Advertisement

On the Molecular Structure of the Gramicidin Transmembrane Channel

  • Dan W. Urry

Abstract

The primary structure of Gramicidin A (GA) was determined by Sarges and Witkop (1964, 1965a,b) to be HCO-L · Val1-Gly2-L · Ala3-D · Leu4-L · Ala5-D · Val6-L · Val7-D · Val8-L · Trp9-D · Leu10-L · Trp11-D · Leu12-L · Trp13-D · Leu14-L · Trp15NH-CH2 CH2OH. The common analogs are Gramicidin B (GB), which is L-Phe11 GA, and Gramicidin C (GC), which is L · Tyr11 GA. Also, there is a variation in residue-1 which can occur as Ile1 in GA, GB, and GC. These structures were further confirmed by the solid phase syntheses of Fontana and Gross (1972) and of Noda and Gross (1972). The amino terminus (N) will also be referred to as the formyl end or head and the carboxyl terminus (C) will also be referred to as the ethanolamine end or tail. In single-stranded helical structures of Gramicidin, possible end-to-end associations will be referred to as head-to-head, head-to-tail, and tail-to-tail. In double-stranded structures, parallel and antiparallel associations will be indicated by the proximity of the formyl (HCO) and ethanolamine termini.

Keywords

Carbonyl Carbon Channel Structure Free Energy Profile Transmembrane Channel Gramicidin Channel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Apell, H.-J., Bamberg, E., Alpes, H., and Läuger, P., 1977, Formation of ion channels by a negatively charged analog of Gramicidin A, J. Membr. Biol. 31:171–188.PubMedCrossRefGoogle Scholar
  2. Bamberg, E., and Benz, R., 1976, Voltage induced thickness changes of lipid bilayer membranes and the effect of an electric field on GA channel formation, Biochim. Biophys. Acta 426:570–580.PubMedCrossRefGoogle Scholar
  3. Bamberg, E., and Janko, K., 1977, The action of a carbon suboxide dimerized Gramicidin A on lipid bilayer membranes, Biochim. Biophys. Acta 465:486–499.PubMedCrossRefGoogle Scholar
  4. Bamberg, E., and Läuger, P., 1973, Channel formation kinetics of Gramicidin A in lipid bilayer membranes, J. Membr. Biol. 11:177–194.PubMedCrossRefGoogle Scholar
  5. Bamberg, E., and Läuger, P., 1974, Temperature-dependent properties of Gramicidin A channels, Biochim. Biophys. Acta 367:127–133.PubMedCrossRefGoogle Scholar
  6. Bamberg, E., and Läuger, P., 1977, Blocking of the Gramicidin channel by divalent cations, J. Membr. Biol. 35:351–375.CrossRefGoogle Scholar
  7. Bamberg, E., Noda, K., Gross, E., and Läuger, P., 1976, Single-channel parameters of Gramicidin A, B, and C., Biochim. Biophys. Acta 419:223–228.PubMedCrossRefGoogle Scholar
  8. Bamberg, E., Apell, H.-J., and Alpes, H., 1977a, Structure of the Gramicidin A channel: Discrimination between the πL, D and the β-helix by electrical measurements with lipid bilayer membranes, Proc. Natl. Acad. Sci. USA 74(6):2402–2406.PubMedCrossRefGoogle Scholar
  9. Bamberg, E., Apell, H.-J., Bradley, R., Härter, B., Quelle, M.-J., and Urry, D. W., 1979, Formation of ionic channels in black lipid membranes by succinic derivatives of Gramicidin A, J. Membr. Biol. 50:257–270.PubMedCrossRefGoogle Scholar
  10. Bradley, R. J., Urry, D. W., Okamoto, K., and Rapaka, R. S., 1978, Channel structures of Gramicidin: Characterization of succinyl derivatives, Science 200:435–437.PubMedCrossRefGoogle Scholar
  11. Bradley, R. J., Prasad, K. U., and Urry, D. W., 1981a, Single channel properties of D-Leu2-Gramicidin A: Side chain modulation of channel lifetime, Biochim. Biophys. Acta 649:281–285.PubMedCrossRefGoogle Scholar
  12. Bradley, R. J., Urry, D. W., Parenti-Castelli, G., and Lenaz, G., 1981b, Effects of halothane on channel activity on N-acetyl Gramicidin, Biochem. Biophys. Res. Commun. 101(3):963–969.PubMedCrossRefGoogle Scholar
  13. Busath, D., and Szabo, G., 1981, Gramicidin forms multi-state rectifying channels, Nature 294:371–373.PubMedCrossRefGoogle Scholar
  14. DeFelice, L. J., 1977, Fluctuation analysis in neurobiology, Int. Rev. Neurobiol. 20:169–208.PubMedCrossRefGoogle Scholar
  15. Fontana, A., 1972, Solid-phase synthesis of the pentadecapeptide valine-Gramicidin A, in: Peptides, Proceedings of the 12th European Peptide Symposium (J. Meienhofer, ed.), Ann Arbor Science Publishers, Ann Arbor, Michigan, pp. 229–234.Google Scholar
  16. Goodall, M. C., 1970a, Structural effects in the action of antibiotics on the ion permeability of lipid bilayers. I. Tyrocidine B, Biochim. Biophys. Acta 203:28–33.PubMedCrossRefGoogle Scholar
  17. Goodall, M. C., 1970b, Structural effects in the action of antibiotics on the ion permeability of lipid bilayers. III. Gramicidins “A” and “S,” and lipid specificity, Biochim. Biophys. Acta 219:471–478.PubMedCrossRefGoogle Scholar
  18. Henze, R., Neher, E., Trapane, T. L., and Urry, D. W., 1982, Dielectric relaxation studies of ionic processes in lysolecithin packaged Gramicidin channels, J. Membr. Biol. 64(3):233–239.PubMedCrossRefGoogle Scholar
  19. Hladky, S. B., and Haydon, D. A., 1970, Discreteness of conductance change in bimolecular lipid membranes in the presence of certain antibiotics, Biochim. Biophys. Acta 225:451–453.Google Scholar
  20. Hladky, S. B., and Haydon, D. A., 1971, Symposium of Molecular Mechanisms of Antibiotic Action on Protein Biosynthesis and Membranes (E. Munoz, F. Garcia-Ferrandiz, and D. Vazquez, eds.), Elsevier, Amsterdam, pp. 738–753.Google Scholar
  21. Hladky, S. B., and Haydon, D. A., 1972, Ion transfer across lipid membranes in the presence of Gramicidin A. I. Studies of the unit conductance channel, Biochim. Biophys. Acta 274:294–312.PubMedCrossRefGoogle Scholar
  22. Kolb, H.-A., and Bamberg, E., 1977, Influence of membrane thickness and ion concentration on the properties of the GA channel, Biochim. Biophys. Acta 464:127–141.PubMedCrossRefGoogle Scholar
  23. Kolb, H.-A., Bamberg, E., and Läuger, P., 1975, Correlation analysis of electrical noise in lipid bilayer membranes: Kinetics of Gramicidin A channels, J. Membr. Biol. 20:133–154.PubMedCrossRefGoogle Scholar
  24. Levitt, D. G., Elias, S. R., and Hautman, J. M., 1978, Number of water molecules coupled to the transport of sodium, potassium and hydrogen ions via Gramicidin, nonactin, or valinomycin, Biochim. Biophys. Acta 512:436–451.PubMedCrossRefGoogle Scholar
  25. Lotz, B., Colonna-Cesari, F., Heitz, F., and Spach, G., 1976, A family of double helices of alternating poly(y-benzyl-D-L-glutamate), a stereochemical model for Gramicidin A, J. Mol. Biol. 106:915–942.PubMedCrossRefGoogle Scholar
  26. Masotti, L., Spisni, A., and Urry, D. W., 1980, Conformational studies on the Gramicidin A transmembrane channel in lipid micelles and liposomes, Cell Biophys. 2(3):241–251.PubMedGoogle Scholar
  27. McBride, D., and Szabo, G., 1978, Influence of double-layer and dipolar surface potentials on ionic conductance of Gramicidin channels, Biophys. J. 21:A25.Google Scholar
  28. Morrow, J. S., Veatch, W. R., and Stryer, L., 1979, Transmembrane channel activity of Gramicidin A analogs: Effects of modification and deletion of the amino-terminal residue, J. Mol. Biol. 132:733–738.PubMedCrossRefGoogle Scholar
  29. Mueller, P., and Rudin, D. O., 1967, Development of K+-Na+ discrimination in experimental biomolecular lipid membranes by macrocyclic antibiotics, Biochem. Biophys. Res. Commun. 26:398–404.PubMedCrossRefGoogle Scholar
  30. Neher, E., 1975, Ionic specificity of the Gramicidin channel and the thallous ion, Biochim. Biophys. Acta 401:540–544.CrossRefGoogle Scholar
  31. Noda, K., and Gross, E., 1972, Solid-phase synthesis of the pentadecapeptides Valine-Gramicidin B and C, in: Chemistry and Biology of Peptides, Proceedings of the 3rd American Peptide Symposium (J. Meienhofer, ed.), Ann Arbor Science Publishers, Ann Arbor, Michigan, pp. 241–250.Google Scholar
  32. Pasquali-Ronchetti, I., Spisni, A., Casali, E., Masotti, L., and Urry, D. W., 1983, Gramicidin A induces lysolecithin to form bilayers, Biosci. Rep. 3:127–133.PubMedCrossRefGoogle Scholar
  33. Prasad, K. U., Trapane, T. L., Busath, D., Szabo, G., and Urry, D. W., 1982a, Synthesis and characterization of 1-13C-D · Leu12·14 Gramicidin A, Int. J. Pep. Protein Res. 19(2):162–171.CrossRefGoogle Scholar
  34. Prasad, K. U., Trapane, T. L., Busath, D., Szabo, G., and Urry, D. W., 1982b, Solid phase (9-fluorenylmethyloxycarbonyl) synthesis and characterization of [(1-13C) Phe11] Gramicidin B, J. Protein Chem. 1(3):191–202.CrossRefGoogle Scholar
  35. Prasad, K. U., Trapane, T. L., Busath, D., Szabo, G., and Urry, D. W., 1983, Synthesis and characterization of 1-13C Phe9 Gramicidin A: Effects of side chain variations, Int. J. Pep. Protein Res. 22:341–347.CrossRefGoogle Scholar
  36. Ramachandran, G. N., and Chandrasekharan, R., 1972a, Studies on dipeptide conformation and on peptides with sequences of alternating L and D residues with special reference to antibiotic and ion transport peptides, in: Progress in Peptide Research, Vol. II (S. Lande, ed.), Gordon and Breach, Science Publishers, New York, pp. 195–215.Google Scholar
  37. Ramachandran, G. N., and Chandrasekharan, R., 1972b, Conformation of peptide chains containing both L-and D-residues: Part I. Helical structures with alternating L-and D-residues with special reference to the LD-ribbon and the LD-helices, Ind. J. Biochem. Biophys. 9:1–11.Google Scholar
  38. Rosenberg, P. A., and Finkelstein, A., 1978, Interaction of ions and water in Gramicidin A channels, J. Gen. Physiol. 72:327–340.PubMedCrossRefGoogle Scholar
  39. Sarges, R., and Witkop, B., 1964, Gramicidin A. IV. Primary sequence of valine and isoleucine Gramicidin A, J. Am. Chem. Soc. 86:1862–1863.CrossRefGoogle Scholar
  40. Sarges, R., and Witkop, B., 1965a, Gramicidin A. V. The structure of valine-and isoleucine-gramicidin A, J. Am. Chem. Soc. 87:2011–2020.PubMedCrossRefGoogle Scholar
  41. Sarges, R., and Witkop, B., 1965b, Gramicidin. VIII. The structure of valine-and isoleucine-Gramicidin C, Biochemistry 4:2491–2494.CrossRefGoogle Scholar
  42. Szabo, G., and Urry, D. W., 1979, N-acetyl gramicidin: Single-channel properties and implications for channel structure, Science 203: 55–57.PubMedCrossRefGoogle Scholar
  43. Tosteson, D. C., Andreoli, T. E., Tieffenbery, M., and Cook, P., 1968, The effect of macrocyclic compounds on cation transport in sheep red cells and thin and thick lipid membranes, J. Gen. Physiol. 51:373–384.PubMedGoogle Scholar
  44. Urry, D. W., 1971, The Gramicidin A transmembrane channel: A proposed π(L,D) helix, Proc. Natl. Acad. Sci. USA 68:672–676.PubMedCrossRefGoogle Scholar
  45. Urry, D. W., 1972, A molecular theory of ion conducting channels: A field dependent transition between conducting and nonconducting conformations, Proc. Natl. Acad. Sci. USA 69:1610–1614.PubMedCrossRefGoogle Scholar
  46. Urry, D. W., 1973, Polypeptide conformation and biological function of β-helices (π(L,D-helices) as permselective transmembrane channels, in: Conformation of Biological Molecules and Polymers—The Jerusalem Symposia on Quantum Chemistry and Biochemistry V, Israel Academy of Sciences, Jerusalem, pp. 723–736.Google Scholar
  47. Urry, D. W., 1976, Nuclear magnetic resonance and the conformation of membrane active peptides, in: Enzymes of Biological Membranes, Vol. 1 (A. Martonosi, ed.), Plenum Publishing Corporation, New York, pp. 31–69.Google Scholar
  48. Urry, D. W., 1982, On the molecular structure and ion transport mechanism of the Gramicidin transmembrane channel, in: Membranes and Transport, Vol. 2 (A. Martonosi, ed.), Plenum Publishing Corporation, New York, pp. 285–294.Google Scholar
  49. Urry, D. W., Goodall, M. C., Glickson, J. D., and Mayers, D. F., 1971, The Gramicidin A transmembrane channel: Characteristics of head to head dimerized π(L,D) helices, Proc. Natl. Acad. Sci. USA 68:1907–1911.PubMedCrossRefGoogle Scholar
  50. Urry, D. W., Long, M. M., Jacobs, M., and Harris, R. D., 1975, Conformation and molecular mechanisms of carriers and channels, Ann. N.Y. Acad. Sci. 264:203–220.PubMedCrossRefGoogle Scholar
  51. Urry, D. W., Spisni, A., and Khaled, M. A., 1979a, Characterization of micellar-packaged Gramicidin A channels, Biochem. Biophys. Res. Commun. 88(3):940–949.PubMedCrossRefGoogle Scholar
  52. Urry, D. W., Spisni, A., Khaled, M. A., Long, M. M., and Masotti, L., 1979b, Transmembrane channels and their characterization in phospholipid structures, Int. J. Quantum Chem., Quantum Biol. Symp. No. 6, pp. 289-303.Google Scholar
  53. Urry, D. W., Venkatachalam, C. M., Spisni, A., Läuger, P., and Khaled, M. A., 1980a, Rate theory calculation of Gramicidin single channel currents using NMR-derived rate constants, Proc. Natl. Acad. Sci. USA 77:2028–2032.PubMedCrossRefGoogle Scholar
  54. Urry, D. W., Venkatachalam, C. M., Spisni, A., Bradley, R. J., Trapane, T. L., and Prasad, K. U., 1980b, The malonyl Gramicidin channel: NMR-derived rate constants and comparison of calculated and experimental single channel currents, J. Membr. Biol. 55:29–51.PubMedCrossRefGoogle Scholar
  55. Urry, D. W., Prasad, K. U., and Trapane, T. L., 1982a, Location of monovalent cation binding sites in the Gramicidin channel, Proc. Natl. Acad. Sci. USA 79:390–394.PubMedCrossRefGoogle Scholar
  56. Urry, D. W., Trapane, T. L., and Prasad, K. U., 1982b, Molecular structure and ionic mechanisms of an ion selective transmembrane channel: Monovalent vs. divalent cation selectivity, Int. J. Quantum Chem., Quantum Biol. Symp. No. 9, 31-40.Google Scholar
  57. Urry, D. W., Trapane, T. L., Walker, J. T., and Prasad, K. U., 1982c, On the relative membrane permeability of Na+ and Ca2+: A physical basis for the messenger role of Ca2+, J. Biol. Chem. 257: 6659–6661.PubMedGoogle Scholar
  58. Urry, D. W., Walker, J. T., and Trapane, T. L., 1982d, Ion interactions in (1-13C)D · Val8 and D · Leu14 analogs of Gramicidin A, the helix sense of the channel and location of ion binding sites, J. Membr. Biol. 69:225–231.PubMedCrossRefGoogle Scholar
  59. Urry, D. W., Trapane, T. L., Romanowski, S., Bradley, R. J., and Prasad, K. U., 1983a, Use of synthetic Gramicidins in the determination of channel structure and mechanism, Int. J. Pep. Protein Res. 21:16–23.CrossRefGoogle Scholar
  60. Urry, D. W., Trapane, T. L., and Prasad, K. U., 1983b, Is the Gramicidin A transmembrane channel a single-stranded or double-stranded helix? A simple unequivocal determination. Science 221: 1064–1067.PubMedCrossRefGoogle Scholar
  61. Veatch, W. R., and Blout, E. R., 1974, The aggregation of Gramicidin A in solution, Biochemistry 13:5257–5264.PubMedCrossRefGoogle Scholar
  62. Veatch, W. R., Fossel, E. T., and Blout, E. R., 1974, The conformation of Gramicidin A, Biochemistry 13:5249–5256.PubMedCrossRefGoogle Scholar
  63. Veatch, W. R., Mathies, R., Eisenberg, M., and Stryer, L., 1975, Simultaneous fluorescence and conductance studies of planar bilayer membranes containing a highly active and fluorescent analog of Gramicidin A, J. Mol. Biol. 99:75–92.PubMedCrossRefGoogle Scholar
  64. Wallace, B. A., Veatch, W. R., and Blout, E. R., 1981, Conformation of Gramicidin A in phospholipid vesicles: Circular dichroism studies of effects of ion binding chemical modification and lipid structure, Biochemistry 20:5754–5760.PubMedCrossRefGoogle Scholar
  65. Weinstein, S., Wallace, B. A., Blout, E. R., Morrow, J. S., and Veatch, W., 1979, Conformation of Gramicidin A channel in phospholipid vesicles: A 13C and 19F nuclear magnetic resonance study, Proc. Natl. Acad. Sci. USA 76(9):7230–7234.CrossRefGoogle Scholar
  66. Zingsheim, H. P., and Neher, E., 1974, The equivalence of fluctuation analysis and chemical relaxation measurements: A kinetic study of ion pore formation in thin lipid membranes, Biophys. Chem. 2:197–207.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Dan W. Urry
    • 1
  1. 1.Laboratory of Molecular BiophysicsUniversity of Alabama in Birmingham School of MedicineBirminghamUSA

Personalised recommendations