Conventional ESR Spectroscopy of Membrane Proteins: Recent Applications

  • Philippe F. Devaux


Conventional electron spin resonance (ESR) spectroscopy of nitroxide radicals is sensitive to motions corresponding to correlation times in the range 10−11–10−7 sec. If the motion is anisotropic, with a fast component in the 10−9–10−11 sec. range, an order parameter can be measured; the latter is indicative of the angular domain associated with the fast motion. These properties are well suited to the investigation of lipid viscosity. On the other hand, saturation transfer ESR (ST-ESR), which is an extension of the spin-labeling method, is sensitive to motions corresponding to the so-called slow motion regime: 10−3–10−7 sec. The latter technique is adapted to the investigation of the motion of proteins and in particular of membrane proteins. In this book, D. T. Thomas reviews the applications of ST-ESR to membrane proteins, while the present chapter deals only with the applications of conventional ESR. Previous reviews have exposed the details of this technique which was introduced first in 1965 by Stone et al. The two volumes, edited by Berliner (1976, 1979), on the topic of “spin-labeling” contain the most useful references for the background necessary for an understanding of the present review. In the 1976 edition of The Enzymes of Biological Membranes edited by A. Martonosi, two brief chapters were devoted to the use of spin labels to study membrane bound enzymes, receptors, and transport systems (Gaffney and Chang Lin, 1976; Vignais and Devaux, 1976). The present edition will emphasize the newest applications of spin-labeling to the investigation of membrane-bound enzymes.


Phosphatidic Acid Spin Label Electron Spin Resonance Spectroscopy Purple Membrane Extrinsic Protein 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andersen, J. P., Le Maire, M., and Møller, J. V., 1980, Properties of detergent-solubilized and membranes (Ca2+ + Mg2+)-activated ATPase from sarcoplasmic reticulum as studied by sulfhydryl reactivity and ESR spectroscopy, Biochim. Biophys. Acta 603:84–100.PubMedCrossRefGoogle Scholar
  2. Andersen, J. P., Fellmann, P., Møller, J. V., and Devaux, P. F., 1981, Immobilization of a spin label fatty acid chain covalently attached to Ca2+ ATPase from sarcoplasmic reticulum suggests an oligomeric structure, Biochemistry 20:4928–4936.PubMedCrossRefGoogle Scholar
  3. Berliner, L. J. (ed.), 1976, Spin Labeling: Theory and Applications, Vol. I, Academic Press, New York.Google Scholar
  4. Berliner, L. J. (ed.), 1979, Spin Labeling: Theory and Applications, Vol. II, Academic Press, New York.Google Scholar
  5. Beth, A. H., Balasubramanian, K., Walder, R. T., Venkataramu, S. D., Robinson, B. H., Dalton, L. R., Pearson, D. E., and Park, J. H., 1981, Structural and motional changes in glyceraldehyde 3-phosphate dehydrogenase upon binding to the band 3 protein of the erythrocyte membrane examined with 15N-2H maleimide spin labels and EPR, Proc. Natl. Acad. Sci. USA 78:4955–4959.PubMedCrossRefGoogle Scholar
  6. Bienvenüe, A., Rousselet, A., Kato, G., and Devaux, P. F., 1977, Fluidity of the lipids next to the acetylcholine receptor protein of torpedo membrane fragments. Use of amphiphilic reversible spin labels, Biochemistry 16:841–848.PubMedCrossRefGoogle Scholar
  7. Bittmann, R., Sakaki, T., Tsuji, A., Devaux, P. F., and Ohnishi, S. I., 1984, Spin label studies of the oligomeric structure of band 3 protein in erythrocyte membranes and in reconstituted systems, Biochem. Biophys. Acta 769:85–95.CrossRefGoogle Scholar
  8. Boggs, J. M., and Moscarello, M. A., 1978, Effect of basic protein from human central nervous system myelin on lipid bilayer structure, J. Membr. Biol. 39:75–96.PubMedCrossRefGoogle Scholar
  9. Bosterling, B., Trudeil, J. R., and Galla, H. J., 1981, Phospholipid interaction with cytochrome P 450 in reconstituted vesicles: Preference for negatively charged phosphatidic acid, Biochim. Biophys. Acta 643:547–556.PubMedCrossRefGoogle Scholar
  10. Brotherus, J. R., Griffith, O. H., Brotherus, M. O., Jost, P. C., and Silvius, J. R., 1981, Lipid—protein multiple binding equilibria in membranes, Biochemistry 20:5261–5267.PubMedCrossRefGoogle Scholar
  11. Brown, L. R., and Wüthrich, K., 1977, NMR and ESR studies of the interactions of cytochrome c with mixed cardiolipin-phosphatidylcholine vesicles, Biochim. Biophys. Acta 468:389–410.PubMedCrossRefGoogle Scholar
  12. Butterfield, D. A., 1983, Spin labeling in disease, in: Biological Magnetic Resonance, Vol. 4 (L. J. Berliner, ed.), Plenum Press, New York pp. 1–78.Google Scholar
  13. Cable, M. B., and Powell, G. L., 1980, Spin labeled cardiolipid: Preferential segregation in the boundary layer of cytochrome c oxidase, Biochemistry 19:5679–5686.PubMedCrossRefGoogle Scholar
  14. Cafiso, D. S., and Hubbell, W. L., 1978, Estimation of transmembrane potentials from phase equilibria of hydrophobic paramagnetic ions, Biochemistry 17:187–195.PubMedCrossRefGoogle Scholar
  15. Cafiso, D. S., and Hubbell, W. L., 1982, Transmembrane electrical currents of spin labeled hydrophobic ions, Biophys. J. 39:263.PubMedCrossRefGoogle Scholar
  16. Carmeli, C., Quintanilha, A. T., and Packer, L., 1980, Surface charge changes in purple membranes and the photoreaction cycle of bacteriorhodopsin, Proc. Natl. Acad. Sci. USA 77:4707–4711.PubMedCrossRefGoogle Scholar
  17. Casey, R. P., Broger, C., and Azzi, A., 1981, Structural studies on the cytochrome c oxidase proton pumps using a spin label probe, Biochim. Biophys. Acta 638:86–93.PubMedCrossRefGoogle Scholar
  18. Castle, J. D., and Hubbell, W. D., 1976, Estimation of membrane surface potential and charge density from the phase equilibrium of a paramagnetic amphiphile, Biochemistry 15:4818–4831.PubMedCrossRefGoogle Scholar
  19. Champeil, P., Büschlen-Boucly, S., Bastide, F., and Garybobo, C. M., 1978, Sarcoplasmic reticulum ATPase. Spin labeling detection of ligand induced changes in the relative reactivities of certain sulfhydryl groups, J. Biol. Chem. 253:1179–1186.PubMedGoogle Scholar
  20. Champeil, P., Rigaud, J. L., and Garybobo, C. M., 1980, Ca translocation mechanism in sarcoplasmic Reticulum vesicles deduced from localisation studies of protein bound spin labels, Proc. Natl. Acad. Sci. USA 77:2405–2409.PubMedCrossRefGoogle Scholar
  21. Chapman, D., Cornell, B. A., Eliasz, A. W., and Perry, A., 1977, Interactions of helical Polypeptide segments which span the hydrocarbon region of lipid bilayers. Studies of the gramicidin A lipid—water system, J. Mol. Biol. 113:517–538.PubMedCrossRefGoogle Scholar
  22. Chignell, C. F., and Chignell, D. A., 1975, A spin label study of purple membrane from Halobacterium halobium, Biochem. Biophys. Res. Commun. 62:136–143.PubMedCrossRefGoogle Scholar
  23. Davoust, J., and Devaux, P. F., 1982, Simulation of electron spin resonance spectra of spin labeled fatty acids covalently attached to the boundary of an intrinsic membrane protein. A chemical exchange model, J. Magn. Res. 48:475–494.Google Scholar
  24. Davoust, J., Schoot, B. M., and Devaux, P. F., 1979, Physical modifications of rhodopsin boundary lipids in lecithin—rhodopsin complexes: A spin label study, Proc. Natl. Acad. Sci. USA 76:2755–2759.PubMedCrossRefGoogle Scholar
  25. Davoust, J., Bienvenüe, A., Fellmann, P., and Devaux, P. F., 1980, Boundary lipids and protein mobility in rhodopsin—phosphatidylcholine vesicles. Effect of lipid phase transitions, Biochim. Biophys. Acta 596:28–42.PubMedCrossRefGoogle Scholar
  26. Davoust, J., Seigneuret, M. Hervé, P., and Devaux, P. F., 1983a, Collisions between nitrogen 14 and nitrogen 15 spin labels. 1. Lipid-lipid interactions in model membranes, Biochemistry, 22:3137–3145.PubMedCrossRefGoogle Scholar
  27. Davoust, J., Seigneuret, M., Hervé, P., and Devaux, P. F., 1983b, Collisions between nitrogen 14 and nitrogen 15 spin labels. 2. Investigations on the specificity of the lipid environment of rhodopsin, Biochemistry, 22:3146–3151.PubMedCrossRefGoogle Scholar
  28. De Kruijff, B., and Cullis, P. R., 1980, Cytochrome c specifically induces non-bilayer structures in cardiolipin-containing model membranes, Biochim. Biophys. Acta 602:477–490.PubMedCrossRefGoogle Scholar
  29. Devaux, P. F., Bienvenüe, A., Lauquin, G., Brisson, A. D., Vignais, P. M., and Vignais, P. V., 1975, Interaction between spin-labeled acyl-coenzyme A and the mitochondrial adenosine diphosphate carrier, Biochemistry 14:1271–1280.CrossRefGoogle Scholar
  30. Gaffney, B. J., 1976, The chemistry of spin labels, in: Spin Labeling, Theory and Applications (L. J. Berliner, ed.), Academic Press, New York, pp. 183–238.Google Scholar
  31. Gaffney, B. J., and Chang Lin, D., 1976, Spin-label measurements of membrane-bound enzymes, in: The Enzymes of Biological Membranes, Chap. 3 (A. Martonosi, ed.), Plenum Press, pp. 71-90.Google Scholar
  32. Gaffney, B. J., and Mich, R. J., 1976, A new measurement of surface charge in model and biological lipid membranes, J. Am. Chem. Soc. 98:3044–3045.PubMedCrossRefGoogle Scholar
  33. Galla, H. J., and Trudell, J. R., 1980, Pressure induced changes in the molecular organization of a lipid—peptide complex. Polymyxin binding to PA membranes, Biochim. Biophys. Acta 602:522–530.PubMedCrossRefGoogle Scholar
  34. Ginsburg, H., O’Connor, S., and Grisham, C., 1981, Evidence for electron paramagnetic resonance for function related conformation changes in the anion transport protein of human erythrocytes, Eur. J. Biochem. 114:533–538.PubMedCrossRefGoogle Scholar
  35. Griffith, O. H., Brotherus, J., and Jost, P. C., 1982, Equilibrium constants and number of binding sites for lipid—protein interaction in membranes, in: Lipid-Protein Interactions, Vol. 2, Chap. 6 (P. C. Jost and O. H. Griffith, eds.), John Wiley and Sons, New York, pp. 225–237.Google Scholar
  36. Hartmann, W., and Galla, H. J., 1978, Binding of polylysine to charged bilayer membrane molecular organization of a lipid-peptide complex, Biochim. Biophys. Acta 509:474–490.PubMedCrossRefGoogle Scholar
  37. Heast, C. W., Plasa, G., Kamp, D., and Deuticke, B., 1978, Spectrin as a stabilizer of the phospholipid asymmetry in the human erythrocyte membrane, Biochim. Biophys. Acta 509:21–32.CrossRefGoogle Scholar
  38. Hidalgo, C., and Thomas, D. T., 1977, Heterogeneity of SH groups in sarcoplasmic reticulum, Biochem. Biophys. Res. Commun. 78:1175–1182.PubMedCrossRefGoogle Scholar
  39. Jost, P. C. Griffith, O. H., Capaldi, R. A., and Van der Kooi, G., 1973, Evidence of boundary lipid in membranes, Proc. Natl. Acad. Sci. USA 70:480–484.PubMedCrossRefGoogle Scholar
  40. Knowles, P. F., Watts, A., and Marsh, D., 1979, Spin-label studies of lipid immobilization in dimyris-toylphosphatidylcholine-substituted cytochrome oxidase, Biochemistry 18:4480–4487.PubMedCrossRefGoogle Scholar
  41. Knowles, P. F., Watts, A., and Marsh, D., 1981, Spin-label studies of head-group specificity in the interaction of phospholipids with yeast cytochrome oxidase, Biochemistry 20:5888–5894.PubMedCrossRefGoogle Scholar
  42. Kornberg, R. G., McNamee, M. G., and McConnell, H. M., 1972, Measurement of transmembrane potentials in phospholipid vesicles, Proc. Natl. Acad. Sci. USA 69:1508–1513.PubMedCrossRefGoogle Scholar
  43. Marsh, D., and Barrantes, F. J., 1978, Immobilized lipid in acetylcholine receptor-rich membranes from T. marmorata, Proc. Natl. Acad. Sci. USA 75:4329–4333.PubMedCrossRefGoogle Scholar
  44. Marsh, D., Watts, A., and Barrantes, F. J., 1981, Phospholipid chain immobilization and steroid rotational immobilization in acetylcholine receptor-rich membranes from Torpedo marmorata, Biochim. Biophys. Acta 645:97–101.PubMedCrossRefGoogle Scholar
  45. Marsh, D., Watts, A., Pates, R. D., Uhl, R., Knowles, P. F., and Esmann, M., 1982a, ESR spin label studies of lipid-protein interactions in membranes. Biophys. J. 37:265–274.PubMedCrossRefGoogle Scholar
  46. Marsh, D., Horvath, L., Pates, R. D., Brophy, P. J., and Esmann, M., 1982b, Spin label studies of lipid—protein interactions in membranes by conventional and saturation transfer ESR, Xth International Conference on Magnetic Resonance in Biological Systems, Abst. S39, Stanford, Connecticut.Google Scholar
  47. McConnell, H. M., Wright, K. L., and McFarland, B. G., 1972, The fraction of the lipid in a biological membrane that is in a fluid state: A spin label assay, Biochem. Biophys. Res. Commun. 47:272–281.Google Scholar
  48. McNamee, M. G., Ellena, J. F., and Dalziel, A. W., 1982, Lipid—protein interactions in membranes containing the acetylcholine receptor, Biophys. J. 37:103–104.PubMedCrossRefGoogle Scholar
  49. Mehlhorn, R. J., and Packer, L., 1979, Membrane surface potential measurements with amphiphilic spin labels, Meth. Enzymol. 56:515–526.PubMedCrossRefGoogle Scholar
  50. Nakamura, H., and Martonosi, A. N., 1981, Effect of phospholipid substitution on the mobility of spin labels bound to the ATPase of sarcoplasmic reticulum, J. Biochem. (Tokyo) 89:21–28.Google Scholar
  51. Nigg, E. A., and Cherry, R. J., 1979, Influence of temperature and cholesterol on the rotational diffusion of band 3 in the human erythrocyte membrane, Biochemistry 18:3457–3465.PubMedCrossRefGoogle Scholar
  52. Ohnishi, S. I., and Ito, T., 1973, Clustering of lecithin molecules in phosphatidylserine membranes induced by calcium ion binding to phosphatidylserine, Biochem. Biophys. Res. Commun. 51:132–138.PubMedCrossRefGoogle Scholar
  53. Oldfield, E., Janes, N., Kinsey, R., Kintanar, A., Lee, R. W. K., Rothgeb, M., Schräm, S., Skarjune, R., Smith, R., and Tsai, M. D., 1981, Protein crystals, membrane proteins and membrane lipids, Biochem. Soc. Symp. 46:155–181.PubMedGoogle Scholar
  54. Park, J. H., Beth, A. H., Venkataramu, S. D., Balasubramanian, K., Wilder, R., Park, C. R., Glogger, K., and Trommer, W. E., 1982, Correlation of motional and catalytic properties of soluble and membrane bound enzymes using 15N and/or 2H spin labels, Xth International Conference on Magnetic Resonance in Biological Systems, Abst. P56, Stanford, California.Google Scholar
  55. Quintanilha, A. T., and Mehlhorn, R. J., 1978, pH gradients across thylakoĭd membranes measured with a spin labeled amine, FEBS Lett. 91:104–108.CrossRefGoogle Scholar
  56. Quintanilha, A. T., and Packer, L., 1977, Surface potential changes on energization of the mitochondrial inner membrane, FEBS Lett. 78:161–165.PubMedCrossRefGoogle Scholar
  57. Rousselet, A., Devaux, P. F., and Wirtz, K. W., 1979, Free fatty acids and esters can be immobilized by receptor rich membranes from Torpedo marmorata but not phospholipid acyl chains, Biochem. Biophys. Res. Commun. 90:871–877.PubMedCrossRefGoogle Scholar
  58. Seelig, J., Seelig, A., and Tamm, L., 1982, Nuclear magnetic resonance and lipid—protein interactions, in: Lipid—Protein Interactions, Vol. 2, Chap. 3 (P. C. Jost and O. H. Griffith, eds.), John Wiley and Sons, New York, pp. 127–148.Google Scholar
  59. Seigneuret, M., Davoust, J., Hervé, P., and Devaux, P. F., 1981, Lipid—lipid and lipid—protein collision rates in membranes. Determination by evaluation of spin—spin interactions between 15N and 14N spin labels. Biochimie 63:867–870.PubMedCrossRefGoogle Scholar
  60. Seigneuret, M., and Devaux, P. F., 1984, ATP dependent asymmetric distribution of spin labeled phospholipids in the erythrocyte membrane. Relation to shape changes, Proc. Natl. Acad. Sci. U.S.A., in press.Google Scholar
  61. Sigrist-Nelson, K., and Azzi, A., 1979, Proteolipid subunit of chloroplast ATP complex. Mobility, accessibility and interaction studied by a spin labeled technique, J. Biol. Chem. 254:4470–4474.PubMedGoogle Scholar
  62. Stone, T. J., Buckman, T., Nordio, P. L., and McConnell, H. M., 1965, Spin labeled biomolecules, Proc. Natl. Acad. Sci. USA 54:1010–1017.PubMedCrossRefGoogle Scholar
  63. Swanson, M. S., Thomas, D. D., and Quintanilha, A. T., 1980, Protein rotational mobility and lipid fluidity of purified and reconstituted cytochrome c oxidase, J. Biol. Chem. 255:7494–7502.PubMedGoogle Scholar
  64. Takeuchi, Y., Ohnishi, S. I., Ishinaga, M., and Kito, M., 1978, Spin-labeling of Escherichia coli membrane by enzymatic synthesis of phosphatidylglycerol and divalent cation-induced interaction of phosphati-dylglycerol with membrane proteins, Biochim. Biophys. Acta 506:54–63.PubMedCrossRefGoogle Scholar
  65. Takeuchi, Y., Ohnishi, S. I., Ishinaga, M., and Kito, M., 1981, Dynamic states of phospholipids in Escherichia coli B membranes. Electron spin resonance studies with biosynthetically generated phospholipid spin labels, Biochim. Biophys. Acta 646:119–125.PubMedCrossRefGoogle Scholar
  66. Tanaka, K. I., and Ohnishi, S. I., 1976, Heterogeneity in the fluidity of intact erythrocyte membrane and its homogenization upon hemolysis, Biochim. Biophys. Acta 426:218–231.PubMedCrossRefGoogle Scholar
  67. Thomas, D. D., Bigelow, D. J., Squier, T. C., and Hidalgo, C., 1982, Rotational dynamics of protein and boundary lipid in sarcoplasmic reticulum membranes, Biophys. J. 37:217–225.PubMedCrossRefGoogle Scholar
  68. Tokutomi, S., Iwasa, T., Yoshizawa, T., and Ohnishi, S. I., 1981, Flash induced fast change in surface potential and fluidity of purple membrane studied by spin label method, Photochem. Photobiol. 33:467–474.CrossRefGoogle Scholar
  69. Van, S. P., and Griffith, O. H., 1975, Bilayer structure in phospholipid-cytochrome c model membranes, J. Membr. Biol. 20:155–170.CrossRefGoogle Scholar
  70. Vignais, P. M., and Devaux, P. F., 1976, The use of spin labels to study membrane bound enzymes, receptors and transport systems, in: The Enzymes of Biological Membranes, Vol. 1 (A. Martonosi, ed.), Plenum Press, New York, pp. 91–115.Google Scholar
  71. Watts, A., Volotovski, I. D., and Marsh, D., 1979, Rhodopsin—lipid associations in bovine rod outer segment membranes. Identification of immobilized lipid by spin-labels, Biochemistry 18:5006–5012.PubMedCrossRefGoogle Scholar
  72. Watts, A., Davoust, J., Marsh, D., and Devaux, P. F., 1981, Distinct states of lipid mobility in bovine rod outer segment membranes. Resolution of spin label results, Biochim. Biophys. Acta 643:673–676.PubMedCrossRefGoogle Scholar
  73. Yu, B. P., Mason, E. J., Down, J., and Wharton, D., 1977, Spin label study of sulfhydryl groups of sarcoplasmic reticulum, J. Biol. Chem. 252:5262–5266.PubMedGoogle Scholar
  74. Zachowski, A., and Devaux, P. F., 1983, Non uniform distribution of phospholipids in (Na+ + K+) ATPase-rich membranes from Torpedo marmorata electric organ evidenced by spin-spin interactions between spin-labeled phospholipids, FEBS Lett. 163:245–249.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Philippe F. Devaux
    • 1
  1. 1.Institut de Biologie Physico-ChimiqueParisFrance

Personalised recommendations