The Gastric H,K-ATPase

  • L. D. Faller
  • A. Smolka
  • G. Sachs


The secretion of hydrochloric acid by the stomach is a particularly remarkable example of biological active transport. A luminal pH of 0.8 is generated. Since the average cytosolic pH is 7.7, the proton gradient across the gastric mucosa is more than a million-fold. Ion gradients found across other mammalian tissues are smaller by several orders of magnitude, raising the question of whether the gastric pump works by the same mechanism as the more extensively studied ATP-driven Na,K- and Ca-pumps.


ATPase Activity Parietal Cell Nucleotide Site Oxyntic Cell Microsomal Vesicle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Berglindh, T., DiBona, D. R., Ito, S., and Sachs, G., 1980, Probes of parietal cell function, Am. J. Physiol. 238: G165 — G176.PubMedGoogle Scholar
  2. Cantley, L. C., Jr., Cantley, L. G., and Josephson, L., 1978, A characterization of vanadate interactions with the (Na,K)-AT Pase, J. Biol. Chem. 253: 7361–7368.PubMedGoogle Scholar
  3. Chang, H., Saccomani, G., Rabon, E., Schackmann, R., and Sachs, B., 1977, Proton transport by gastric membrane vesicles, Biochim. Biophys. Acta 464: 313–327.PubMedCrossRefGoogle Scholar
  4. Faller, L., Jackson, R., Malinowska, D., Mukidjam, E., Rabon, E., Saccomani, G., Sachs, G., and Smolka, A., 1982, Mechanistic aspects of gastric (H+ + K+)-AT Pase, Ann. N.Y. Acad. Sci. 402: 146–163.PubMedCrossRefGoogle Scholar
  5. Faller, L., Sachs, G., and Elgavish, G., 1983, P-31 NMR studies of 0–18 disappearance from labeled inorganic phosphate catalyzed by gastric H,K-AT Pase, Fed. Proc. 42: 1936.Google Scholar
  6. Forte, T. M., Machen, T. E., and Forte, J. G., 1977, Ultrastructural changes in oxyntic cells associated with secretory function: A membrane-recycling hypothesis, Gastroenterology 73: 941–955.PubMedGoogle Scholar
  7. Forte, J. G., Poulter, J. L., Dykstra, R., Rivas, J., and Lee, H. C., 1981, Specific modification of gastric K+-stimulated AT Pase activity by thimerosal, Biochim. Biophys. Acta 644: 257–265.PubMedCrossRefGoogle Scholar
  8. Jackson, R. J., Mendlein, J., and Sachs, G., 1983, Interaction of fluorescein isothiocyanate with the(H+ + K+)-AT Pase, Biochim. Biophys. Acta 731: 9–15.PubMedCrossRefGoogle Scholar
  9. Koepsell, H., Huila, F. W., and Fritzsch, G., 1982, Different classes of nucleotide binding sites in the (Na’ + K+)-AT Pase studied by affinity labeling and nucleotide-dependent SH-group modifications, J. Biol. Chem. 257: 10733–10741.PubMedGoogle Scholar
  10. Malinowska, D. H., Cuppoletti, J., and Sachs, G., 1983, Cl-requirement of acid secretion in isolated gastric glands, Am. J. Physiol. 245: G573 — G581.PubMedGoogle Scholar
  11. Moczydlowski, E. G., and Fortes, P. A. G., 1981a, Characterization of 2’,3’-O-(2,4,6-trinitrocyclohexadienylidine) adenosine 5’-Triphosphate as a fluorescent probe of the ATP site of sodium and potassium transport adenosine triphosphatase, J. Biol. Chem. 256: 2346–2356.PubMedGoogle Scholar
  12. Moczydlowski, E. G., and Fortes, P. A. G., 1981b, Inhibition of sodium and potassium adenosine tri-phosphatase by 2’,3’-O-(2,4,6-trinitrohexadienylidine) adenine nucleotides, J. Biol. Chem. 256: 2357–2366.PubMedGoogle Scholar
  13. Norby, J. G., 1983, Ligand interactions with the substrate site of Na,K-AT Pase: Nucleotides, vanadate and phosphorylation, Curr. Top. Membr. Trans. 19: 281–314.CrossRefGoogle Scholar
  14. Okamoto, C., Wolosin, J. M., Forte, T. M., and Forte, J. G., 1983, Topographical fluorescence microscopy of oxyntic cell microfilaments, Biophys. J. 41: 87a.Google Scholar
  15. Peters, W. H. M., Fleuren-Jakobs, A. M. M., Schrijen, J. J., De Pont, J. J. H. H. M., and Bonting, S. L., 1982, Studies on (K+ + H+)-AT Pase V. Chemical composition and molecular weight of the catalytic subunit, Biochim. Biophys. Acta 690: 251–260.PubMedCrossRefGoogle Scholar
  16. Pick, U., 1982, The interaction of vanadate ions with the Ca-AT Pase from sarcoplasmic reticulum, J. Biol. Chem. 257: 6111–6119.PubMedGoogle Scholar
  17. Rabon, E. C., Cuppoletti, J., Malinowska, D., Smolka, A., Helander, H. F., Mendlein, J., and Sachs, G., 1983a, Proton secretion by the gastric parietal cell, J. Exp. Biol. 106: 119–133.PubMedGoogle Scholar
  18. Rabon, E. C., Gunther, R. D., and Soumarmon, A., 1983b, Extraction and solubilization of the hog gastric AT Pase, The Physiologist 26:A-109.Google Scholar
  19. Saccomani, G., Sachs, G., Cuppoletti, J., and Jung, C. Y., 1981, Target molecular weight of the gastric (H+ + K+)-AT Pase functional and structural molecular size, J. Biol. Chem. 256:7727–7729. SaccomaniGoogle Scholar
  20. Cole, L., and Mukidjam, E., 1983, Interaction of the photo-affinity label 8-azido ATP with the gastric (H+ + K+)-AT Pase, Fed. Proc. 42: 1936.Google Scholar
  21. Sachs, G., Koelz, H. R., Berglindh, T., Rabon, E., and Saccomani, G., 1982, Aspects of gastric proton-transport AT Pase, in: Membranes and Transport, Vol. 1 ( Anthony N. Martonosi, ed.), Plenum Publishing, New York, pp. 633–643.Google Scholar
  22. Sack, I.and Spenney, I. G., 1982, Aminopyrine accumulation by mammalian gastric glands: An analysis of the technique, Am. J. Physiol. 243:G313—G319.Google Scholar
  23. Sailor, G., Mukidjam, E., Faller, L., Saccomani, G., and Sachs, G., 1982, Nucleotide probes of gastric AT Pase, Biophys. J. 37: 375a.Google Scholar
  24. Schackmann, R., Schwartz, A., Saccomani, G., and Sachs, G., 1977, Cation transport by gastric H+: K+ AT Pase, J. Membr. Biol. 32: 361–381.PubMedCrossRefGoogle Scholar
  25. Schrijen, J. J., 1981, Structure and mechanism of gastric (K + H+)-AT Pase, Dissertation, University of Nijmegen, Nijmegen, The Netherlands.Google Scholar
  26. Schrijen, J. J., Van Groningen-Luyben, W. A. H. M., Nauta, H., De Pont, J. J. H. H. M., and Bonting, S. L., 1983, Studies on (K+ + K+)-AT Pase VI. Determination of the molecular size by radiation inactivation analysis, Biochim. Biophys. Acta 731: 329–337.PubMedCrossRefGoogle Scholar
  27. Skou, J. C., and Esmann, M., 1981, Eosin, a fluorescent probe of ATP-binding to the (Nat + K+)-AT Pase, Biochim. Biophys. Acta 647: 232–240.PubMedCrossRefGoogle Scholar
  28. Smith, R. L., Zinn, K., and Cantley, L. C., 1980, A study of the vanadate-trapped state of the (Na,K)- AT Pase: Evidence against interacting nucleotide site models, J. Biol. Chem. 255: 9852–9859.PubMedGoogle Scholar
  29. Smolka, A., 1982, A study of the proton translocating adenosine triphosphatase of the gastric mucosa using monoclonal antibodies, Dissertation, The University of Alabama in Birmingham, Birmingham, Alabama. Smolka, A., Helander, H. F., and Sachs, G.Am. J. Physiol 245:G589—G596.Google Scholar
  30. Van De Ven, F. J. M., Schrijen, J. J., De Pont, J. J. H. H. M., and Bonting, S. L., 1981, Studies on (K + H+)-AT Pase III. Binding of adenylyl imidodiphosphate, Biochim. Biophys. Acta 640: 487–499.PubMedCrossRefGoogle Scholar
  31. Walderhaug, M. O., Saccomani, G., Wilson, T. H., Briskin, D., Leonard, R. T., Sachs, G., and Post, R. L., 1983, Aspartyl residue may be phosphorylated in a variety of membrane-bound adenosine triphosphatases, Fed. Proc. 42: 1275A.Google Scholar
  32. Wallmark, B., Stewart, H. B., Rabon, E., Saccomani, G., and Sachs, G., 1980, The catalytic cycle of gastric (H+ + K+)-AT Pase, J. Biol. Chem. 255: 5313–5319.PubMedGoogle Scholar
  33. Wolosin, J. M., and Forte, J. G., 1981a, Changes in the membrane environment of the (K+ + H+)-AT Pase following stimulation of the gastric oxyntic cell, J. Biol. Chem. 256: 3149–3152.PubMedGoogle Scholar
  34. Wolosin, J. M., and Forte, J. G., 1981b, Functional differences between K+-AT Pase rich membranes isolated from resting or stimulated rabbit fundic mucosa, FEBS Leu. 125: 208–212.CrossRefGoogle Scholar
  35. Wolosin, J. M., and Forte, J. G., 1981c, Isolation of the secreting oxyntic cell apical membrane-identification of an electroneutral KCI symport, in: Membrane Biophysics: Structure and Function in Epithelia ( M. A. Dinno and A. B. Callahan, eds.), Alan R. Liss, New York, pp. 189–204.Google Scholar
  36. Wolosin, J. M., and Forte, J. G., 1983, Kinetic properties of the KCI transport at the secreting apical membrane of the oxyntic cell, J. Membr. Biol. 71: 195–207.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • L. D. Faller
    • 1
    • 2
  • A. Smolka
    • 1
    • 2
  • G. Sachs
    • 1
    • 2
  1. 1.Center for Ulcer Research and EducationWadsworth Veterans Administration CenterLos AngelesUSA
  2. 2.School of MedicineUniversity of California at Los AngelesLos AngelesUSA

Personalised recommendations