Intrinsic Protein—Lipid Interactions in Biomembranes

  • Jeff Leaver
  • Dennis Chapman


The nature of the interface between membrane lipids and intrinsic protein molecules has been the subject of a good deal of research in recent years. An understanding of these interactions are important in understanding the functioning of the membrane as a whole. A number of increasingly sophisticated physical techniques have been applied to the study of protein—lipid interactions, but due to the complex interplay which can occur in even model membranes, interpretation of the data is often difficult since different techniques can yield apparently contradictory results.


Arrhenius Plot Cytochrome Oxidase Lateral Diffusion Lipid Molecule Fluorescence Recovery After Photobleaching 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alonso, A., Restall, C. J., Turner, M., Gomez-Fernandez, J. C., Goni, F. M., and Chapman, D., Protein—lipid interactions and differential scanning calorimetric studies of bacteriorhodopsin reconstituted lipid—water systems, Biochim. Biophys. Acta 689:283–289.Google Scholar
  2. Austin, R. H., Chan, S. S., and Jovin, T. M., 1979, Rotational diffusion of cell surface components by time-resolved phosphorecence anisotropy, Proc. Natl. Acad. Sci. USA 76: 5650–5654.PubMedCrossRefGoogle Scholar
  3. Bonting, S. L., and De Pont, J. J. H. H. M., 1980, Use of phospholipid-converting enzymes for the study of membrane-bound enzymes, Biochem. Soc. Trans. 8(1):40–42.PubMedGoogle Scholar
  4. Brotherus, J. R., Jost, P. C., Griffiths, O. H., Keana, J. F. W., and Hokin, L. E., 1980, Charge selectivity at the lipid—protein interface of membranous Na,K-ATPase, Proc. Natl. Acad. Sci. USA 77:272–276.PubMedCrossRefGoogle Scholar
  5. Burkli, A., and Cherry, R., 1981, Rotational motion and flexibility of Ca2+-Mg2+-dependant adenosine 5-triphosphatase, Biochemistry 20:138–146.PubMedCrossRefGoogle Scholar
  6. Casal, H., Cameron, D., Smith, I., and Mantsch, H., 1980, Acholeplasma laidlawii membranes: A Fourier transform infrared study of the influence of protein on lipid organisation and dynamics, Biochemistry 19:444–451.PubMedCrossRefGoogle Scholar
  7. Chapman, D., Cornell, B. A., Eliasz, A. W., and Perry, A., 1977, The interactions of helical Polypeptide segments which span lipid bilayers. The gramicidin A-lipid water system, J. Mol. Biol. 113:517–538.PubMedCrossRefGoogle Scholar
  8. Cherry, R. J., 1978, Measurement of protein rotational diffusion in membranes by flash photolysis, in: Methods in Enzymology, Vol. LIV (S. Fleischer and L. Packer, eds.), Academic Press, New York.Google Scholar
  9. Cone, R. A., 1972, Rotational diffusion of rhodopsin in the visual receptor membrane, Nature New Biol. 236:39–43.PubMedGoogle Scholar
  10. Cortijo, M., and Chapman, D., 1981, A comparison of the interactions of cholesterol and gramicidin A with lipid bilayers using an infrared data station, FEBS Lett. 131:245–248.CrossRefGoogle Scholar
  11. Curatolo, W., Sabura, J. D., Small, D. M., and Shipley, G. G., 1977, Protein-lipid interactions: recombinants of the proteolipid apoprotein of myelin with dimyristoyllecithin, Biochemistry 16:2313–2319.PubMedCrossRefGoogle Scholar
  12. Davoust, J., Bienvenue, A., Fellman, P., and Devaux, P. F., 1980, Boundary lipids and protein mobility in rhodopsin—phosphatidylcholine vesicles. Effect of lipid phase transition, Biochim. Biophys. Acta 596:28–42.PubMedCrossRefGoogle Scholar
  13. De Kruijff, B., Van Dijk, P. W. M., Goldbach, R. W., Darnel, R. A., and Van Deenen, L. L. M., 1973, Influence of fatty acid and sterol composition on the lipid phase transition and activity of membrane-bound enzymes in Acholeplasma laidlawii, Biochim. Biophys Acta 330:269–282.CrossRefGoogle Scholar
  14. De Kruijff, B., Cullis, P. R., and Verkleij, A. J., 1982, Structural and functional aspects of nonbilayer lipids, in: Membranes and Transport, Vol. 1 (A. N. Martinosi, ed.), Plenum Press, New York, pp. 43–49.CrossRefGoogle Scholar
  15. De Latt, S. W., van der Saag, P. T., Elson, E. L., and Schessinger, J., 1980, Lateral diffusion of membrane lipids and proteins during the cell cycle of neuroblastoma cells, Proc. Natl. Acad. Sci. USA 77:1526–1528.CrossRefGoogle Scholar
  16. Devaux, P. F., Davoust, J., and Kousselet, A. 1981, Electron spin resonance studies of lipid protein interactions in membranes, Biochem. Soc. Symp. 46:207–222.PubMedGoogle Scholar
  17. Finean, J. B., and Shukla, S. D., 1980, Enzymes linked to phosphatidylinositol in plasma membranes, Biochem. Soc. Trans. 8(1):43.PubMedGoogle Scholar
  18. Fry, M., and Green, D. E., 1980, Cardiolipin requirement by cytochrome oxidase and the catalytic role of phospholipid, Biochem. Biophys. Res. Commun. 93:1238–1246.PubMedCrossRefGoogle Scholar
  19. Fry, M., and Green, D. E., 1981, Cardiolipin requirement for electron transfer in Complex I and III of the mitochondrial respiratory chain, J. Biol. Chem. 256:1874–1880.PubMedGoogle Scholar
  20. Gaily, H. U., Pluschke, G., Overath, P., and Seelig, J., 1981, Structure of Escherichia coli membranes. Glycerol auxotrophs as a tool for the analysis of the phospholipid head-group region by deuterium NMR, Biochemistry 20:1826–1831.CrossRefGoogle Scholar
  21. Gomez-Fernandez, J. C., Goni, F. M., Bach, D., Restall, C., and Chapman, D., 1980, Protein—lipid interactions. Biophysical studies of (Ca2+-Mg2+)-ATPase reconstituted systems, Biochim. Biophys. Acta 598:502–516.PubMedCrossRefGoogle Scholar
  22. Greinert, R., Steark, H., Stier, A., and Weiler, A., 1979, E-type delayed fluorescence depolarization, a technique to probe rotational motion in the microsecond range, J. Biochem. Biophys. Meth. 1:77–83.PubMedCrossRefGoogle Scholar
  23. Haslam, J. M., and Al Mahdawi, S. A. H., 1980, The use of lipid mutants of Saccharomyces cerevisiae to investigate the role of fatty acids and sterols in membrane functions, Biochem. Soc. Trans. 8:34–37.PubMedGoogle Scholar
  24. Haslam, J. M., Proudlock, J. W., and Linnane, A. W., 1971, Biogenesis of mitochondria 20. The effects of altered membrane lipid composition on mitochondrial oxidative phosphorylation in Saccharomyces cerevisiae, Bioenergetics 2:351–370.CrossRefGoogle Scholar
  25. Hesketh, T. R., Smith, G. A., Houslay, M. D., McGill, K. A., Birdsall, N. J. M., Metcalfe, J. C., and Warren, G. B., 1976, Annular lipids determine the ATPase activity of a calcium transport protein complexed with dipalmitoyllecithin, Biochemistry 15:4145–4151.PubMedCrossRefGoogle Scholar
  26. Heyn, M. D., 1979, Determination of lipid order parameters and rotational correlation times from fluorescence depolarisation experiments, FEBS Lett. 108:359–364.PubMedCrossRefGoogle Scholar
  27. Hill, R. J., 1981, Restricted lateral diffusion of surface membrane components in Tetrahymena thermophila, FEBS Lett. 128:278–279.PubMedCrossRefGoogle Scholar
  28. Hoffman, W., Sarzala, M. G., Gomez-Fernandez, J. C., Goñi, F. M., Restall, C. J., Chapman, D., Heppler, G., and Kreutz, W., 1980, Protein rotational diffusion and lipid structure of reconstituted systems of Ca2+-activated adenosine triphosphatase, J. Mol. Biol. 141:119–132.CrossRefGoogle Scholar
  29. Hoffman, W., Pink, D. A., Restall, C. J., and Chapman, D., 1981, Intrinsic molecules in fluid phospholipid bilayers. Fluorescence probe studies, Eur. J. Biochem. 114:585–589.CrossRefGoogle Scholar
  30. Johansson, K-E., Jägersten, C., Christiansson, A., and Wieslander, A., 1981, Protein composition and extractability of lipid modified membranes from Acholeplasma laidlawii, Biochemistry 20:6073–6079.PubMedCrossRefGoogle Scholar
  31. Johnston, D. S., Sanghera, S., Pons, M., and Chapman, D., 1980, Phospholipid polymers: Synthesis and spectral characteristics, Biochim. Biophys. Acta 602:57–69.PubMedCrossRefGoogle Scholar
  32. Jost, P. C., and Griffith, O. H., 1980, The lipid-protein interface in biological membranes, Ass. New York Acad. Sci. 348:391–407.CrossRefGoogle Scholar
  33. Jost, P. C., Griffith, O. H., Capaldi, R. A., and Vanderkooi, G., 1973, Evidence for boundary lipid in membranes, Proc. Natl. Acad. Sci. USA 70:480–484.PubMedCrossRefGoogle Scholar
  34. Jovin, T. M., Bartholdi, M., Vaz, W. L. C., and Austin, R. H., 1981, Rotational diffusion of biological macromolecules by time-resolved delayed luminescence (phosphorescence, fluorescence) anisotropy, Ann. N.Y. Acad. Sci. 366:176–196.PubMedCrossRefGoogle Scholar
  35. Kaibuchi, K., Takai, Y., and Nishizuka, Y., 1981, Cooperative roles of various membrane phospholipids in the activation of Ca2+-activated phospholipid-dependent protein kinase, J. Biol. Chem. 256:7146–7149.PubMedGoogle Scholar
  36. Kang, S-Y., Gutousky, H. S., Hsung, J. C., Jacobs, R., King, T. E., Rice, D., and Oldfield, E., 1979a, Nuclear magnetic resonance investigation of the cytochrome oxidase-phospholipid interaction: A new model for boundary lipid, Biochemistry 18:3257–3267.PubMedCrossRefGoogle Scholar
  37. Kang, S-Y., Gutowsky, H. S., and Oldfield, E., 1979b, Spectroscopic studies of specifically deuterium labelled membrane systems. Nuclear magnetic resonance investigation of protein—lipid interactions in Escherichia coli membranes, Biochemistry 18:3268–3278.PubMedCrossRefGoogle Scholar
  38. Kang, S-Y., Kinsey, R. A., Rajan, S., Gutowsky, H. S., Gadebridge, M. G., and Oldfield, E., 1981, Protein—lipid interactions in biological and model membrane systems. Deuterium NMR of A. laidlawii B., E. coli and cytochrome systems containing specifically deuterated lipids, J. Biol. Chem. 256:1155–1159.PubMedGoogle Scholar
  39. Kawato, S., Sigel, E., Carafoli, E., and Cherry, R. J., 1980, Cytochrome oxidase rotates in the inner membrane of intact mitochondrial and submitochondrial particles, J. Biol. Chem. 255:5508–5510.PubMedGoogle Scholar
  40. Kawato, S., Sigel, E., Carafoli, E., and Cherry, R., 1981, Rotation of cytochrome oxidase in phospholipid vesicles, J. Biol. Chem. 256:7518.PubMedGoogle Scholar
  41. Kimbelberg, H. K., and Paphadjopoulous, D., 1974, Effects of phospholipid acyl chain fluidity and cholesterol on (Na+ + K+-stimulated adenosine triphosphate, J. Biol. Chem. 249:1071–1080.Google Scholar
  42. Kinsey, R. A., Kintaner, A., Tsai, M-D., Smith, R. L., James, N., and Oldfield, E., 1981a, First observation of amino-acid side chain dynamics in membrane proteins using high field deuterium nuclear magnetic resonance spectroscopy, J. Biol. Chem. 256:4146–4149.PubMedGoogle Scholar
  43. Kinsey, R. A., Kintaner, A., and Oldfield, E., 1981b, Dynamics of amino-acid side chains in membrane proteins by high field solid state deuterium NMR. Phenylalanine, tyrosine and tryptophan, J. Biol. Chem. 256:9028–9036.PubMedGoogle Scholar
  44. Kleinfield, A. M., Dragsten, P., Klausner, R. D., Pjura, W. J., and Matayoshi, E. D., 1981, The lack of relationship between fluorescence polarization and lateral diffusion in biological membranes, Biochim. Biophys. Acta 649:471–480.CrossRefGoogle Scholar
  45. Knowles, P. F., Watts, A., and Marsh, D., 1979, Spin label studies of lipid immobilisation in dimyristoylphosphatidylcholine-substituted cytochrome oxidase, Biochemistry 18:4480–4487.PubMedCrossRefGoogle Scholar
  46. Koppel, D. E., and Sheetz, M. P., 1981, Fluorescence photobleaching does not alter the lateral mobility of erythrocyte membrane glycoproteins, Nature 293:159–161.PubMedCrossRefGoogle Scholar
  47. Koppel, D. E., Sheetz, M. P., and Schindler, M., 1981, Matrix control of protein diffusion in biological membranes, Proc. Natl. Acad. Sci. USA 78:3576–3580.PubMedCrossRefGoogle Scholar
  48. Leaver, J., Alonso, A., Durrani, A. A., and Chapman, D., 1984, The biosynthetic incorporation of diacetylenic fatty acids into the biomembranes of Acholeplasma laidlawii A cells and the polymerization of the biomembranes by UV irradiation, Biochim. Biophys. Acta, in press.Google Scholar
  49. London, E., and Fiegenson, G. W., 1981, Fluorescence quenching in model membranes. 2. Determination of local lipid environment of Ca2+-ATPase from sarcoplasmic reticulum, Biochemistry 20:1939–1948.PubMedCrossRefGoogle Scholar
  50. McElhaney, R. N., 1982, The use of differential scanning calorimetry and differential thermal analysis in studies of model and biological membranes, Chem. Phys. Lipids 30:229–259.PubMedCrossRefGoogle Scholar
  51. Mombers, C., Verkleij, A. J., De Grier, J., and Van Deenen, L. L. M., 1979, The interaction of spectrinactin and synthetic phospholipids. II. The interaction with phosphatidylserine, Biochim. Biophys. Acta 551:271–281.PubMedGoogle Scholar
  52. Moore, C., Boxer, D., and Garland, P., 1979, Phosphorescence depolarization and the measurement of rotational motion of proteins in membranes, FEBS Lett. 108:161–166.PubMedCrossRefGoogle Scholar
  53. Mühlebach, T., and Cherry, R. J., 1982, Influence of cholesterol on the rotation and self-association of band 3 in the human erythrocyte membrane, Biochemistry 21:4225–4228.PubMedCrossRefGoogle Scholar
  54. Nigg, E. A., and Cherry, R. J., 1980, Anchorage of a band 3 population at the erythrocyte cytoplasmic membrane surface: Protein rotational diffusion measurements, Proc. Natl. Acad. Sci. USA 77:4702–4706.PubMedCrossRefGoogle Scholar
  55. Oldfield, E., Gilmore, R., Glasser, M., Gutowsky, H. S., Hshung, J. C., Kang, Y-S., King, T. E., Meadows, M., and Rice, D., 1978, Deuterium nuclear magnetic resonance investigation of the effects of proteins and Polypeptides on hydrocarbon chain order in model membrane systems, Proc. Natl. Acad. Sci. USA 75:4657–4660.PubMedCrossRefGoogle Scholar
  56. Overath, P., and Thilo, L., 1978, Structural and functional aspects of biological membranes revealed by lipid phase transitions, in: International Review of Biochemistry, Vol. 19 (J. C. Metcalfe, ed.), University Park Press, Baltimore, pp. 1–44.Google Scholar
  57. Pink, D. A., Georgallas, A., and Chapman, D., 1981, Intrinsic proteins and their effect upon lipid hydrocarbon chain order, Biochemistry 20:7152–7157.PubMedCrossRefGoogle Scholar
  58. Poon, R., Richards, J. M., and Clark, W. R., 1981, The relationship between plasma membrane lipid composition and physical—chemical properties. II. Effect of phospholipid fatty acid modulation of plasma membrane physical properties and enzymic activities, Biochim Biophys. Acta 649:58–66.PubMedCrossRefGoogle Scholar
  59. Razi-Naqvi, K., Gonzalez-Rodriguez, J., Cherry, R. J., and Chapman, D., 1973, Spectroscopic technique for studying protein rotation in membranes, Nature New Biol. 245-251.Google Scholar
  60. Rice, D., and Oldfield, E., 1979, Deuterium nuclear magnetic resonance studies of the interaction between dimyristoylphosphatidylcholine and gramicidin A, Biochemistry 18:3272–3279.PubMedCrossRefGoogle Scholar
  61. Richter, C., Winterhalter, K. H., and Cherry, R. J., 1979, Rotational diffusion of cytochrome P-450 in rat liver microsomes, FEBS Lett. 102:151–154.PubMedCrossRefGoogle Scholar
  62. Rothgeb, T. M., and Oldfield, E., 1981, Nitrogen-14 nuclear magnetic resonance spectroscopy as a probe of lipid bilayer headgroup structure, J. Biol. Chem. 256:6004–6009.PubMedGoogle Scholar
  63. Silvius, J. R., and McElhaney, R. N., 1980, Membrane lipid physical state and modulation of Na+, Mg2+-ATPase activity in Acholeplasma laidlawii B., Proc. Natl. Acad. Sci. USA 77: 1255–1259.PubMedCrossRefGoogle Scholar
  64. Sondergaard, L., 1979, Role of proteins and lipids in non-linear Arrhenius plots of Drosophila mitochondrial succinate-cyochrome c reductase studied by rebinding experiments, Biochim. Biophys. Acta 557:208–216.PubMedCrossRefGoogle Scholar
  65. Szamel, M., and Resch, K., 1981, Modulation of enzyme activities in isolated lymphocyte plasma membranes by enzymatic modification of phospholipid fatty acids, J. Biol. Chem. 256:11618–11623.PubMedGoogle Scholar
  66. Thilo, L., Trauble, H., and Overath, P., 1977, Mechanistic interpretation of the influence of lipid phase transitions on transport functions, Biochemistry 16:1283–1290.PubMedCrossRefGoogle Scholar
  67. Tourtellotte, M. E., and Zuprik, J. S., 1973, Freeze-fractured Acholeplasma laidlawii membranes: Nature of particles observed, Science 179:84–86.PubMedCrossRefGoogle Scholar
  68. Van Zoelen, E. J. J., Van Dijck, P. W. M., de Kruijff, B., Verklsij, A. N., and Van Deenen, L. L. M., 1978, Effect of glycophorin incorporation on the physico-chemical properties of phospholipid bilayers, Biochim. Biophys. Acta 514:9–24.PubMedCrossRefGoogle Scholar
  69. Vaz, W. L. C., Austin, R. H., and Vogel, H., 1979, The rotational diffusion of cytochrome b 5 in lipid bilayer membranes. Influence of lipid physical state, Biophys. J. 26:415–426.PubMedCrossRefGoogle Scholar
  70. Wahl, P., Kasai, M., and Changeux, J-P., 1971, A study of the motion of proteins in excitable membrane fragments by nanosecond fluorescence polarization spectroscopy, Eur. J. Biochem. 18:332–341.PubMedCrossRefGoogle Scholar
  71. Warren, G. B., Houslay, M. D., Metcalfe, J. C., and Birdsall, N. J. M., 1975, Cholesterol is excluded from the phospholipid annulus surrounding an active calcium transport protein, Nature 255: 684–687.PubMedCrossRefGoogle Scholar
  72. Watts, A., Davoust, J., Marsh, D., and Devaux, P. F., 1981, Distinct states of lipid mobility in bovine rod outer segment membranes: Resolution of spin label results, Biochim. Biophys. Acta 643:673–676.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Jeff Leaver
    • 1
  • Dennis Chapman
    • 1
  1. 1.Department of Biochemistry and Chemistry, Royal Free Hospital School of MedicineUniversity of LondonLondonEngland

Personalised recommendations