissue cells, J. Biol. Chem. 249: 7717–7722.PubMedGoogle Scholar
  136. Lockwood, D. H., Lipsky, J. J., Meronk, F., Jr., and East, L. E., 1971, Actions of polyamines on lipid and glucose metabolism of fat cells, Biochem. Biophys. Res. Commun. 44: 600–617.Google Scholar
  137. Lundahl, P., Acevedo, F., Froman, G., and Phutrakul, S., 1981, The stereospecific D-glucose transport activity of cholate extracts from human erythrocyte membranes, Biochim. Biophys. Acta 644: 101–107.PubMedGoogle Scholar
  138. Martineau, R., Kohlbacher, M. S., Shaw, S. N., and Amos, H., 1972, Enhancement of hexose entry into chick fibroblasts by starvation: Differential effect on galactose and glucose, Proc. Natl. Acad. Sci. USA 69: 3407–3411.PubMedGoogle Scholar
  139. Massague, J., Pilch, P. F., and Czech, M. P., 1980, Electrophoretic resolution of three major insulin receptor structures with unique subunit stoichiometries, Proc. Natl. Acad. Sci. USA 77: 7137–7141.PubMedGoogle Scholar
  140. May, J. M., and de Haen, C., 1979a, Insulin-stimulated intracellular hydrogen peroxide production in rat epididymal fat cells, J. Biol. Chem. 254: 2214–2220.Google Scholar
  141. May, J. M., and de Haen, C., 1979b, The insulin-like effect of hydrogen peroxide on pathways of lipid synthesis in rat adipocytes, J. Biol. Chem. 254:9017–9021.Google Scholar
  142. Meuli, C., and Froesch, E. R., 1977, Insulin and nonsupressible insulin-like activity (NSILA-S) stimulate the same glucose transport system via two separate receptors in rat heart, Biochem. Biophys. Res. Commun. 75: 689–695.PubMedGoogle Scholar
  143. Mizel, S. B., and Wilson, L., 1974, Inhibition of the transport of several hexoses in mammalian cells by cytochalasin B, J. Biol. Chem. 247: 4102–4105.Google Scholar
  144. Muchmore, D. B., Little, S. A., and de Haen, C., 1981, A dual mechanism of action of ocytocin in rat epididymal fat cells, J. Biol. Chem. 256: 365–372.Google Scholar
  145. Muchmore, D. B., Little, S. A., and de Haen, C., 1982, Counterregulatory control of intracellular hydrogen peroxide production by insulin and lipolytic hormones in isolated rat epididymal fat cells: A role of free fatty acids, Biochemistry 21: 3886–3892.PubMedGoogle Scholar
  146. Mukherjee, S. P., and Lynn, W. S., 1977, Reduced nicotinamide adenine dinucleotide phosphate oxidase in adipocyte plasma membrane and its activation by insulin. Possible role in the hormone’s effects on adenylate cyclase and the hexose monophosphate shunt, Arch. Biochem. Biophys. 184: 69–76.PubMedGoogle Scholar
  147. Mukherjee, S. P., Lane, R. H., and Lynn, W. S., 1978, Endogenous hydrogen peroxide and peroxidative metabolism in adipocytes in response to insulin and sulfhydryl reagents, Biochem. Pharmacol. 27: 2589–2594.PubMedGoogle Scholar
  148. Mullins, R. E., and Langdon, R. G., 1980a, Maltosyl isothiocyanate: An affinity label for the glucose transporter of the human erythrocyte membrane. 1. Inhibition of glucose transport, Biochemistry 19: 1199–1205.PubMedGoogle Scholar
  149. Mullins, R. E., and Langdon, R. G., 1980b, Maltosyl isothiocyanate: An affinity label for the glucose transporter of the human erythrocyte membrane. 2. Identification of the transporter, Biochemistry 19: 1205–1211.PubMedGoogle Scholar
  150. Nickson, J. K., and Jones, M. N., 1977, Reconstitution of the monosaccharide-transport system of the human erythrocyte membrane, Biochem. Trans. 5: 147–149.Google Scholar
  151. Olden, K., Pratt, R. M., Jaworski, C., and Yamada, K. M., 1974, Evidence for role of glycoprotein carbohydrates in membrane transport: Specific inhibition by tunicamycin, Proc. Natl. Acad. Sci. USA 76: 791–795.Google Scholar
  152. Olefsky, J. M., 1978, Mechanisms of the ability of insulin to activate the glucose-transport system in rat adipocytes, Biochem. J. 172: 137–145.PubMedGoogle Scholar
  153. Oppenheimer, C. L., and Czech, M. P., 1983, Affinity labeling of receptors, in: Growth and Maturation Factors, John Wiley and Sons, New York.Google Scholar
  154. Oppenheimer, C. L., Pessin, J. E., Massague, J., Gitomer, W., and Czech, M. P., 1983, Insulin action rapidly modulates the affinity of the insulin-like growth factor II receptor, J. Biol. Chem. 258: 4824–4830.PubMedGoogle Scholar
  155. Pessin, J. E., Tillotson, L. G., Yamada, K., Gitomer, W., Carter-Su, C., Mora, R., Isselbacher, K. J., and Czech, M. P., 1982, Identification of the stereospecific hexose transporter from starved and fed chicken embryo fibroblasts, Proc. Natl. Acad. Sci. USA 79: 2286–2290.PubMedGoogle Scholar
  156. Phutrakul, S., and Jones, M. N., 1979, The permeability of bilayer lipid membranes on the incorporation of erythrocyte membrane extracts and the identification of the monosaccharide transport proteins, Biochim. Biophys. Acta 550: 188–200.PubMedGoogle Scholar
  157. Pillion, D. J., and Czech, M. P., 1978, Antibodies against intrinsic adipocyte plasma membrane proteins activate D-glucose transport independent of interaction with insulin binding sites, J. Biol. Chem. 253: 3761–3764.PubMedGoogle Scholar
  158. Pillion, D. J., Grantham, J. R., and Czech, M. P., 1979, Biological properties of antibodies against rat adipocyte intrinsic membrane proteins. Dependence on multivalency for insulin-like activity, J. Biol. Chem. 254: 3211–3220.PubMedGoogle Scholar
  159. Plagemann, P. G. W., and Richey, D. P., 1974, Transport of nucleosides, nucleic acid bases, choline and glucose by animal cells in culture, Biochim. Biophys. Acta 344: 263–305.PubMedGoogle Scholar
  160. Rampal, A. L., Pinkofsky, H. B., and Jung, C. Y., 1980, Structure of cytochalasin B binding sites in human erythrocyte membranes, Biochemistry 19: 679–683.PubMedGoogle Scholar
  161. Reeves, J. P., 1975, Calcium-dependent stimulation of 3-O-methylglucose uptake in rat thymocytes by the divalent cation ionophore A 23187, J. Biol. Chem. 250: 9428–9430.PubMedGoogle Scholar
  162. Rendi, R., 1964, Water extrusions in isolated subcellular fractions, Biochim. Biophys. Acta 84: 694–706.PubMedGoogle Scholar
  163. Renner, E. D., Plagemann, P. G. W., and Bemlohr, R. W., 1972, Permeation of glucose by simple and facilitated diffusion by Novikoff rat hepatoma cell in suspension culture and relationship of glucose metabolism, J. Biol. Chem. 247: 5765–5776.PubMedGoogle Scholar
  164. Rihan, Z., Jarrett, R. J., and Keen, H., 1967, EDTA and insulin: A study of the effect of salts of EDTA upon insulin action in vivo and in vitro, Diabetologia 3: 449–452.PubMedGoogle Scholar
  165. Rodbell, M., 1964, Metabolism of isolated fat cells. 1. Effects of hormones on glucose metabolism and lipolysis, J. Biol. Chem. 239: 375–380.PubMedGoogle Scholar
  166. Rodbell, M., 1966, Metabolism of isolated fat cells. 1. The similar effects of phospholipase C, and of insulin on glucose and amino acid metabolism, J. Biol. Chem. 241: 130–139.PubMedGoogle Scholar
  167. Rosenthal, J. W., and Fain, J. N., 1971, Insulin-like effect of clostridial phospholipase C, neuraminidase, and other bacterial factors on brown fat cells, J. Biol. Chem. 246: 5888–5895.PubMedGoogle Scholar
  168. Roth, J., 1973, Peptide hormone binding to receptors: A review of direct studies in vitro, Metabolism 22: 1059–1073.PubMedGoogle Scholar
  169. Salter, D. W., and Weber, M. J., 1979, Glucose-specific cytochalasin B binding is increased in chicken embryo fibroblasts transformed by Rous sarcoma virus, J. Biol. Chem. 254: 3554–3561.PubMedGoogle Scholar
  170. Salter, D. W., Baldwin, S. A., Lienhard, G. E., and Weber, M. J., 1982, Proteins antigenically related to the human erythrocyte glucose transporter in normal and Rous sarcoma virus-transformed chicken embryo fibroblasts, Proc. Natl. Acad. Sci. USA 79: 1540–1544.PubMedGoogle Scholar
  171. Saltiel, A., Jacobs, S., Siegel, M., and Cuatrecasas, P., 1981, Insulin stimulates the release from liver plasma membranes of a chemical modulator of pyruvate dehydrogenase, Biochem. Biophys. Res. Commun. 102: 1041–1047.PubMedGoogle Scholar
  172. Schudt, C., Gaertner, U., and Pette, D., 1976, Insulin action on glucose transport and calcium fluxes in developing muscle cells in vitro, Eur. J. Biochem. 68: 103–111.PubMedGoogle Scholar
  173. Seals, J. R., and Czech, M. P., 1980, Evidence that insulin activates in intrinsic plasma membrane protease in generating a secondary chemical mediator, J. Biol. Chem. 255: 6529–6531.PubMedGoogle Scholar
  174. Seals, J. R., and Czech, M. P., 1981, Characterization of a pyruvate dehydrogenase activator released by adipocyte plasma membranes in response to insulin, J. Biol. Chem. 256: 2894–2899.PubMedGoogle Scholar
  175. Seals, J. R., and Jarett, L., 1980, Activation of pyruvate dehydrogenase by direct addition of insulin to an isolated plasma membrane/mitochondria mixture: Evidence for generation of insulin’s second messenger in a subcellular system, Proc. Natl. Acad. Sci. USA 77: 77–81.PubMedGoogle Scholar
  176. Sen, A. K., and Widdas, W. F., 1962, Determination of the temperature and pH dependence of glucose transfer across the human erythrocyte membrane measured by glucose exit, J. Physiol. 160: 392–403.PubMedGoogle Scholar
  177. Shanahan, M. F., 1982, Cytochalasin B, J. Biol. Chem. 257: 7290–7293.PubMedGoogle Scholar
  178. Shanahan, M. F., and Czech, M. P., 1977, Purification and reconstitution of the adipocyte plasma membrane D-glucose transport system, J. Biol. Chem. 252: 8341–8343.PubMedGoogle Scholar
  179. Shanahan, M. F., and Jacquez, J. A., 1978, Differential labeling of components in human erythrocyte membranes associated with the transport of glucose, Membr. Biochem. 1: 239–267.PubMedGoogle Scholar
  180. Shanahan, M. F., Olson, S. A., Weber, M. J., Lienhard, G. E., and Gorga, J. C., 1982, Photolabeling of glucose-sensitive cytochalasin B binding proteins in erythrocyte, fibroblasts and adipocyte membranes, Biochem. Biophys. Res. Commun. 107: 38–43.PubMedGoogle Scholar
  181. Shemyakin, M. M., Ovchinnikov, Y. A., Ivanov, V. I., Antonov, V. K., Vinogradova, E. I., Shkrob, A. M., Malenkov, G. G., Evstratov, A. V., Laine, I. A., Melnik, E. I., Ryabova, I. D., 1969, Cyclodepsipeptides as chemical tools for studying ionic transport through membranes, J. Membr. Biol. 1: 402–430.Google Scholar
  182. Siegal, J., and Olefsky, J. M., 1980, Role of intracellular energy in insulin’s ability to activate 3–0methylglucose transport by rat adipocytes, Biochemistry 19: 2183–2190.Google Scholar
  183. Simpson, I. A., Wheeler, T. J., Sogin, D. C., Hinkle, P. C., and Cushman, S. W., 1981, Characterization of intracellular glucose transport systems and their insulin-induced translocation to the plasma membrane in the rat adipose cell using [3H]cytochalasin B and a rabbit antibody against the human erythrocyte glucose transporter, J. Cell Biol. 91: 413a.Google Scholar
  184. Sogin, D. C., and Hinkle, P. C., 1978, Characterization of the glucose transporter from human erythrocytes, J. Supramol. Struct. 8: 447–453.PubMedGoogle Scholar
  185. Sogin, D. C., and Hinkle, P. C., 1980a, Binding of cytochalasin B to human erythrocyte glucose transporter, Biochemistry 19: 5417–5420.PubMedGoogle Scholar
  186. Sogin, D. C., and Hinkle, P. C., 1980b, Immunological identification of the human erythrocyte glucose transporter, Proc. Natl. Acad. Sci. USA 77: 5725–5729.PubMedGoogle Scholar
  187. Steck, T. L., 1974, The organization of proteins in the human red blood cell membrane, J. Cell Biol. 62: 1–19.PubMedGoogle Scholar
  188. Suzuki, K., and Kono, T., 1980, Evidence that insulin causes translocation of glucose transport activity to the plasma membrane from an intracellular storage site, Proc. Natl. Acad. Sci. USA 77: 2542–2545.PubMedGoogle Scholar
  189. Taverna, R. D., and Langdon, R. G., 1973, Reversible association of cytochalasin B with the human erythrocyte membrane, Biochim. Biophys. Acta 323: 207–219.PubMedGoogle Scholar
  190. Taylor, N. F., and Gagneja, G. L., 1973, A model for the mode of action of cytochalasin B inhibition of D-glucose transport in the human erythrocyte, Can. J. Biochem. 53: 1078–1084.Google Scholar
  191. Tosteson, D. C., Andreoli, T. E., Tieffenberg, M., and Cook, P., 1968, The effects of macrocyclic compounds on cation transport in sheep red cells and thin and thick lipid membranes, J. Gen. Physiol. 51: 373.PubMedGoogle Scholar
  192. Ullrey, D., Gammon, M. T., and Kalckar, H. M., 1975, Uptake patterns and transport enhancements in cultures of hamster cells deprived of carbohydrates, Arch. Biochem. Biophys. 167: 410–416.PubMedGoogle Scholar
  193. Urry, D. W., 1971, The gramicidin A transmembrane channel: A proposed (L,D) helix, Proc. Natl. Acad. Sci. USA 68: 672–676.PubMedGoogle Scholar
  194. Vega, F. V., and Kono, T., 1979, Sugar transport in fat cells: Effects of mechanical agitation, cell-bound insulin, and temperature, Arch. Biochem. Biophys. 192: 120–127.PubMedGoogle Scholar
  195. Vega, F. V., Key, R. J., Jordan, J. E., and Kono, T., 1980, Reversal of insulin effects in fat cells may require energy for deactivation of glucose transport but not for deactivation of phosphodiesterase, Arch. Biochem. Biophys. 203: 167–173.PubMedGoogle Scholar
  196. Venuta, S., and Rubin, H., 1973, Sugar transport in normal and Rous sarcoma virus-transformed chick-embryo fibroblasts, Proc. Natl. Acad. Sci. USA 70: 653–657.PubMedGoogle Scholar
  197. Vinten, J., 1978, Cytochalasin B inhibition and temperature dependence of 3-O-methylglucose transport in fat cells, Biochim. Biophys. Acta 511: 259–273.PubMedGoogle Scholar
  198. Vinten, J. Gliemann, J., and Sterlind, K., 1976, Exchange of 3-O-methylglucose in isolated fat cells, J. Biol. Chem. 254:794–800.Google Scholar
  199. Wardzala, L. J., and Jeanrenaud, B., 1981, Potential mechanism of insulin action on glucose transport in the isolated rat diaphragm, J. Biol. Chem. 256: 7090–7093.PubMedGoogle Scholar
  200. Wardzala, L. J., Cushman, S. W., and Salans, L. B., 1978, Mechanism of insulin action on glucose transport in the isolated rat adipose cell, J. Biol. Chem. 253: 8002–8005.PubMedGoogle Scholar
  201. Weber, M. J., 1973, Hexose transport in normal and in Rous sarcoma virus-transformed cells, J. Biol. Chem. 248: 2978–2983.PubMedGoogle Scholar
  202. Wheeler, T. J., Simpson, I. A., Sogin, D. C., Hinkle, P. C., and Cushman, S. W., 1982, Detection of the rat adipose cell glucose transporter with antibody against the human red cell glucose transporter, Biochem. Biophys. Res. Commun. 105: 89–95.PubMedGoogle Scholar
  203. Whitesell, R. R., and Gliemann, J., 1979, Kinetic parameters of transport of 3-O-methylglucose and glucose in adipocytes, J. Biol. Chem. 254: 5276–5283.PubMedGoogle Scholar
  204. Wilbrandt, W., 1978, Cell Membrane Receptors for Drug and Hormones: A Multidisciplinary Approach (R. W. Straub and L. Bolis, eds.), Raven Press, New York, pp. 243–249.Google Scholar
  205. Yu, K. T., and Gould, M. K., 1977, Insulin-stimulated sugar transport and [125I]insulin binding by rat soleus muscle: Permissive effect of ATP, Biochem. Biophys. Res. Commun. 77: 203–210.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Jeffrey E. Pessin
    • 1
  • Michael P. Czech
    • 1
  1. 1.Department of BiochemistryUniversity of Massachusetts Medical CenterWorcesterUSA

Personalised recommendations