Advertisement

Dye Probes of Cell, Organelle, and Vesicle Membrane Potentials

  • Alan S. Waggoner

Abstract

The membrane potential is an important property of almost all cells and organelles. Three methods are commonly used to determine membrane potentials. Microelectrodes are used if the cells are large enough. The distribution of radioactive permeant ions between the medium and the cells can yield an estimate of membrane potential. Measurements of the fluorescence or light absorption of certain dye molecules associated with cells, organelles, or vesicles will often provide this information. This brief review covers what is known about the mechanisms of potential-sensitive dyes, their advantages and disadvantages, and examples of how they have been used in the past three years. Reviews of the earlier literature are available (Cohen and Hoffman, 1982; Freedman and Laris, 1981; Waggoner, 1979).

Keywords

Membrane Potential Membrane Potential Change Chromaffin Granule Sarcoplasmic Reticulum Vesicle Measure Membrane Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Åkerman, K. E. O., and Järvisalo, J. O., 1980, Effects of ionophores and metabolic inhibitors on the mitochondrial membrane potential within isolated hepatocytes as measured with the safranine method, Biochem. J. 192:183–190.PubMedGoogle Scholar
  2. Armitage, J. P., and Evans, M. C. W., 1981, Comparison of the carotenoid bandshift and oxanol dyes to measure membrane potential changes during chemotactic stimulation of Rhodopseudomonas sphaeroides and Escherichia coli, FEBS Lett. 126(1):98–102.PubMedGoogle Scholar
  3. Baba, A., and Cooper, J. R., 1979, The action of black widow spider venom on cholinergic mechanisms in synaptosomes, J. Neurochem. 34(6): 1369–1379.Google Scholar
  4. Bartschat, D. K., Cyr, D. L., and Lindenmayer, G. E., 1980, Depolarization-induced calcium uptake vesicles in a highly enriched sarcolemma preparation from canine ventricle, Biol. Abst. 71(7):4564.Google Scholar
  5. Bashford, C. L., Chance, B., Smith, J. C., and Yoshida, T., 1979, The behavior of oxonol dyes in phospholipid dispersions, Biophys. J. 25:63–85.PubMedGoogle Scholar
  6. Bayer, M. E., and Bayer, M. H., 1981, Fast responses of bacterial membranes to virus adsorption; a fluorescence study, Proc. Natl. Acad. Sci. USA 78:5618–5622.PubMedGoogle Scholar
  7. Baylor, S. M., Chandler, W. K., and Marshall, M. W., 1981, Studies in skeletal muscle using optical probes of membrane potential, in: The Regulation of Muscle Contraction: Excitation-Contraction Coupling (A. Grinnel, ed.), Academic Press, New York, pp. 97–127.Google Scholar
  8. Beeler, T. J., 1980, Ca2+ uptake and membrane potential in sarcoplasmic reticulum vesicles, J. Biol. Chem. 255(19):9156–9161.PubMedGoogle Scholar
  9. Beeler, T. J., Barmen, R. H., and Martonosi, A. N., 1981, The mechanism of voltage-sensitive dye responses on sarcoplasmic reticulum, J. Membr. Biol. 62:113–137.PubMedGoogle Scholar
  10. Bennett, A. B., and Spanswick, R. M., 1983, Optical measurements of ΔpH and ΔΨ in corn root membrane vesicles: Kinetic analysis of Cl effects on a proton-translocating ATPase, J. Membr. Biol. 71:95–107.Google Scholar
  11. Bennett, N., Michel-Villaz, M., and Dupont, Y., 1980, Cyanine dye measurement of light-induced transient membrane potential associated with metarhodopsin II intermediate in rod-outer-segment membranes, Eur. J. Biochem. 111:105–110.PubMedGoogle Scholar
  12. Bernal, S. D., Shapiro, H. M., and Chen, I. B., 1982a, Monitoring the effect of anti-cancer drugs on L1210 cells by a mitochondrial probe, rhodamine-123, Int. J. Cancer 30:219–224.PubMedGoogle Scholar
  13. Bernal, S. D., Lampidis, J., Summerhayes, C., and Chen, I. B., 1982b, Rhodamine-123 selectively reduces clonal growth of carcinoma cells in vitro, Science 218:1117–1118.PubMedGoogle Scholar
  14. Cohen, H. J., Newburger, P. E., Chovaniec, M. E., Whitin, J. C., and Simons, E. K., 1981, Opsonized zymosan-stimulated granulocytes—activation and activity of the superoxide-generating system and membrane potential changes, Blood 58(5):975.PubMedGoogle Scholar
  15. Cohen, L. B., and Hoffman, J. F., 1982, Optical measurements of membrane potential, in: Techniques in Cellular Physiology, Vol. 118, Amsterdam Elsevier/North Holland, pp. 1–13.Google Scholar
  16. Cohen, R. L., Muirhead, K. A., Gill, J. E., Waggoner, A. S., and Horan, P. K., 1981, A cyanine dye distinguishes between cycling and non-cycling fibroblasts, Nature 290:593–595.PubMedGoogle Scholar
  17. Collins, J. M., and Foster, K. A., 1983, Differentiation of promyelocytic (HL-60) cells into mature granulocytes: Mitochondrial-specific rhodamine 123 fluorescence, J. Cell Biol. 96:94–99.PubMedGoogle Scholar
  18. Conover, T. E., and Schneider, R. F., 1981, Interaction of certain cationic dyes with the respiratory chain of rat liver mitochondria, J. Biol. Chem. 256(1):402–408.PubMedGoogle Scholar
  19. Darzynkiewicz, Z., Staiano-Coico, L., and Melamed, M. R., 1981, Increased mitochondrial uptake of rhodamine 123 during lymphocyte stimulation, Proc. Natl. Acad. Sci. USA 78(4):2383–2387.PubMedGoogle Scholar
  20. Darzynkiewicz, Z., Tranganos, F., Staiano-Coico, L., Kapuscinski, J., and Melamed, M. R., 1982, Interactions of rhodamine 123 with living cells studied by flow cytometry, Cancer Res. 42:799–806.PubMedGoogle Scholar
  21. Dillon, S., and Morad, M., 1981, A new laser scanning system for measuring action potential propagation in the heart, Science 214:453–456.PubMedGoogle Scholar
  22. Dragsten, P. R., and Webb, W. W., 1978, Mechanism of the membrane potential sensitivity of the fluorescent membrane probe merocyanine 540, Biochemistry 17:5228–5240.PubMedGoogle Scholar
  23. Freedman, J. C., and Hoffman, J. F., 1979, The relation between dicarbocyanine dye fluorescence and the membrane potential of human red blood cells set at varying Donnan equilibria, J. Gen. Physiol. 74:187–212.PubMedGoogle Scholar
  24. Freedman, J. C., and Laris, P. C., 1981, Electrophysiology of cells and organelles: Studies with optical Potentiometric indicators, Int. Rev. Cytol. Suppl. 12:177–246.PubMedGoogle Scholar
  25. Freedman, J. C., and Novak, T. S., 1983, Membrane potentials associated with Ca-induced K conductance in human red blood cells: Studies with a fluorescent oxonol dye, WW781, J. Membr. Biol. 72:59–74.PubMedGoogle Scholar
  26. Friedman, J. E., Lelkes, P. I., Rosenheck, K., and Oplatka, A., 1980, The possible implication of membrane-associated actin in stimulus-secretion coupling in adrenal chromaffin cells, Biochem. Biophys. Res. Commun. 96(4): 1717–1723.PubMedGoogle Scholar
  27. Fujii, S., Hirota, A., and Kamino, K., 1980, Optical signals from early embryonic chick heart stained with potential sensitive dyes: Evidence for electrical activity, J. Physiol. 304:503–518.PubMedGoogle Scholar
  28. Fujii, S., Hirota, A., and Kamino, K., 1981a, Optical recording of development of electrical activity in embryonic chick heart during early phases of cardiogenesis, J. Physiol. 311:147–160.PubMedGoogle Scholar
  29. Fujii, S., Hirota, A., and Kamino, K., 1981b, Optical indications of pace-maker potential and rhythm generation in early embryonic chick heart, J. Physiol. 312:253–263.PubMedGoogle Scholar
  30. Goldstein, S., and Korczack, L. B., 1981, Status of mitochondria in living human fibroblasts during growth and senescence in vitro: Use of the laser dye rhodamine 123, J. Cell Biol. 91:392–398.PubMedGoogle Scholar
  31. Graves, C., and Sachs, G., 1982, Quantitation of corneal endothelial potentials using a carbocyanine dye, Biochim. Biophys. Acta 685:27–31.PubMedGoogle Scholar
  32. Grinvald, A., and Färber, I. C., 1981, Optical recording of calcium action potentials from growth cones of cultured neurons with a laser microbeam, Science 212:1164–1167.PubMedGoogle Scholar
  33. Grinvald, A., Cohen, L. B., Lesher, S., and Boyle, M. B., 1981a, Simultaneous optical monitoring of activity of many neurons in invertebrate ganglia using a 124-element photodiode array, J. Neurophysiol. 45:829–840.PubMedGoogle Scholar
  34. Grinvald, A., Ross, W. N., and Färber, I., 1981b, Simultaneous optical measurements of electrical activity from multiple sites on processes of cultured neurons, Proc. Natl. Acad. Sci. USA 78(5):3245–3249.PubMedGoogle Scholar
  35. Grinvald, A., Hildesheim, R., Färber, I. C., and Anglister, L., 1982a, Improved fluorescent probes for the measurement of rapid changes in membrane potential, Biophys. J., 39:301–308.PubMedGoogle Scholar
  36. Grinvald, A., Manker, A., and Segal, M., 1982b, Visualization of the spread of electrical activity in rat hippocampal slices by voltage-sensitive optical probes, J. Physiol. 333:269–291.PubMedGoogle Scholar
  37. Grinvald, A., Fine, A., Farber, I. C., and Hildesheim, R., 1983, Fluorescence monitoring of electrical responses from small neurons and their processes, Biophys. J. 42:195–198.PubMedGoogle Scholar
  38. Guillet, E. G., and Kimmich, G. A., 1981, DiO-C3-(5) and DiS-C3-(5): Interactions with RBC, ghosts and phospholipid vesicles, J. Membr. Biol. 59:1–11.PubMedGoogle Scholar
  39. Gupta, R. K., Salzberg, B. M., Grinvald, A., Cohen, L. B., Kamino, K., Lesher, S., Boyle, M. B., Waggoner, A. S., and Wang, C. H., 1981, Improvements in optical methods for measuring rapid changes in membrane potential, J. Membr. Biol. 58:1–15.Google Scholar
  40. Hacking, C., and Eddy, A. A., 1981, The accumulation of amino acids by mouse ascites-tumour cells, Biochem. J. 194:415–426.PubMedGoogle Scholar
  41. Haeyaert, P., Verdonck, F., and Wuytack, F., 1980, Fluorescence changes of the potential-sensitive merocyanine 540 during Ca transport in sarcoplasmic reticulum, Arch. Int. Pharmacodyn. Ther. 244(2):333.PubMedGoogle Scholar
  42. Heiny, J. A., and Vergara, J., 1982, Optical signals from surface and T system membranes in skeletal muscle fibers, J. Gen. Physiol. 80:203–230.PubMedGoogle Scholar
  43. Hill, B. C., and Courtney, K. R., 1982, Voltage-sensitive dyes, Biophys. J. 40:255–257.PubMedGoogle Scholar
  44. Horne, W. C., and Simons, E. R., 1978, Probes of transmembrane potentials in platelets: Changes in cyanine dye fluorescence in response to aggregation stimuli, Blood 51(4):741–749.PubMedGoogle Scholar
  45. Horne, W. C., Norman, N. E., Schwartz, D. B., and Simons, E. R., 1981, Changes in cytoplasmic pH and in membrane potential in thrombin-stimulated human platelets, Eur. J. Biochem. 120:295–302.PubMedGoogle Scholar
  46. Howard, P. H., Jr., and Wilson, S. B., 1979, Effects of the cyanine dye 3,3′-dipropylthiocarbocyanine on mitochondrial energy conservation, Biochem. J. 180:669–672.PubMedGoogle Scholar
  47. James, T. W., and Bohman, R., 1981, Proliferation of mitochondria during the cell cycle of the human cell line (HL-60), J. Cell Biol. 89:256–260.PubMedGoogle Scholar
  48. Johnson, L. V., Walsh, M. L., and Chen, L. B., 1980, Localization of mitochondria in living cells with rhodamine 123, Proc. Natl. Acad. Sci. USA 77(2):990–994.PubMedGoogle Scholar
  49. Johnson, L. V., Walsh, M. L., Bockus, B. J., and Chen, L. B., 1981, Monitoring of relative mitochondrial membrane potential in living cells by fluorescence microscopy, J. Cell Biol. 88:526–535.PubMedGoogle Scholar
  50. Johnson, L. V., Summerhayes, I. C., and Chen, L. B., 1982, Decreased uptake and retention of rhodamine 123 by mitochondria in feline sercoma virus-transformed mink cells, Cell 28:7–14.PubMedGoogle Scholar
  51. Johnstone, R. M., Laris, P. C., and Eddy, A. A., 1982, The use of fluorescent dyes to measure membrane potentials: A critique, J. Cellular Physiol. 112:298–301.Google Scholar
  52. Juretić, D., and Kotnik-Karuza, D., 1981, The fluorescent probe for the membrane potential of red blood cells, Period. Biol. 83(1):156–158.Google Scholar
  53. Kamino, K., Hirota, A., and Fujii, S., 1981, Localization of pace-making activity in early embryonic heart monitored using voltage-sensitive dye, Nature 290:595–597.PubMedGoogle Scholar
  54. Kiehl, R., and Hanstein, W. G., 1981, Oxonol response and energy transduction in an ATP-Pi exchange complex, in: Vectorial Reactions in Electron and Ion Transport in Mitochondria and Bacteria (F. Palmieri, E. Quagliariello, N. Siliprandi, and E. C. Slater, eds.), Elsevier/North-Holland Biomedical Press, Amsterdam, pp. 217–222.Google Scholar
  55. Kinnally, K. W., and Tedeschi, H., 1978, Metabolic effects of some electrofluorimetric dyes, Biochim. Biophys. Acta 503:380–388.PubMedGoogle Scholar
  56. Kondo, K., Shimizu, T., and Hayaishi, O., 1981, Effects of Prostaglandin D2 on membrane potential in neuroblastoma X glioma hybrid cells as determined with a cyanine dye, Biochem. Biophys. Res. Commun. 98(3):648–655.PubMedGoogle Scholar
  57. Korchak, H. M., Rich, A. M., Wilkenfeld, C., Rutherford, L. E., and Weissmann, G., 1982, A carbocyanine dye, diOC6(3), acts as a mitochondrial probe in human neutrophils, Biochem. Biophys. Res. Commun. 108(4): 1495–1501.PubMedGoogle Scholar
  58. Kováč, L., and Poliachová, V., 1981, Membrane potential monitoring cyanine dyes uncouple respiration and induce respiration-deficient mutants in intact yeast cells, Biochem. Int. 2(5):503–507.Google Scholar
  59. Kováč, L., and Varečka, L., 1981, Membrane potentials in respiring and respiration-deficient yeasts monitored by a fluorescent dye, Biochim. Biophys. Acta 637:209–216.PubMedGoogle Scholar
  60. Krasne, S., 1980a, Interactions of voltage-sensing dyes with membranes. I. Steady-state permeability behaviors induced by cyanine dyes, Biophys. J. 30:415–440.PubMedGoogle Scholar
  61. Krasne, S., 1980b, Interactions of voltage-sensing dyes with membranes. II. Spectrophotometric and electric correlates of cyanine-dye adsorption to membranes, Biophys. J. 30:441–462.PubMedGoogle Scholar
  62. Labedan, B., and Letellier, L., 1981, Membrane potential changes during the first steps of coliphage infection, Proc. Natl. Acad. Sci. USA 78:215–219.PubMedGoogle Scholar
  63. Lampidis, T. J., Bemal, S. D., Summerhayes, I. C., and Chen, L. B., 1982, Rhodamine-123 is selectively toxic and preferentially retained in carcinoma cells in vitro, Ann. N.Y. Acad. Sci. 397:299–302.Google Scholar
  64. Larsen, N. E., and Simons, E. R., 1981, Preparation and application of a photoreactive thrombin analogue: Binding to human platelets, Biochemistry 20:4141–4147.PubMedGoogle Scholar
  65. Laszlo, D. J., and Taylor, B. L., 1981, Aerotaxis in Salmonella typhimurium: Role of electron transport, J. Bacteriol. 145(2):990–1001.PubMedGoogle Scholar
  66. Lavie, E., and Sonenberg, M., 1980, Spectroscopic evidence for interactions of merocyanine 540 with valinomycin in the presence of potassium, FEBS Lett. 111(2):281–284.PubMedGoogle Scholar
  67. Lelkes, P. I., Naquira, D., Friedman, J. E., Rosenheck, K., and Schneider, A. S., 1982, Plasma membrane vesicles from bovine adrenal chromaffin cells: Characterization and fusion with chromaffin granules, Adv. Biosci. 36:143–150.Google Scholar
  68. Letellier, L., and Shechter, E., 1979, Cyanine dye as monitor of membrane potentials in Escherichia coli cells and membrane vesicles, J. Biochem. 102:441–447.Google Scholar
  69. Loew, L. M., 1982, Design and characterization of electrochromic membrane probes. J. Biochem. Biophys. Meth. 6:243–260.PubMedGoogle Scholar
  70. Loew, L. M., and Simpson, L. L., 1981, Charge shift probes of membrane potential. A probable electrochromic mechanism for ASP probes on a hemispherical lipid bilayer, Biophys. J. 34:353–365.PubMedGoogle Scholar
  71. Meissner, G., 1981, Calcium transport and monovalent cation and proton fluxes in sarcoplasmic reticulum vesicles, J. Biol. Chem. 256(2):636–643.PubMedGoogle Scholar
  72. Meissner, G., and Allen, R., 1981, Evidence for two types of rat liver microsomes with differing permeability to glucose and other small molecules, J. Biol. Chem. 256(12):6413–6422.PubMedGoogle Scholar
  73. Meissner, G., and Young, R. C., 1980, Proton permeability of sarcoplasmic reticulum vesicles, J. Biol. Chem. 255(14):6814–6819.PubMedGoogle Scholar
  74. Milligan, G., and Strange, P. G., 1982, The use of biochemical methods for estimating membrane potential, Prog. Brain Res. 55:321–329.PubMedGoogle Scholar
  75. Morita, T., Mori, M., Ikeda, F., and Tatibana, M., 1982, Transport of carbamyl phosphate synthetase I and Ornithine transcarbamylase into mitochondria, J. Biol. Chem. 257(18): 10547–10550.PubMedGoogle Scholar
  76. Nakajima, S., and Gilai, A., 1980a, Action potentials of isolated single muscle fibers recorded by potential-sensitive dyes, J. Gen. Physiol. 76:729–750.PubMedGoogle Scholar
  77. Nakajima, S., and Gilai, A., 1980b, Radial propagation of muscle action potential along the tubular system examined by potential-sensitive dyes, J. Gen. Physiol. 76:751–762.PubMedGoogle Scholar
  78. Nordmann, J. J., Desmazes, J. P., and Georgescauld, D., 1982, The relationship between the membrane potential of neurosecretory nerve endings, as measured by a voltage-sensitive dye, and the release of neurohypophysial hormones, Neuroscience 7(3):731–737.PubMedGoogle Scholar
  79. Oetliker, H., 1981, Does indodicarbocyanine fluorescence reflect membrane potential of the sarcoplasmic reticulum in skeletal muscle?, Adv. Physiol. Sci. 5:345–361.Google Scholar
  80. Okimasu, E., Akiyama, J., Shiraishi, N., and Utsumi, K., 1979, The mechanism of inhibition on the endogenous respiration of Erlich ascites tumor cells by the cyanine dye disS-C3-(5), Physiol. Chem. Phys. 11:425–433.PubMedGoogle Scholar
  81. Orbach, H. S., and Cohen, L. B., 1984, Optical monitoring of activity from many areas of the in vitro and in vivo salamander olfactory bulb: A new method for studying functional organization in the vertebrate CNS, J. Neurosci., in press.Google Scholar
  82. Pape, L., 1982, Effect of extracellular Ca2+, K +, and OH on erythrocyte membrane potential as monitored by the fluorescent probe 3-3′-dipropylthiodicarbocyanine, Biochim. Biophys. Acta 686:225–232.PubMedGoogle Scholar
  83. Peña, A., Mora, M. A., and Carrasco, N., 1979, Uptake and effects of several cationic dyes on yeast, J. Membr. Biol. 47:261–284.Google Scholar
  84. Peña, A., Clemente, S. M., Borbolla, M., Carrasco, N., and Uribe, S., 1980, Multiple interactions of ethidium bromide with yeast cells, Arch. Biochem. Biophys. 201(2):420–428.PubMedGoogle Scholar
  85. Philo, R. D., and Eddy, A. A., 1978a, The membrane potential of mouse ascites-tumour cells studied with the fluorescent probe 3,3′-dipropyloxadicarbocyanine, Biochem. J. 174:801–810.PubMedGoogle Scholar
  86. Philo, R. D., and Eddy, A. A., 1978b, Equilibrium and steady-state models of the coupling between the amino acid gradient and the sodium electrochemical gradient in mouse ascites-tumour cells, Biochem. J. 174:811–817.PubMedGoogle Scholar
  87. Rink, T. J., and Hladky, S. B., 1982, Measurement of red cell membrane potential with fluorescent dyes, in: Red Cell Membranes—A Methodological Approach (J. C. Ellory and J. D. Young, eds.), Academic Press, New York, pp. 321–334.Google Scholar
  88. Ross, W. N., Salzberg, B. M., Cohen, L. B., Grinvald, A., Davila, H. V., Waggoner, A. S., and Wang, C. H., 1977, Changes in absorption, fluorescence, dichroism, and birefringence in stained giant axons: Optical measurement of membrane potential, J. Membr. Biol. 33:141–183.PubMedGoogle Scholar
  89. Salama, G., Johnson, R. G., and Scarpa, A., 1980, Spectrophotometric measurements of transmembrane potential and pH gradients in chromaffin granules, J. Gen. Physiol. 75:109–140.PubMedGoogle Scholar
  90. Scherman, D., and Henry, J. P., 1980, Oxonol-V as a probe of chromaffin granule membrane potentials, Biochim. Biophys. Acta 599:150–166.PubMedGoogle Scholar
  91. Schiefer, H.-G., and Schummer, U., 1982, The electrochemical potential across mycoplasmal membranes, Rev. Infect. Dis. 4:565.Google Scholar
  92. Seligmann, B., and Gallin, J. I., 1980, Secretagogue modulation of the response of human neutrophils to chemoattractants: Studies with a membrane potential sensitive cyanine dye, Mol. Immun. 17:191–200.Google Scholar
  93. Seligmann, B., and Gallin, J. I., 1983, Comparison of indirect probes of membrane potential utilized in studies of human neutrophils, J. Cell. Physiol. 115:105–115.PubMedGoogle Scholar
  94. Seligmann, B. E., Gallin, E. K., Martin, D. L., Shain, W., and Gallin, J. I., 1980, Interaction of chemotactic factors with human polymorphonuclear leukocytes: Studies using a membrane potential-sensitive cyanine dye, J. Membr. Biol. 52:257–272.PubMedGoogle Scholar
  95. Senseman, D. M., and Salzberg, B. M., 1980, Electrical activity in an exocrine gland: Optical recording with a Potentiometric dye, Science 208:1269–1271.PubMedGoogle Scholar
  96. Senseman, D. M., Shimizu, H., Horwitz, I. S., and Salzberg, B. M., 1984, Multiple site optical recording of membrane potential from a salivary gland: Interaction of synaptic and electronic excitation, J. Gen. Physiol., in press.Google Scholar
  97. Sepersky, S. M. G., and Simons, E. R., 1981, Effect of metabolic inhibitors of thrombin-induced membrane potential changes in washed human platelets, Thromb. Res. 24:299–306.PubMedGoogle Scholar
  98. Shapiro, H. M., Natale, P. J., and Kamentsky, L. A., 1979, Estimation of membrane potentials of individual lymphocytes by flow cytometry, Proc. Natl. Acad. Sci. USA 76:(11):5728–5730.PubMedGoogle Scholar
  99. Simchowitz, L., Spilberg, I., and DeWeer, P., 1982, Sodium and potassium fluxes and membrane potential of human neutrophils, J. Gen. Physiol. 79:453–479.PubMedGoogle Scholar
  100. Sims, P. J., Waggoner, A. S., Wang, C., and Hoffman, J. F., 1974, Studies on the mechanism by which cyanine dyes measure membrane potential in red blood cells and phosphatidyl choline vesicles, Biochemistry 23:3315–3330.Google Scholar
  101. Sklar, L. A., Jesaitis, A. J., Painter, R. G., and Cochrane, C. G., 1981, The kinetics of neutrophil activation, J. Biol. Chem. 256(19):9909–9914.PubMedGoogle Scholar
  102. Smith, J. C., Frank, S. J., Bashford, C. L., Chance, B., and Rudkin, B., 1980, Kinetics of the association of potential-sensitive dyes with model and energy-transducing membranes: Implications for fast probe response times, J. Membr. Biol. 54:127–139.PubMedGoogle Scholar
  103. Smith, J. C., Hallidy, L., and Topp, M. R., 1981, The behavior of the fluorescence lifetime and polarization of oxonol potential-sensitive extrinsic probes in solution and in beef heart submitochondrial particles, J. Membr. Biol. 60:173–185.PubMedGoogle Scholar
  104. Smith, T. C., 1982, The use of fluorescent dyes to measure membrane potentials: A response, J. Cell. Physiol. 112:302–305.PubMedGoogle Scholar
  105. Steensma, H. Y., 1981, Effect of defective phages on the cell membrane of Bacillus subtilis and partial characterization of a phage protein involved in killing, J. Gen. Virol. 56:275–286.PubMedGoogle Scholar
  106. Sugiyama, K., and Utsumi, K., 1979, Changes in membrane potential on histamine release from mast cells: Measurement with a fluorescent dye, Cell Struct. Funct. 4:257–260.Google Scholar
  107. Summerhayes, I. C., Lampidis, T. J., Bernal, S. D., Nadakavukaren, J. J., Nadakavukaren, K. K., Shepherd, E. L., and Chen, L. B., 1982, Unusual retention of rhodamine 123 by mitochondria in muscle and carcinoma cells, Proc. Natl. Acad. Sci. USA 79:5292–5296.PubMedGoogle Scholar
  108. Tatham, P. E. R., Delves, P. J., Shen, L., and Roitt, I. M., 1980, Chemotactic factor-induced membrane potential changes in rabbit neutrophils monitored by the fluorescent dye 3,3′-dipropylthiadicarbocyanine iodide, Biochim. Biophys. Acta 602:285–298.PubMedGoogle Scholar
  109. Terada, H., Nagamune, H., Osaki, Y., and Yoshikawa, K., 1981, Specific requirement for inorganic phosphate for induction of bilayer membrane conductance by the cationic uncoupler carbocyanine dye, Biochim. Biophys. Acta 646:488–490.PubMedGoogle Scholar
  110. Vacata, V., Kotyk, A., and Sigler, K., 1980, Membrane potential in yeast cells measured by direct and indirect methods, Biochim. Biophys. Acta 643:265–268.Google Scholar
  111. Van den Broek, P. J. A., Christianse, K., and Van Steveninck, J., 1982, The energetics of d-fucose transport in Saccharomyces fragilis. The influence of the protonmotive force on sugar accumulation, Biochim. Biophys. Acta 692:231–237.PubMedGoogle Scholar
  112. Waggoner, A. S., 1979, Dye indicators of membrane potential, Annu. Rev. Biophys. Bioeng. 8:47–68.PubMedGoogle Scholar
  113. Waggoner, A. S., 1982, Optical probes of the potential difference across membranes, in: Membranes and Transport, Vol. 1 (A. N. Martonosi, ed.), Plenum Publishing, New York, pp. 195–201.Google Scholar
  114. Waggoner, A. S., Wang, C. H., and Tolles, R. L., 1977, Mechanism of potential-dependent light absorption changes of lipid bilayers in the presence of cyanine and oxonol dyes, J. Membr. Biol., 33:109–140.PubMedGoogle Scholar
  115. Whitin, J. C., Clark, R. A., Simons, E. R., and Cohen, H. J., 1981, Effects of the myeloperoxidase system on fluorescent probes of granulocyte membrane potential, J. Biol. Chem., 256:8904–8906.PubMedGoogle Scholar
  116. Whitin, J. C., Gordon, R. K., Corwin, L. M., and Simons, E. R., 1982, The effect of vitamin E deficiency on some platelet membrane properties, J. Lipid Res. 23:276–282.PubMedGoogle Scholar
  117. Wolniak, S. M., Hepler, P. K., and Jackson, W. T., 1983, Ionic changes in the mitotic apparatus at the metaphase/anaphase transition, J. Cell Biol. 96:598–605.PubMedGoogle Scholar
  118. Wright, S. H., Krasne, S., Kippen, I., and Wright, E. M., 1981, Na+-dependent transport of tricarboxylic acid cycle intermediates by renal brush border membranes. Effects on fluorescence of a potential-sensitive cyanine dye, Biochim. Biophys. Acta 640:767–778.PubMedGoogle Scholar
  119. Yamamoto, N., and Kasai, M., 1980, Donnan potential in sarcoplasmic reticulum vesicles measured by using a fluorescent cyanine dye, J. Biochem. 88:1425–1435.PubMedGoogle Scholar
  120. Young, R. C., Allen, R., and Meissner, G., 1981, Permeability of reconstituted sarcoplasmic reticulum vesicles; Reconstitution of the K+, Na+ channel, Biochim. Biophys. Acta 640:409–418.PubMedGoogle Scholar
  121. Zaritsky, A., Kihara, M., and Macnab, R. M., 1981, Measurement of membrane potential in Bacillus subtilis: A comparison of lipophilic cations, rubidium ion, and a cyanine dye as probes, J. Membr. Biol. 63:215–231.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Alan S. Waggoner
    • 1
  1. 1.Center for Fluorescence Research in Biomedical Sciences and Department of Biological SciencesCarnegie-Mellon UniversityPittsburghUSA

Personalised recommendations