Advertisement

H+-Translocating ATPase and Other Membrane Enzymes Involved in the Accumulation and Storage of Biological Amines in Chromaffin Granules

  • Sally E. Carty
  • Robert G. Johnson
  • Antonio Scarpa

Abstract

Within the adrenal medulla, catecholamines accumulate into and are stored within a highly specialized subcellular organelle, the chromaffin granule. Since their isolation almost 30 years ago, an interdisciplinary approach from pharmacologists, transport and cellular physiologists, electron microscopists, and anatomists has helped to delineate the salient aspects of the structure, composition, and function of these granules. One of the reasons for such profound interest is that the adrenal chromaffin granule has a common embryologic origin with the adrenergic neurotransmitter granules of the central and peripheral nervous system, suggesting that the two amine storage organelles may have functional properties in common.

Keywords

Biogenic Amine Adrenal Medulla Cytochrome B561 Proton Translocation Chromaffin Granule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbs, M. T., and Phillips, J. H., 1980, Organization of the proteins of the chromaffin granule membrane, Biochim. Biophys. Acta 595: 200–221.PubMedGoogle Scholar
  2. Aberer, W. H., Kostron, H., Huber, E., and Winkler, H., 1978, A characterization of the nucleotide uptake by chromaffin granules of bovine adrenal medulla, Biochem. J. 172: 353–360.PubMedGoogle Scholar
  3. Apps, D. K., and Glover, L. A., 1978, Isolation and characterization of magnesium adenosinetriphosphatase from the chromaffin granule membrane, FEBS Lett. 85: 254–257.PubMedGoogle Scholar
  4. Apps, D. K., and Schatz, G., 1979, An adenosine triphosphatase isolated from chromaffin granule membranes is closely similar to F1-adenosine triphosphatase of mitochondria, Eur. J. Biochem. 100: 411–419.PubMedGoogle Scholar
  5. Apps, D. K., Pryde, J. G., and Phillips, J. H., 1980a, Both the transmembrane pH gradient and the membrane potential are important in the accumulation of amines by resealed chromaffin-granule “ghosts,” FEBS Lett. 111: 386–390.PubMedGoogle Scholar
  6. Apps, D. K., Pryde, J. G., Sutton, R., and Phillips, J. H., 1980b, Inhibition of adenosine triphosphatase, 5-hydroxytryptamine transport, and proton translocation activities of resealed chromaffin granule ghosts, Biochem. J. 190: 273–282.PubMedGoogle Scholar
  7. Bank, S. P., 1965, The adenosine-triphosphatase activity of adrenal chromaffin granules, Biochem. J. 95: 490.Google Scholar
  8. Bashford, C. L., Radda, G. K., and Ritchie, G. A., 1975, Energy-linked activities of the chromaffin granule membrane, FEBS Lett. 50: 21–24.PubMedGoogle Scholar
  9. Bashford, C. L., Cassey, R. P., Radda, G. K., and Ritchie, G. A., 1976, Energy coupling in adrenal chromaffin granules, Neuroscience 1: 399–412.PubMedGoogle Scholar
  10. Bock, E., and Helle, K. B., 1977, Localization of synoptin on synaptic vesicle membranes, synaptosomal plasma membranes, and chromaffin granule membranes, FEBS Len. 82: 175–178.Google Scholar
  11. Borowitz, J. L., 1967, Calcium binding by subcellular fractions of bovine adrenal medulla, J. Cell. Comp. Physiol. 69: 305–310.Google Scholar
  12. Borowitz, J. L., 1969, Effect of acetylcholine on the subcellular distribution of 45Ca~ * on bovine adrenal medulla, Biochem. Pharmacol. 18: 715–723.PubMedGoogle Scholar
  13. Borowitz, J. L., Fuiva, K., and Weiner, N., 1965, Distribution of metals and catecholamines in bovine adrenal medulla sub-cellular fractions, Nature 205: 42–43.PubMedGoogle Scholar
  14. Buckland, R. M., Radda, G. K., and Shennon, K. D., 1978, Accessibility of phospholipids in the chromaffin granule membrane, Biochim. Biophys. Acta 513: 321–337.PubMedGoogle Scholar
  15. Buckland, R. M., Radda, G. K., and Wakefield, E. M., 1979, Reconstitution of the MgATPase of the chromaffin granule membrane, FEBS Leu. 103: 323–327.Google Scholar
  16. Buckley, J. T., Lefebre, Y. A., and Hawthorne, J. A., 1971, Identification of an actively phosphorylated component of adrenal medulla chromaffin granules, Biochim. Biophys. Acta 239: 517–519.PubMedGoogle Scholar
  17. Cahill, A. L., and Morris, S. J., 1979, Soluble and membrane lectin-binding glycoproteins of the chromaffingranule, J. Neurochem. 32:855–867.Google Scholar
  18. Carty, S. E., Johnson, R. G., and Scarpa, A., 1980, The isolation of intact chromaffin granules using isotonic Percoll density gradients, Anal. Biochem. 106: 438–445.PubMedGoogle Scholar
  19. Carty, S. E., Johnson, R. G., and Scarpa, A., 1981, Serotonin transport in isolated platelet granules: Coupling to the electrochemical proton gradient, J. Biol. Chem. 256: 11244–11250.PubMedGoogle Scholar
  20. Carty, S. E., Johnson, R. G., and Scarpa, A., 1982, Electrochemical proton gradient in dense granules isolated from anterior pituitary, J. Biol. Chem. 257: 7269–7273.PubMedGoogle Scholar
  21. Carty, S. E., Johnson, R. G., Vaugh T., Pallant, A., and Scarpa, A., 1984, Kinetic parameters of amine accumulation into chromaffin ghosts, Eur. J. Biochem. (submitted).Google Scholar
  22. Casey, R. P., Njus, D., Radda, G. K., and Sehr, P. A., 1976, Adenosine triphosphate-evoked catecholamine release in chromaffin granules, Biochem. J. 158: 583–588.PubMedGoogle Scholar
  23. Casey, R. P., Njus, D., Radda, G. K., and Sehr, P. A., 1977a, Active proton uptake by chromaffin granules: Observation by amine distribution and phosphorus-31 nuclear magnetic resonance techniques, Biochemistry 16: 972–977.PubMedGoogle Scholar
  24. Casey, R. P., Njus, D., Radda, G. K., and Sehr, P. A., 1977b, Adenosine triphosphate-evoked catecholamine release in chromaffin granules. Osmotic lysis as a consequence of proton translocation, Biochem. J. 158: 583–588.Google Scholar
  25. Coupland, R. E., and Hopwood, D., 1966, The mechanism for differential staining reaction for adrenaline-and noradrenaline-storing granules in tissue fixed in gluteraldehyde, J. Anat. 100: 227–243.PubMedGoogle Scholar
  26. Craine, J. E., Daniels, G. H., and Kaufman, S., 1973, Dopamine-3-hydroxylase, the subunit structure and anion activation of the bovine adrenal enzyme, J. Biol. Chem. 248: 7838–7844.PubMedGoogle Scholar
  27. Cross, R. L., 1981, The mechanism and regulation of ATP synthesis by F1 -ATPases, Annu. Rev. Biochem. 50: 681–714.PubMedGoogle Scholar
  28. DaPrada, M., Obrist, R., and Pletscher, A., 1975, Discrimination of monoamine uptake by membranes of adrenal chromaffin granules, Br. J. Pharmacol. 53: 257–265.Google Scholar
  29. Deamer, D. N., Prince, R., and Crofts, A. R., 1972, The response of fluorescent amines to pH gradients across liposome membranes, Biochim. Biophys. Acta 274: 323–335.PubMedGoogle Scholar
  30. DeOliveira-Filgueiras, O. M., van den Bosch, H., Johnson, R. G., Carty, S. E., and Scarpa, A., 1981, Phospholipid composition of some amine containing storage granules, FEBS Lett. 129: 309–313.Google Scholar
  31. Deupree, J. D., Weaver, J. A., and Downs, D. A., 1982, Catecholamine content of chromaffin granule “ghosts” isolated from bovine adrenal glands, Biochim. Biophys. Acta 714: 471–478.PubMedGoogle Scholar
  32. Dolais-Kitabgi, J., and Perlman, R. L., 1975, The stimulation of catecholamine release from chromaffin granules by valinomycin, Mol. Pharmacol. 11: 745–750.PubMedGoogle Scholar
  33. Duong, L. T., and Fleming, P. J., 1982, Isolation and properties of cytochrome 6561 from bovine adrenal chromaffin granules, J. Biol. Chem. 257: 8561–8564.PubMedGoogle Scholar
  34. Eagles, P. A. M., Johnson, L. N., and van Horn, C., 1975, The distribution of concanavaline A receptor sites on the membrane of chromaffin granules, J. Cell Soc. 19: 33–34.Google Scholar
  35. Flatmark, T., and Gronberg, M., 1981, Cytochrome 6561 of the bovine adrenal chromaffin granules, Biochem. Biophys. Res. Commun. 99: 292–301.PubMedGoogle Scholar
  36. Flatmark, T., and Ingebretsen, O. C., 1977, ATP dependent proton translocation in resealed chromaffin granule ghosts, FEBS Lett. 78: 53–56.PubMedGoogle Scholar
  37. Flatmark, T., and Terland, O., 1971, Cytochrome b561 of the bovine adrenal chromaffin granule: A high potential b-type cytochrome, Biochim. Biophys. Acta 253: 487–491.PubMedGoogle Scholar
  38. Gabizon, R., Yetinson, T., and Schuldiner, S., 1982, Photoinactivation and identification of the biogenic amine transporter in chromaffin granules from bovine adrenal medulla, J. Biol. Chem. 257: 15145–15150.PubMedGoogle Scholar
  39. Geissler, D., Martinek, A., Margolis, R. U., Margolis, R. K., Shrivanek, J. A., Ledeen, R., Konig, P., and Winkler, H., 1977, Composition and biogenesis of complex carbohydrates of ox adrenal chromaffin granules, Neuroscience 2: 685–693.PubMedGoogle Scholar
  40. Giraudat, J., Roisin, M., and Henry, J-P., 1980, Solubilization and reconstitution of the adenosine 5’-triphosphate dependent proton translocase of bovine chromaffin granule membrane, Biochemistry 19: 4499–4505.PubMedGoogle Scholar
  41. Goldstein, M., Joh, T. H., and Gravey, T. Q., 1968, Kinetic studies of the enzyme dopamine-3 hydroxylation reaction, Biochemistry 7: 2724–2730.PubMedGoogle Scholar
  42. Grouselle, M., and Phillips, J. H., 1982, Reduction of membrane bound dopamine-ß-hydroxylase from the cytoplasmic surface of the chromaffin granule membrane, Biochem. J. 202: 759–770.PubMedGoogle Scholar
  43. Hausler, R., Burger, A., and Niedermaier, W., 1981, Evidence for an inherent, ATP-stimulated uptake of calcium into chromaffin granules, Naunyn-Schmiedeberg’s Arch. Pharmacol. 315: 255–267.PubMedGoogle Scholar
  44. Hayflick, S., Johnson, R. G., Carty, S. E., and Scarpa, A., 1981, Kinetic and quantitative measurements of catecholamine transport in chromaffin ghosts using a catecholamine electrode, Anal. Biochem. 126: 58–66.Google Scholar
  45. Helle, K. B., Serck-Hanssen, G., and Boch, E., 1978, Complexes of chromogranin A and dopamine-ß-hydroxylase among the chromogranins of the bovine adrenal medulla, Biochim. Biophys. Acta 533: 396–407.PubMedGoogle Scholar
  46. Holz, R. W., 1978, Evidence that catecholamine transport into chromaffin vesicles is coupled to vesicle membrane potential, Proc. Natl. Acad. Sci. USA 75: 5190–5194.PubMedGoogle Scholar
  47. Holz, R. W., 1979, Measurement of membrane potential of chromaffin granules by the accumulation of triphenyl methylphosphonium cations, J. Biol. Chem. 254: 6703–6709.PubMedGoogle Scholar
  48. Hornig, D., 1975, Distribution of ascorbic acid, metabolites, and analogs in man and animals, Ann. N.Y. Acad. Sci. 258: 103–118.PubMedGoogle Scholar
  49. Hortnagl, H., Winkler, H., and Lochs, H., 1973, Membrane proteins of chromaffin granules. Dopaminebeta-hydroxylase, a major constituent, Biochem. J. 129: 187–195.Google Scholar
  50. Huber, E., Konig, P., Schuler, G., Aberer, W., Plattner, H., and Winkler, H., 1979, Characterization and topography of the glycoproteins of adrenal chromaffin granules, J. Neurochem. 32: 35–417.PubMedGoogle Scholar
  51. Hughes, R. E., and Maton, S. C., 1968, The passage of vitamin C across the erythrocyte membrane, Br. J. Haematol. 14: 247–253.PubMedGoogle Scholar
  52. Hutton, J. C., 1982, The internal pH and membrane potential of the insulin-secretory granule, Biochem. J. 204: 171–178.PubMedGoogle Scholar
  53. Hutton, J. C., and Peshavaria, M., 1982, Proton-translocating Mg’-dependent ATPase activity in insulin-secretory granules, Biochem. J. 204: 161–170.PubMedGoogle Scholar
  54. Ingebretsen, O. C., and Flatmark, T., 1979, Active and passive transport of dopamine in chromaffin granule ghosts isolated from bovine adrenal medulla, J. Biol. Chem. 254: 3833–3839.PubMedGoogle Scholar
  55. Ingebretsen, O. C., Terland, O., and Flatmark, T., 1980, Subcellular distribution of ascorbate in bovine adrenal medulla. Evidence for accumulation in chromaffin granules against a concentration gradient, Biochim. Biophys. Acta 628: 182–189.PubMedGoogle Scholar
  56. Izumi, F., Oka, M., Morita, K., and Azuma, H., 1975, Catecholamine releasing factor in bovine adrenal medulla, FEBS Lett. 56: 73–76.PubMedGoogle Scholar
  57. Jockusch, B. M., Burger, M. M., DaPrada, M., Richards, J. G., Chaponnier, C., and Gabbiani, G., 1977, Alpha-actin attached to membranes of secretory vesicles, Nature 270: 628–629.PubMedGoogle Scholar
  58. Johnson, R. G., and Scarpa, A., 1976, Ion permeability of isolated chromaffin granules, J. Gen. Physiol. 68: 601–631.PubMedGoogle Scholar
  59. Johnson, R. G., and Scarpa, A., 1979, Protonmotive force and catecholamine transport in isolated chromaffin granules, J. Biol. Chem. 254: 3750–3760.PubMedGoogle Scholar
  60. Johnson, R. G., and Scarpa, A., 1981, The electron transport chain of serotonin dense granules of platelets, J. Biol. Chem. 256: 11966–11969.PubMedGoogle Scholar
  61. Johnson, R. G., Carlson, N., and Scarpa, A., 1978, ApH and catecholamine distribution in isolated chromaffin granules, J. Biol. Chem. 253: 15120–15121.Google Scholar
  62. Johnson, R. G., Pfister, D., Carty, S. E., and Scarpa, A., 1979, Biological amine transport in chromaffin ghosts, J. Biol. Chem. 254: 10963–10972.PubMedGoogle Scholar
  63. Johnson, R. G., Carty, S. E., Fingerhood, B., and Scarpa, A., 1980, The internal pH of mast cell granules, FEBS Lett. 120: 75–79.PubMedGoogle Scholar
  64. Johnson, R. G., Carty, S. E., and Scarpa, A., 1981, Proton: substrate stoichiometries during active transport of biogenic amines in chromaffin ghosts, J. Biol. Chem. 256: 5773–5780.PubMedGoogle Scholar
  65. Johnson, R. G., Beers, M. F., and Scarpa, A., 1982a, H+ ATPase of chromaffin granules: Kinetics, regulation, and stoichiometry, J. Biol. Chem. 257: 10701–10707.PubMedGoogle Scholar
  66. Johnson, R. G., Carty, S. E., and Scarpa, A., 1982b, Catecholamine transport and energy-linked functionGoogle Scholar
  67. of chromaffin granules isolated from a human pheochromocytoma, Biochim. Biophys. Acta 716:366–376.Google Scholar
  68. Johnson, R. G., Hayflick, S., Carty, S. E., and Scarpa, A., 1982c, Net uptake of catecholamines into isolated chromaffin granules demonstrated by a novel polarographic technique, FEBS Lett. 141: 63–67.PubMedGoogle Scholar
  69. Johnson, R. G., Carty, S. E., and Scarpa, A., 1982d, The electrochemical proton gradient and catecholamine accumulation into isolated chromaffin granules and ghosts, in: Membranes and Transport: A Critical Review ( A. Martonosi, ed.), Plenum, New York, pp. 237–244.Google Scholar
  70. Johnson, R. G., Carty, S. E., and Scarpa, A., 1984, Kinetic parameters of uptake of various biological amines in isolated chromaffin granules, manuscript in preparation.Google Scholar
  71. Jonasson, J., Rosengren, E., and Waldeck, B., 1964, Effects of some pharmacologically active amines on the uptake of arylalkylamines by adrenal medullary granules, Acta Physiol. Scand. 60: 136–140.PubMedGoogle Scholar
  72. Kanner, B. I., Fishkes, H., Maron, R., Sharon, I., and Schuldiner, S., 1979, Reserpine as a competitive and reversible inhibitor of the catecholamine transporter of bovine chromaffin granules, FEBS Lett. 100: 175–178.PubMedGoogle Scholar
  73. Kanner, B. I., Sharon, I., Maron, R., and Schuldiner, S., 1980, Electrogenic transport of biogenic amines in chromaffin granule membrane vesicles, FEBS Leu. 111: 83–86.Google Scholar
  74. Kirshner, N., 1962, Uptake of catecholamines by a particulate fraction of the adrenal medulla, J. Biol. Chem. 237: 2311–2317.PubMedGoogle Scholar
  75. Knoth, J., Handloser, K., and Njus, D., 1980, Electrogenic epinephrine transport in chromaffin granule ghosts, Biochemistry 19: 2938–2942.PubMedGoogle Scholar
  76. Knoth, J., Isaacs, J. M., and Njus, D., 1981, Amine transport in chromaffin granule ghosts, J. Biol. Chem. 256: 6541–6543.PubMedGoogle Scholar
  77. Kostron, H., Winkler, H., Geissler, D., and Konig, P., 1977a, Uptake of calcium by chromaffin granules in vitro, J. Neurochem. 23: 487–493.Google Scholar
  78. Kostron, H., Winkler, H., Peer, L. J., and Konig, P., 1977b, Uptake of adenosine triphosphate by isolated adrenal chromaffin granules: A carrier-mediated transport, Neuroscience 2: 159–166.PubMedGoogle Scholar
  79. Krieger-Brauer, H., and Gratzl, M., 1982, Uptake of Ca++ by isolated secretory vesicles from adrenal medulla, Biochim. Biophys. Acta 691: 61–70.PubMedGoogle Scholar
  80. Lishajko, F., 1971, Studies on catecholamine release and uptake in adreno-medullary storage granules, Acta Physiol. Scand. 362 (Suppl.): 3–39.Google Scholar
  81. Livett, B. G., Dean, D. M., Whelan, L. G., Udenfriend, S., and Bossier, J., 1981, Co-release of enkephalin and catecholamine from cultured adrenal chromaffin cells, Nature 289: 317–319.PubMedGoogle Scholar
  82. Lundborg, P., 1966, Uptake of metaraminol by the adrenal medullary granules, Acta Physiol. Scand. 67: 423–429.PubMedGoogle Scholar
  83. Margolis, R. U., and Margolis, R. K., 1973, Isolation of chondroitin sulfate and glycopeptides from chromaffin granules of adrenal medulla, Biochem. Pharmacol. 22: 2195–2197.PubMedGoogle Scholar
  84. Maron, R., Fishkes, H., Kanner, B. I., and Schuldiner, S., 1979, Solubilization and reconstitution of the catecholamine transporter from bovine chromaffin granules, Biochemistry 18: 4781–4785.PubMedGoogle Scholar
  85. Michaelson, D. M., and Angel, I., 1980, Determination of ApH in cholinergic synaptic vesicles: Its effect on storage and release of acetylcholine, Life Sci. 27: 39–44.PubMedGoogle Scholar
  86. Mitchell, P., 1961, Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism, Nature 191: 144–148.PubMedGoogle Scholar
  87. Mitchell, P., 1968, Chemiosmotic Coupling and Energy Transduction, Glynn Research, Bodmin, Cornwall.Google Scholar
  88. Morris, S. J., and Schovanka, I., 1977, Some physical properties of adrenal medulla chromaffin granules isolated by a new continuous iso-osmotic density gradient method, Biochim. Biophys. Acta 464: 53–64.Google Scholar
  89. Muller, T. W., and Kirshner, N., 1975, ATPase and phosphatidylinositol kinase activities of adrenal chromaffin vesicles, J. Neurochem. 24: 1155–1161.PubMedGoogle Scholar
  90. Nichols, J. W., and Deamer, D. W., 1976, Catecholamine uptake and concentration by liposomes maintaining pH gradients, Biochim. Biophys. Acta 455: 269–271.PubMedGoogle Scholar
  91. Niedermaier, W., and Burger, A., 1981, Two different ATP-dependent mechanisms for calcium uptake into chromaffin granules and mitochondria, Naunyn-Schmiedeberg’s Arch. Pharmacol. 316 (1): 69–80.PubMedGoogle Scholar
  92. Njus, D., and Radda, G. K., 1978, Bioenergetic processes in chromaffin granules: A new perspective on some old problems, Biochim. Biophys. Acta 219–244.Google Scholar
  93. Njus, D., and Radda, G. K., 1979, A potassium ion diffusion potential causes adrenaline uptake into chromaffin granule “ghosts,” Biochem. J. 180: 579–585.PubMedGoogle Scholar
  94. Njus, D., Sehr, P. A., Radda, G. K., Ritchie, G. M., and Seeling, R. J., 1978, Phosphorous-31 nuclear magnetic resonance studies of active proton translocation in chromaffin granules, Biochemistry 17: 4337–4343.PubMedGoogle Scholar
  95. Njus, D., Knoth, J., and Zallakian, M., 1981, Proton-linked transport in chromaffin granules, Curr. Top. Bioenerg. 13: 107–145.Google Scholar
  96. Njus, D., Knoth, J., Cook, C., and Kelly, P. M., 1983, Electron transfer across the chromaffin granule membrane, J. Biol. Chem. 258: 27–30.PubMedGoogle Scholar
  97. Parsons, S. M., and Koenigsberger, R., 1980, Specific stimulated uptake of acetylcholine by Torpedo electric organ synaptic vesicles, Proc. Natl. Acad. Sci. USA 77: 6234–6238.PubMedGoogle Scholar
  98. Pazoles, C. J., Creutz, C. E., Ramu, A. and Pollard, H. B., 1980, Permeant anion activation of Mg, ATPase activity in chromaffin granules, J. Biol. Chem. 255: 7863–7869.PubMedGoogle Scholar
  99. Perlman, R. L., and Sheard, B. E., 1982, Estimation of the cytoplasmic catecholamine concentration in pheochromocytoma cells, Biochim. Biophys. Acta 719: 334–340.PubMedGoogle Scholar
  100. Phillips, J. H., 1973, Phosphatidyl kinase, a component of the chromaffin granule membrane, Biochem. J. 136: 579–587.PubMedGoogle Scholar
  101. Phillips, J. H., 1974a, Transport of catecholamines by resealed chromaffin-granule “ghosts,” Biochem. J. 144: 311–318.PubMedGoogle Scholar
  102. Phillips, J. H., 1974b, Steady-state kinetics of catecholamine transport by chromaffin granule “ghosts,” Biochem. J. 144: 319–325.PubMedGoogle Scholar
  103. Phillips, J. H., 1977a, 5-Hydroxytryptamine transport by the bovine chromaffin granule membrane, Biochem. J. 170:673–679.Google Scholar
  104. Phillips, J. H., 1977b, Passive ion permeability of the chromaffin granule membrane, Biochem. J. 186: 289–297.Google Scholar
  105. Phillips, J. H., 1981, Transport of Cam ~ and Na across the chromaffin granule membrane, Biochem. J. 200: 99–107.PubMedGoogle Scholar
  106. Phillips, J. H., 1982, Dynamic aspects of chromaffin granule structure, Neuroscience 7: 1595–1609.PubMedGoogle Scholar
  107. Phillips, J. H., and Allison, Y. P., 1977, The distribution of calcium, magnesium, copper, and iron in the bovine adrenal medulla, Neuroscience 2: 147–152.PubMedGoogle Scholar
  108. Phillips, J. H., and Allison, Y. P., 1978, Proton translocation by the bovine chromaffin-granule membrane, Biochem. J. 170: 661–672.PubMedGoogle Scholar
  109. Pletscher, A., DaPrada, M., Steffen, H., Lutold, B., and Berneis, K. H., 1973, Mechanism of catecholamine accumulation in adrenal chromaffin granules, Brain Res. 62: 317–326.PubMedGoogle Scholar
  110. Pletscher, A., DaPrada, M., Berneis, K. H., Steffen, H., Lutold, B., and Weder, H. G., 1974, Molecular organization of amine storage organelles of blood platelets and adrenal medulla, Adv. Cytol. Pharmacol. 2: 257–264.Google Scholar
  111. Pollard, H. B., Miller, A., and Cox, G. C., 1973, Synaptic vesicles: Structure of chromaffin granule membranes, J. Supramol. Struct. 1: 295–306.PubMedGoogle Scholar
  112. Pollard, H. B., Zinder, O., Hoffman, P. G., and Nikodejevic, O., 1976, Regulation of the transmembrane potential of isolated chromaffin granules by ATP, ATP analogs, and external pH, J. Biol. Chem. 251: 4544–4550.PubMedGoogle Scholar
  113. Pollard, H. B., Shindo, H., Creutz, C. E., Pazoles, C. T., and Cohen, J. S., 1979, Internal pH and state of ATP in adrenergic chromaffin granules determined by 31P nuclear magnetic resonance spectroscopy, J. Biol. Chem. 254: 1170–1177.PubMedGoogle Scholar
  114. Price, H., Kinder, S., and Ledeen, R., 1975, Structure of gangliosides from bovine adrenal medulla, Biochemistry 14: 1512–1518.PubMedGoogle Scholar
  115. Ramu, A., Levine, M., and Pollard, H., 1983, Proc. Natl. Acad. Sci. USA 80: 2107–2111.PubMedGoogle Scholar
  116. Reed, P. W., and Lardy, H. A., 1972, A23187: A divalent cation ionophore, J. Biol. Chem. 247: 6970–6977.PubMedGoogle Scholar
  117. Ritchie, G. A., 1975, Ph.D. thesis, University of Oxford, Oxford, England.Google Scholar
  118. Roda, L. G., and Hogue-Angeletti, R. A., 1979, Peptides in the adrenal medulla chromaffin granule, FEBS Lett. 107: 393–397.PubMedGoogle Scholar
  119. Roisin, M. P., Scherman, D., and Henry, J.-P., 1980, Synthesis of ATP by an artificially imposed electrochemical proton gradient in chromaffin granule ghosts, FEBS Lett. 115: 143–146.PubMedGoogle Scholar
  120. Rosenberg, R. C., and Lovenberg, W., 1980, Dopamine-3-hydroxylase, Essays Neurochem. Neuropharmacol. 4: 163–209.PubMedGoogle Scholar
  121. Rottenberg, H., 1980, The measurement of membrane potential and ApH in cells, organelles, and vesicles, Meth. Enzymol. 5: 547–569.Google Scholar
  122. Rudnick, G., Fishkes, H., Nelson, P. J., and Schuldine, S., 1980, Evidence for two distinct serotonin transport systems in platelets, J. Biol. Chem. 255: 3638–3641.PubMedGoogle Scholar
  123. Russell, J. T., and Holz, R. W., 1981, Measurement of OpH and membrane potential in isolated neurosecretory vesicles from bovine neurohypophyses, J. Biol. Chem. 256: 5950–5953.PubMedGoogle Scholar
  124. Salama, G., Johnson, R. G., and Scarpa, A., 1979, Spectrophotometric measurements of transmembrane potential and pH gradients in chromaffin granules, J. Gen. Physiol. 75: 109–140.Google Scholar
  125. Scherman, D., and Henry, J.-P., 1979, Effet du potential trans-membranaire sur le transport de la noradrenaline par les granules chromaffines, C. R. Acad. Sci. (Paris) 289: 911–914.Google Scholar
  126. Scherman, D., and Henry, J.-P., 1980, Oxonol-V as a probe of chromaffin granule membrane potentials, Biochim. Biophys. Acta 599: 150–166.PubMedGoogle Scholar
  127. Scherman, D., and Henry, J.-P., 1981, pH-dependence of the ATP-driven uptake of noradrenaline by bovine chromaffin-granule ghosts, Eur. J. Biochem. 116:535–539.Google Scholar
  128. Schmidt, W., Winkler, H., and Plattner, H., 1982, Adrenal chromaffin granules: Evidence for an ultra-structural equivalent of the proton pumping ATPase, Eur. J. Cell Biol. 27: 96–104.PubMedGoogle Scholar
  129. Schuldiner, S., Fishkes, H., and Kanner, B. L., 1978, Role of a transmembrane pH gradient in epinephrine transport by chromaffin granule membrane vesicles, Proc. Natl. Acad. Sci. USA 75: 3713–3716.PubMedGoogle Scholar
  130. Sen, R., and Sharp, R. R., 1980, The soluble components of chromaffin granules, a carbon-13 NMR survey, Biochim. Biophys. Acta 630: 447–458.PubMedGoogle Scholar
  131. Serck-Hannsen, G., and Christiansen, E. N., 1973, Uptake of calcium in chromaffin granules of bovine adrenal medulla stimulated in vitro, Biochim. Biophys. Acta 307: 404–414.Google Scholar
  132. Silsand, T., and Flatmark, T., 1974, Purification of cytochrome b561, an integral heure protein of the adrenal chromaffin granule membrane, Biochim. Biophys. Acta 395: 257–266.Google Scholar
  133. Skotland, T., and Flatmark, T., 1979, On the amphiphilic and hydrophobic forms of dopamine-ß-monooxygenase in bovine adrenal medulla, J. Neurochem. 31:1861–1863.Google Scholar
  134. Skotland, T., and Ljones, T., 1979, Dopamine-3-hydroxylase: Structure, mechanism, and properties of the enzyme bound copper, Inorg. Perspect. Biol. Med. 2: 151–180.Google Scholar
  135. Slotkin, T. A., 1975a, Maturation of the adrenal medulla. III. Practical and theoretical considerations of the age-dependent alterations in kinetics of incorporation of catecholamines and non-catecholamines, Biochem. Pharmacol. 24: 89–97.PubMedGoogle Scholar
  136. Slotkin, T. A., 1975b, Structure-activity relationships for the reserpine-like actions of derivatives of 3carboline in vitro, Life Sci. 15: 439–454.Google Scholar
  137. Slotkin, T. A., and Kirshner, N., 1971, Uptake, storage, and distribution of amines in bovine adrenal medullary vesicles, Mol. Pharmacol. 7: 581–592.PubMedGoogle Scholar
  138. Smith, A. D., and Winkler, H., 1967, A simple method for the isolation of adrenal chromaffin granules on a large scale, Biochem. J. 103: 480–482.PubMedGoogle Scholar
  139. Spiro, M. J., and Ball, E. G., 1961, Studies on the respiratory enzymes of the adrenal gland, J. Biol. Chem. 236: 225–229.PubMedGoogle Scholar
  140. Stern, A. S., Lewis, R. V., Kimura, S., Rossier, J., Gerber, L. D., Brink, L., Stern, S., and Udenfriend, S., 1979, Isolation of the opioid heptopeptide Met-enkephalin (Arg6Phe7) from the bovine adrenal medullary granules and striatum, Proc. Natl. Acad. Sci. USA 76: 6680–6683.PubMedGoogle Scholar
  141. Stern, A. S., Jones, B. N., Shively, J. E., Stern, S., and Udenfriend, S., 1981, Two adrenal opioid polypeptides: Proposed intermediates in the processing of proenkephalin, Proc. Natl. Acad. Sci. USA 78: 1962–1966.PubMedGoogle Scholar
  142. Stitzel, R., 1977, The biological fate of reserpine, Pharmacol. Rev. 28: 179–205.Google Scholar
  143. Sutton, R., and Apps, D. K., 1981, Isolation of a DCCD binding protein from bovine chromaffin granule membranes, FEBS Leu. 130: 103–106.Google Scholar
  144. Taugner, G., 1971, The membrane of catecholamine storage vesicles of adrenal medulla. Catecholamine fluxes and ATPase activity, Naunyn-Schmiedeberg’s Arch. Pharmacol. 270: 392–406.PubMedGoogle Scholar
  145. Taugner, G., 1972, The membrane of catecholamine storage vesicles of adrenal medulla. Uptake and release of noradrenaline in relation to the pH and the concentration of steric configuration of the amine present in medium, Naunyn-Schmiedeberg’s Arch. Pharmacol. 274: 299–314.PubMedGoogle Scholar
  146. Terland, O., and Flatmark, T., 1973, NADH (NADPH) acceptor oxidoreductase activities of the bovine adrenal chromaffin granules, Biochim. Biophys. Acta 305: 206–218.PubMedGoogle Scholar
  147. Terland, O., and Flatmark, T., 1975, Ascorbate as a natural constituent of chromaffin granules from the bovine adrenal medulla, FEBS Lett. 59: 52–56.PubMedGoogle Scholar
  148. Terland, O., and Flatmark, T., 1980, Oxidoreductase activities of chromaffin granule ghosts isolated from the bovine adrenal medulla, Biochim. Biophys. Acta 597: 318–330.PubMedGoogle Scholar
  149. Terland, O., Silsand, T., and Flatmark, T., 1974, Cytochrome 6561 as the single heme protein of the bovine adrenal chromaffin granule membrane, Biochim. Biophys. Acta 359: 253–256.PubMedGoogle Scholar
  150. Terland, O., Flatmark, T., and Kryvi, H., 1979, Isolation and characterization of noradrenaline storage granules of bovine adrenal medulla, Biochim. Biophys. Acta 553: 460–468.PubMedGoogle Scholar
  151. Tirrell, J. G., and Westhead, E. W., 1978, Ascorbate uptake and metabolism by adrenal medullary granules, in: Catecholamines: Basic and Clinical Frontiers ( E. Usdine, I. H. Kopin, and J. Barchas, eds.), Pergamon Press, New York, pp. 181–186.Google Scholar
  152. Tirrell, J. G., and Westhead, E., 1979, The uptake of ascorbic acid and dehydroascorbic acid by chromaffin granules of the adrenal medulla, Neuroscience 4: 181–186.PubMedGoogle Scholar
  153. Toll, L., and Howard, B. D., 1980, Evidence that an ATPase and a protonmotive force function in the transport of acetylcholine into storage vesicles, J. Biol. Chem. 255: 1787–1789.PubMedGoogle Scholar
  154. Trifaro, J. M., and Dworkind, J., 1970, A new and simple method for the isolation of adrenal chromaffin granules by means of an isotonic density gradient, Anal. Biochem. 34: 403–412.PubMedGoogle Scholar
  155. Trifaro, J. M., and Poisner, A. M., 1967, The role of ATP and ATPase in the release of catecholamines from the adrenal medulla. II. ATP evoked fall in optical density of isolated chromaffin granules, Mol. Pharmacol. 3: 572–580.PubMedGoogle Scholar
  156. Viveros, O. H., Diliberto, E. J., Hazum, E., and Chang, K. J., 1979, Opiate like materials in the adrenal medulla: Evidence for storage and secretion with catecholamines, Mol. Pharmacol. 16: 1101–1108.PubMedGoogle Scholar
  157. Viveros, O. H., Diliberto, E. J., Hazum, E., and Chany, K. J., 1980, Enkephalin as possible adrenomedullary hormones: Storage, secretion, and regulation of synthesis, in: Advances in Biochemical Psychopharmacology, Vol. 22 ( E. Costa and M. Trabucchi, eds.), Raven Press, New York, pp. 191–204.Google Scholar
  158. Voyta, J. C., Slakey, L. L., and Westhead, E. W., 1978, Accessibility of lysolecithin in catecholamine secretory vesicles to acyl CoA: lysolecithin acyl transferase. Biochem. Biophys. Res. Commun. 80: 413–417.PubMedGoogle Scholar
  159. Wallace, E. G., Krantz, M. J., and Lovenberg, W., 1973, Dopamine-3-hydroxylase: A tetrameric glycoprotein, Proc. Natl. Acad. Sci. USA 70: 2253–2255.PubMedGoogle Scholar
  160. Weber, A., and Winkler, H., 1981, Specificity and mechanisms of nucleotide uptake by adrenal chromaffin granules, Neuroscience 6: 2269–2276.PubMedGoogle Scholar
  161. Weber, A., Westhead, E. W., and Winkler, H., 1983, Specificity and properties of the nucleotide carrier in chromaffin granules from bovine adrenal medulla, Biochem. J. 210: 789–794.PubMedGoogle Scholar
  162. Wilkins, J. A., and Salgonicoff, L., 1981, Participation of a transmembrane proton gradient in 5-hydrox-ytryptamine transport by platelet dense granules and dense-granule ghosts, Biochem. J. 198 (1): 113–123.PubMedGoogle Scholar
  163. Winkler, H., 1969, Isolierung and Charakterisierung von chromaffinen Noradrenalin-Granula aus SchweineNebennierenmark, Naunyn-Schmiedebergs Arch. Pharmakol. 263: 340–357.Google Scholar
  164. Winkler, H., 1976, The composition of adrenal chromaffin granules: An assessment of controversial results, Neuroscience 1: 65–80.PubMedGoogle Scholar
  165. Winkler, H., 1977, The biogenesis of adrenal chromaffin granules, Neuroscience 2: 657–683.PubMedGoogle Scholar
  166. Winkler, H., 1982, The proteins of catecholamine-storing organelles, Scand. J. Lmmunol. 15 (Suppl. 9): 75–96.Google Scholar
  167. Winkler, H., and Carmichael, S. W., 1982, The Secretory Granule (E. Poisner and J. Trifaro, eds.), Elsevier Biomedical Press, Amsterdam.Google Scholar
  168. Winkler, H., and Westhead, E., 1980, The molecular organization of adrenal chromaffin granules, Neuroscience 5: 1803–1823.PubMedGoogle Scholar
  169. Zaremba, S., and Hogue-Angelleti, R. A., 1981, Transmembrane nature of chromaffin granule dopamine0-monooxygenase, J. Biol. Chem. 256: 12310–12315.PubMedGoogle Scholar
  170. Zaremba, S., and Hogue-Angelleti, R. A., 1982, NADH: (acceptor) oxidoreductase from bovine adrenal medulla chromaffin granules, Arch. Biochem. Biophys. 219: 297–305.PubMedGoogle Scholar
  171. Zinder, O., Hoffman, P. G., Bonner, W. M., and Pollard, H. B., 1978, Comparison of chemical properties of purified plasma membranes and secretory vesicle membranes from the bovine adrenal medulla, Cell Tissue Res. 188: 153–170.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Sally E. Carty
    • 1
  • Robert G. Johnson
    • 1
  • Antonio Scarpa
    • 1
  1. 1.Department of Biochemistry and BiophysicsUniversity of Pennsylvania School of MedicinePhiladelphiaUSA

Personalised recommendations