Lipid Polymorphism and Membrane Function

  • B. de Kruijff
  • P. R. Cullis
  • A. J. Verkleij
  • M. J. Hope
  • C. J. A. Van Echteld
  • T. F. Taraschi


One of the fundamental problems in membrane biology is that of lipid diversity. The number of chemically different membrane lipids is much larger than other key biological building blocks such as nucleotides, amino acids, and carbohydrates. For instance, a relatively simple biomembrane such as that of the red blood cell contains well over a hundred different lipid species.


Phosphatidic Acid Lipid Structure Membrane Function Lipidic Particle Inverted Micelle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Achlama, A., and Zur, Y., 1979, The electric field gradient tensor at the olefinic deuterons of potassium hydrogen maleate, J. Magn. Res. 36:249–258.Google Scholar
  2. Akutsu, H., and Seelig, J., 1981, Interaction of metal ions with phosphatidylcholine bilayer membranes, Biochemistry 20:7366–7373.PubMedCrossRefGoogle Scholar
  3. Bachmann, L., and Schmitt, W. W., 1971, Weniger Artefakte in der Gefrieratzung durch erhöhte Einfriergeschwindigkeit, Naturwissenschaften 58:217–218.CrossRefGoogle Scholar
  4. Baerer, E. L., Düzgünes, N., Friend, D. S., and Papahadjopoulos, D., 1982, Fusion of phospholipid vesicles arrested by quick-freezing. The question of lipidic particles as intermediates in membrane fusion, Biochim. Biophys. Acta 693:93–98.CrossRefGoogle Scholar
  5. Bayer, M. E., 1979, The fusion sites between outer membrane and cytoplasmic membrane of bacteria. Their role in membrane assembly and virus infection, in: Bacterial Outer Membranes, Biogenesis and Functions (M. Inoye, ed.), Wiley Interscience, New York, pp. 167–202.Google Scholar
  6. Blanchette-Mackie, E. J., and Scow, R. O., 1981a, Membrane continuities within cells and intercellular contacts in white adipose tissue of young rats, J. Ultrastruct. Res. 77:277–294.PubMedCrossRefGoogle Scholar
  7. Blanchette-Mackie, E. J., and Scow, R. O., 1981b, Lipolysis and lamellar structures in white adipose tissue of young rats: Lipid movement in membranes, J. Ultrastruct. Res. 77:295–318.PubMedCrossRefGoogle Scholar
  8. Blaurock, A. E., 1982, Evidence of bilayer structure and of membrane interactions from X-ray diffraction analysis, Biochim. Biophys. Acta 650:167–207.PubMedCrossRefGoogle Scholar
  9. Blobel, S., and Dobberstein, B., 1975, Transfer of proteins across membranes. I. Presence of proteolytically processed and unprocessed nascent Immunoglobulin light chains on membrane-bound ribosomes of murine myeloma, J. Cell Biol. 67:835–851.PubMedCrossRefGoogle Scholar
  10. Boggs, J. M., Stamp, D., Hughes, D. W., and Deber, C. M., 1981, Influence of ether linkage on the lamellar to hexagonal phase transition of ethanolamine phospholipids, Biochemistry 20:5728–5735.PubMedCrossRefGoogle Scholar
  11. Boni, L. T., Stewart, T. P., Aldorfer, J. L., and Hui, S. W., 1981, Lipid-polyethylene glycol interactions. II. Formation of defects in bilayers, J. Membr. Biol. 62:71–77.PubMedCrossRefGoogle Scholar
  12. Borovjagin, V. L., and Moshkov, D. A., 1973, A study of the ultrastructural organization of cytochrome-c-phospholipid membranes as revealed by various experimental treatments, J. Membr. Biol. 13:245–262.PubMedCrossRefGoogle Scholar
  13. Borovjagin, V. L., Vergara, J. A., and McIntosh, T. J., 1982, Morphology of the intermediate stages in the lamellar to hexagonal lipid phase transition, J. Membr. Biol. 69:199–212.PubMedCrossRefGoogle Scholar
  14. Boulan, E., and Sabatini, D. D., 1978, Asymmetric budding of viruses in epithelial monolayers: A model system for study of epithelial polarity, Proc. Natl. Acad. Sci. USA 75:5071–5075.CrossRefGoogle Scholar
  15. Brdiczka, D., and Kolb, V., 1978, Reduction of ADP/ATP exchange rates after dissociation of the contact sites between the two boundary membranes in rat liver mitochondria, Hoppe-Seyler’s Z. Physiol. Chem. 359:1063–1068.Google Scholar
  16. Bruckdorfer, K. R., Demel, R. A., de Gier, J., and Van Deenen, L. L. M., 1969, The effects of partial replacements of membrane cholesterol by other steroids on the osmotic fragility and glycerol permeability of erythrocytes, Biochim. Biophys. Acta 183:334–345.PubMedCrossRefGoogle Scholar
  17. Buchheim, W., Drenckhahn, D., and Lüllmann-Rauch, R., 1979, Freeze-fracture studies of cytoplasmic inclusions occurring in experimental lipidosis as induced by amphiphilic cationic drugs. Biochim. Biophys. Acta 575:71–80.PubMedCrossRefGoogle Scholar
  18. Büldt, G., Gally, H. U., Seelig, A., Seelig, J., and Zaccai, G., 1978, Neutron diffraction studies on selectively deuterated phospholipid bilayers, Nature 271:182–184.PubMedCrossRefGoogle Scholar
  19. Burnell, E. E., Cullis, P. R., and De Kruijff, B., 1980a, Effects of tumbling and lateral diffusion on phosphatidylcholine model membrane 31P-NMR lineshapes, Biochim. Biophys. Acta 603:63–69.PubMedCrossRefGoogle Scholar
  20. Burnell, E., Van Alphen, L., Verkleij, A. J., De Kruijff, B., and Lugtenberg, B., 1980b, 31P nuclear magnetic resonance and freeze-fracture electron microscopy studies on Escherichia coli. III. The outer membrane, Biochim. Biophys. Acta 597:518–532.PubMedCrossRefGoogle Scholar
  21. Burnett, L. J., and Muller, B. H., 1971, Deuteron quadrupole coupling constants in three solid deuterated paraffin hydrocarbons: C2D6, C4D10, C6D14, J. Chem. Phys. 55:5829–5831.CrossRefGoogle Scholar
  22. Chapman, D., Cornell, B. A., Eliasz, A. W., and Perry, A., 1977, Interactions of helical Polypeptide segments which span the hydrocarbon region of lipid bilayers. Studies of the gramicidin A lipid-water system, J. Mol. Biol. 113:517–538.PubMedCrossRefGoogle Scholar
  23. Chi, E. Y., and Lagunoff, D., 1978, Linear arrays of intramembranous particles in pulmonary tubular myelin, Proc. Natl. Acad. Sci. USA 75:6225–6229.PubMedCrossRefGoogle Scholar
  24. Christiansson, A., Gutman, H., Wieslander, Å, and Lindblom, G., 1981, Effects of anaesthetics on water permeability and lipid metabolism in Acholeplasma laidlawaii membranes, Biochim. Biophys. Acta 645:24–32.PubMedCrossRefGoogle Scholar
  25. Corless, J. M., and Costello, M. J., 1981, Paracrystalline inclusions associated with the disk membranes of frog retinal rod outer segments, Exp. Eye Res. 32:217–228.PubMedCrossRefGoogle Scholar
  26. Crowe, L. M., and Crowe, J. H., 1982, Hydration dependent hexagonal phase lipid in a biological membrane, Arch. Biochem. Biophys. 217:582–587.PubMedCrossRefGoogle Scholar
  27. Cullis, P. R., 1976a, Hydrocarbon phase transitions, heterogenous lipid distributions and lipid-protein interactions in erythrocyte membranes, FEBS Lett. 68:173–176.PubMedCrossRefGoogle Scholar
  28. Cullis, P. R., 1976b, Lateral diffusion rates of phosphatidylcholine in vesicle membranes: Effects of cholesterol and hydrocarbon phase transitions, FEBS Lett. 70:233–228.CrossRefGoogle Scholar
  29. Cullis, P. R., and De Kruijff, B., 1976, 31P-NMR studies of unsonicated aqueous dispersions of neutral and acidic phospholipids. Effects of phase transitions p2H and divalent cations on the motion in the phosphate region of the polar headgroup, Biochim. Biophys. Acta 436:523–540.PubMedCrossRefGoogle Scholar
  30. Cullis, P. R., and De Kruijff, B., 1978a, Polymorphic phase behaviour of lipid mixtures as detected by 31P-NMR, Biochim. Biophys. Acta 507:207–218.PubMedCrossRefGoogle Scholar
  31. Cullis, P. R., and De Kruijff, B., 1978b, The polymorphic phase behaviour of phosphatidylethanolamines of natural and synthetic origin. A 31P-NMR study, Biochim. Biophys. Acta 513:31–42.PubMedCrossRefGoogle Scholar
  32. Cullis, P. R., and De Kruijff, B., 1979, Lipid polymorphism and the functional role of lipids in biological membranes, Biochim. Biophys. Acta 559:399–420.PubMedCrossRefGoogle Scholar
  33. Cullis, P. R., and Grathwohl, Ch., 1977, Hydrocarbon phase transitions and lipid-protein interactions in the erythrocyte membrane, Biochim. Biophys. Acta 471:213–226.PubMedCrossRefGoogle Scholar
  34. Cullis, P. R., and Hope, M. J., 1978, Effects of fusogenic agent on membrane structure of erythrocyte ghosts and the mechanism of membrane fusion, Nature 271:672–675.PubMedCrossRefGoogle Scholar
  35. Cullis, P. R., and Hope, M. J., 1980, The bilayer stabilizing role of sphingomyelin in the presence of cholesterol. A 31P-NMR study, Biochim. Biophys. Acta 597:533–542.PubMedCrossRefGoogle Scholar
  36. Cullis, P. R., Verkleij, A. J., and Ververgaert, P. H. J. Th., 1978a, Polymorphic phase behaviour of cardiolipin as detected by 31P-NMR and freeze fracture techniques. Effects of calcium, dibucaine and chlorpromazine, Biochim. Biophys. Acta 513:11–20.PubMedCrossRefGoogle Scholar
  37. Cullis, P. R., Van Dijck, P. W. M., De Kruijff, B., and De Gier, J., 1978b, Effects of cholesterol on the properties of equimolar mixtures of synthetic phosphatidylethanolamine and phosphatidylcholine. A 31P-NMR and differential scanning calorimetry study, Biochim. Biophys. Acta 513:21–30.PubMedCrossRefGoogle Scholar
  38. Cullis, P. R., De Kruijff, B., Hope, M. J., Nayar, R., and Schmid, S. L., 1980a, Phospholipids and membrane transport, Can. J. Biochem. 58:1091–1100.PubMedGoogle Scholar
  39. Cullis, P. R., De Kruijff, B., Hope, M. J., Nayar, R., Rietveld, A., and Verkleij, A. J., 1980b, Structural properties of phospholipids in the rat liver inner mitochondrial membrane. A 31P-NMR study, Biochim. Biophys. Acta 600:625–635.PubMedCrossRefGoogle Scholar
  40. Cullis, P. R., Hornby, A. P., and Hope, M. J., 1980c, Lipid polymorphism and the molecular of anaesthesia, in: Molecular Mechanisms of Anaesthesia, Progress in Anaesthesia, Vol. 25 (B. R. Fisk, ed.), Raven Press, New York.Google Scholar
  41. Cullis, P. R., De Kruijff, B., Hope, M. J., Verkleij, A. J., Nayar, R., Fairen, S. B., Tilcock, C., Madden, T. D., and Bally, M. B., 1982, Structural properties of lipids and their functional roles in biological membranes. In: Membrane Fluidity, Vol. 2 (R. C. Aloia, ed.), Academic Press, New York, pp. 40–79.Google Scholar
  42. Deamer, D. W., Leonard, R., Tardieu, A., and Branton, D., 1970, Lamellar and hexagonal lipid phases visualized by freeze etching, Biochim. Biophys. Acta 219:47–60.PubMedCrossRefGoogle Scholar
  43. De Grip, W. J., Drenthe, E. H. S., Van Echteld, C. J. A., De Kruijff, B., and Verkleij, A. J., 1979, A possible role of rhodopsin in maintaining bilayer structure in the photoreceptor membrane, Biochim. Biophys. Acta 558:330–337.PubMedCrossRefGoogle Scholar
  44. Dekker, C. J., Geurts van Kessel, W. S. M., Klomp, J. P. G., Pieters, J., and De Kruijff, B., 1983, Synthesis and polymorphic phase behaviour of polyunsaturated phosphatidylcholines and phosphatidylethanolamines, Chem. Phys. Lipids, in press.Google Scholar
  45. De Kruijff, B., and Cullis, P. R., 1980a, The influence of poly(L-lysine) on phospholipid polymorphism. Evidence that electrostatic polypeptide-phospholipid interactions can modulate bilayer-non-bilayer transitions, Biochim. Biophys. Acta 601:235–240.PubMedCrossRefGoogle Scholar
  46. De Kruijff, B., and Cullis, P. R., 1980b, Cytochrome c specifically induces non-bilayer structures in cardiolipin-containing model membranes, Biochim. Biophys. Acta 602:477–490.PubMedCrossRefGoogle Scholar
  47. De Kruijff, B., Cullis, P. R., Radda, G. K., and Richards, R. E., 1976a, Phosphorus nuclear magnetic resonance of Acholeplasma laidlawaii cell membranes and derived liposomes, Biochim. Biophys. Acta 419:411–424.PubMedCrossRefGoogle Scholar
  48. De Kruijff, B., Cullis, P. R., and Radda, G. K., 1976b, Outside-inside distributions and sizes of mixed phosphatidylcholine cholesterol vesicles, Biochim. Biophys. Acta 436:729–740.PubMedCrossRefGoogle Scholar
  49. De Kruijff, B., Van den Besselaar, A. M. H. P., Cullis, P. R., Van den Bosch, H., and Van Deenen, L. L. M., 1978, Evidence for isotropic motion of phospholipids in liver microsomal membranes, A 31P-NMR study, Biochim. Biophys. Acta 514:1–8.PubMedCrossRefGoogle Scholar
  50. De Kruijff, B., Verkleij, A. J., Van Echteld, C. J. A., Gerritsen, W. J., Mombers, C., Noordam, P. C., and De Gier, J., 1979, The occurrence of lipid particles in lipid bilayers as seen by 31P-NMR and freeze fracture electron microscopy, Biochim. Biophys. Acta 555:200–209.PubMedCrossRefGoogle Scholar
  51. De Kruijff, B., Cullis, P. R., and Verkleij, A. J., 1980a, Nonbilayer lipid structures in model and biological membranes, Trends Biochem. Sci. 5:79–81.CrossRefGoogle Scholar
  52. De Kruijff, B., Rietveld, A., and Cullis, P. R., 1980b, 31P-NMR studies on membrane phospholipids in microsomes, rat liver slices and intact perfused rat liver, Biochim. Biophys. Acta 600:343–357.PubMedCrossRefGoogle Scholar
  53. De Kruijff, B., Rietveld, A., and Van Echteld, C. J. A., 1980c, 13C-NMR detection of lipid polymorphism in model and biological membranes, Biochim. Biophys. Acta 600:597–606.PubMedCrossRefGoogle Scholar
  54. De Kruijff, B., Verkleij, A. J., Van Echteld, C. J. A., Gerritsen, W. J., Noordam, P. C., Mombers, C., Rietveld, A., De Gier, J., Cullis, P. R., Hope, M. J., and Nayar, R., 1981, Non-bilayer lipids and the inner mitochondrial membrane, in: International Cell Biology, 1980–1981 (H. G. Schweig, ed.), Springer Verlag, Berlin, pp. 559–571.CrossRefGoogle Scholar
  55. De Kruijff, B., Nayar, R., and Cullis, P. R., 1982a, 31P-NMR studies on phospholipid structure in membranes of intact, functionally-active, rat liver mitochondria, Biochim. Biophys. Acta 684: 47–52.PubMedCrossRefGoogle Scholar
  56. De Kruijff, B., Verkleij, A. J., Leunissen-Bijvelt, J., Van Echteld, C. J. A., Hille, J., and Rijnbout, H., 1982b, Further aspects of the Ca2+-dependent polymorphism of bovine heart cardiolipin, Biochim. Biophys. Acta 693:1–12.PubMedCrossRefGoogle Scholar
  57. Demel, R. A., and De Kruijff, B., 1976, The function of sterols in membranes, Biochim. Biophys. Acta 457:109–132.PubMedCrossRefGoogle Scholar
  58. Dragsten, P. R., Blumenthal, R., and Handler, J. S., 1981, Membrane asymmetry in epithelia: Is the tight junction a barrier to diffusion in the plasma membrane? Nature 294:718–722.PubMedCrossRefGoogle Scholar
  59. Edelman, G. M., 1976, Surface modulation in cell recognition and cell growth, Science 192:218–226.PubMedCrossRefGoogle Scholar
  60. Engelman, D. M., and Steitz, T. A., 1981, The spontaneous insertion of proteins into and across membranes: The helical hairpin hypothesis, Cell 23:411–422.PubMedCrossRefGoogle Scholar
  61. Farren, S. B., and Cullis, P. R., 1980, Polymorphism of phosphatidylglycerol-phosphatidylethanolamine model membrane systems: A 31P-NMR study, Biochem. Biophys. Res. Commun. 97:182–191.PubMedCrossRefGoogle Scholar
  62. Farren, S. B., Hope, M. J., and Cullis, P. R., 1983, Polymorphic phase preferences of phosphatidic acid: A 31P and 2H-NMR study, Biochem. Biophys. Res. Commun., in press.Google Scholar
  63. Ferguson, K. A., Hui, S. W., Stewart, T. P., and Yeagle, P. I., 1982, Phase behavior of the major lipids of tetrahymena ciliary membranes, Biochim. Biophys. Acta 684:179–186.PubMedCrossRefGoogle Scholar
  64. Fromherz, P., 1983, The assembly of lipids and surfactants: Molecular and phenomenological concepts, in: Biological and Technological Relevance of Reversed Micelles and Other Amphiphilic Structures in Apolar Media (P. L. Luisi, ed.), Plenum Press, New York, in press.Google Scholar
  65. Gallay, J., and De Kruijff, B., 1982, Correlation between molecular shape and hexagonal HII phase promoting ability of sterols, FEBS Lett. 143:133–136.PubMedCrossRefGoogle Scholar
  66. Gaily, H. U., Pluschke, G., Overath, P., and Seelig, J., 1980, Structure of Escherichia coli membranes. Fatty acyl chain order parameters of inner and outer membranes and derived liposomes, Biochemistry 19:1638–1643.CrossRefGoogle Scholar
  67. Gasser, S. M., Ohashi, A., Daum, G., Bohni, P. C., Gibson, J., Reid, G. A., Yonetami, T., and Schatz, G., 1982, Imported mitochondrial proteins cytochrome-b2 and cytochrome-c1 are processed in two steps, Proc. Natl. Acad. Sci. USA 79:267–271.PubMedCrossRefGoogle Scholar
  68. Gerritsen, W. J., De Kruijff, B., Verkleij, A. J., De Gier, J., and Van Deenen, L. L. M., 1980, Ca2+-induced isotropic motion and phosphatidylcholine Flip-Flop in phosphatidylcholine-cardiolipin bilayers, Biochim. Biophys. Acta 598:554–560.PubMedCrossRefGoogle Scholar
  69. Ghosh, R., and Seelig, J., 1982, The interaction of cholesterol with bilayers of phosphatidylethanolamine, Biochim. Biophys. Acta 691:151–160.CrossRefGoogle Scholar
  70. Goormaghtigh, E., Van den Branden, M., Ruysschaert, J. M., and De Kruijff, B., 1982, Adriamycin inhibits the formation of non-bilayer lipid structures in cardiolipin-containing model membranes, Biochim. Biophys. Acta 685:137–143.PubMedCrossRefGoogle Scholar
  71. Griffin, R. G., 1976, Observation of the effect of water on the 31P nuclear magnetic resonance spectra of dipalmitoyllecithin, J. Am. Chem. Soc. 98:851–853.PubMedCrossRefGoogle Scholar
  72. Gulik-Krzywicky, T., Shechter, E., Luzzatti, V., and Foure, M., 1969, Interactions of proteins and lipids: Structure and polymorphism of protein-lipid-water phases, Nature 223:1116–1117.CrossRefGoogle Scholar
  73. Hackenbrock, C. R., Höchli, M., and Chau, R. M., 1976, Calorimetric and freeze fracture analysis of lipid phase transitions and lateral translational motion of intramembrane particles in mitochondrial membranes, Biochim. Biophys. Acta 455:466–484.PubMedCrossRefGoogle Scholar
  74. Haest, C. W. M., 1982, Interactions between membrane skeleton proteins and the intrinsic domain of the erythrocyte membrane, Biochim. Biophys. Acta 694:331–353.PubMedCrossRefGoogle Scholar
  75. Hardman, P. D., 1982, Spin-label characterization of the lamellar-to-hexagonal (HII) phase transition in egg phosphatidylethanolamine aqueous dispersions, Eur. J. Biochem. 124:95–101.PubMedCrossRefGoogle Scholar
  76. Harlos, K., and Eibl, H., 1980, Influence of calcium on phosphatidylglycerol. Two separate lamellar structures, Biochemistry 19:896–899.CrossRefGoogle Scholar
  77. Harlos, K., and Eibl, H., 1981, Hexagonal phases in phospholipids with saturated chains: Phosphatidylethanolamines and phosphatidic acids, Biochemistry 20:2888–2892.PubMedCrossRefGoogle Scholar
  78. Hartmann, W., and Galla, H. J., 1978, Binding of poly-lysine to charged bilayer membranes: Molecular organization of a lipid-peptide complex, Biochim. Biophys. Acta 509:474–490.PubMedCrossRefGoogle Scholar
  79. Hauser, H., Pascher, L., Pearson, R. H., and Sunbell, S., 1981, Preferred conformation and molecular packing of phosphatidylethanolamine and phosphatidylcholine, Biochim. Biophys. Acta 650:21–51.PubMedCrossRefGoogle Scholar
  80. Helenius, A., Marsh, M., and White, J., 1980, The entry of viruses into animal cells, Trends Biochem. Sci. 5:104–106.CrossRefGoogle Scholar
  81. Hemminga, M. A., and Cullis, P. R., 1982, Phosphorus-31 NMR studies of orientated phospholipid multilayers, J. Magn. Res. 47:307–323.Google Scholar
  82. Herzfeld, J., Griffin, R. G., and Haberkorn, R. A., 1978, Phosphorus-31 chemical shift tensors in bariumdiethylphosphate and urea-phosphoric acid: Model compounds for phospholipid head-group studies, Biochemistry 17:2711–2718.PubMedCrossRefGoogle Scholar
  83. Heuser, J. E., Reese, T. S., Dennis, M. J., Ian, V., Ian, L., and Evans, L., 1979, Synaptic vesicle exocytosis captured by quick freezing and correlated with quantal transmitter release, J. Cell Biol. 81:275–300.PubMedCrossRefGoogle Scholar
  84. Hope, M. J., and Cullis, P. R., 1979, The bilayer stability of inner monolayer lipids from the human erythrocytes, FEBS Lett. 107:323–326.PubMedCrossRefGoogle Scholar
  85. Hope, M. J., and Cullis, P. R., 1980, Effects of divalent cations and pH on phosphatidylserine model membranes: A 31P-NMR study, Biochem. Biophys. Res. Commun. 92:846–852.PubMedCrossRefGoogle Scholar
  86. Hope, M. J., and Cullis, P. R., 1981, The role of non-bilayer lipid structures in the fusion of human erythrocytes induced by lipid fusogens, Biochim. Biophys. Acta 640:82–90.PubMedCrossRefGoogle Scholar
  87. Hope, M. J., Walker, D. C., and Cullis, P. R., 1983, Ca2+ and pH induced fusion of small lamellar vesicles consisting of phosphatidylethanolamine and negatively charged phospholipids: A freeze fracture study. Biochem. Biophys. Res. Commun. 110:15–23.PubMedCrossRefGoogle Scholar
  88. Hornby, A. P., and Cullis, P. R., 1981, Influence of local and neutral anaesthetics on the polymorphic phase preferences of egg yolk phosphatidylethanolamine, Biochim. Biophys. Acta 647:285–292.PubMedCrossRefGoogle Scholar
  89. Hui, S. W., and Stewart, T. P., 1981, “Lipidic particles” are intermembrane attachment sites, Nature 290:427.PubMedCrossRefGoogle Scholar
  90. Hui, S. W., Stewart, T. P., Yeagle, P. L., and Albert, A. D., 1981, Bilayer to non-bilayer transition in mixtures of phosphatidylethanolamine and phosphatidylcholine: Implications for membrane properties, Arch. Biochem. Biophys. 207:227–240.PubMedCrossRefGoogle Scholar
  91. Hutsen, J. L., and Higgins, J. A., 1982, Asymmetric synthesis followed by transmembrane movement of phosphatidylethanolamine in rat liver endoplasmic reticulum, Biochim. Biophys. Acta 687:247–256.CrossRefGoogle Scholar
  92. Huynk, S., 1973, Etude par diffraction des rayons X du Systeme lipides totaux de batonnets retiniens-eau, Biochimie 55:431–434.CrossRefGoogle Scholar
  93. Ioannou, P. V., and Golding, B. T., 1979, Cardiolipins: Their chemistry and biochemistry, Progr. Lipid Res. 17:279–318.CrossRefGoogle Scholar
  94. Israelachvili, J. N., 1977, Refinement of the fluid-mosaic model of membrane structure, Biochim. Biophys. Acta 469:221–225.PubMedCrossRefGoogle Scholar
  95. Jain, M. K., Van Echteld, C. J. A., Raminez, F., De Gier, J., De Haas, G. H., and Van Deenen, L. L. M., 1980, Association of lypophosphatidylcholine with fatty acids in aqueous phase to form bilayers, Nature 284:486–487.PubMedCrossRefGoogle Scholar
  96. Janiak, M. S., Small, D. M., and Shipley, G. G., 1976, Nature of the thermal pretransition of synthetic phospholipids: Dimyristoyl-and dipalmitoyllecithin, Biochemistry 25:4575–4580.CrossRefGoogle Scholar
  97. Kachar, B., and Reese, T. S., 1982, Evidence for the lipidic nature of tight junction strands, Nature 296:464–466.PubMedCrossRefGoogle Scholar
  98. Khan, A., Rilfors, L., Wieslander, A., and Lindblom, B., 1981, The effect of cholesterol on the phase structure of glucolipids from Acholeplasma laidlawaii membranes, Eur. J. Biochem. 116:215–220.PubMedCrossRefGoogle Scholar
  99. Killian, J. A., De Kruijff, B., Van Echteld, C. J. A., Verkleij, A. J., Leunissen-Bijvelt, J., and De Gier, J., 1983, Mixtures of gramicidin and lysophosphatidylcholine from lamellar structures, Biochim. Biophys. Acta 728:141–144.PubMedCrossRefGoogle Scholar
  100. Kohler, S. J., and Klein, M. P., 1977, Orientation and dynamics of phospholipid head groups in bilayers and membranes determined from 31P nuclear magnetic resonance chemical shielding tensors, Biochemistry 16:519–526.PubMedCrossRefGoogle Scholar
  101. Koter, M., De Kruijff, B., and Van Deenen, L. L. M., 1978, Calcium-induced aggregation and fusion of mixed phosphatidylcholine-phosphatidic acid vesicles as studied by 31P-NMR, Biochim. Biophys. Acta 514:255–263.PubMedCrossRefGoogle Scholar
  102. Larsson, K., Fontell, K., and Krog, N., 1980, Structural relationships between lamellar, cubic and hexagonal phases in monoglyceride-water systems. Possibility of cubic structures in biological systems, Chem. Phys. Lipids 27:321–328.CrossRefGoogle Scholar
  103. Lee, A. G., 1976, Interactions between phospholipids and barbiturates, Biochim. Biophys. Acta 455:102–108.PubMedCrossRefGoogle Scholar
  104. Lindblom, G., Larsson, K., Johansson, L., Fontell, K., and Forsen, S., 1979, The cubic phase of monoglyceride-water systems. Arguments for a structure based upon lamellar bilayer unit, J. Am. Chem. Soc. 101:5465–5470.CrossRefGoogle Scholar
  105. Lucy, J. A., 1964, Globular lipid micelles and cell membranes, J. Theoret. Biol. 7:360–375.CrossRefGoogle Scholar
  106. Lugtenberg, B., and Van Alphen, L., 1983, Molecular architecture and functioning of the outer membrane of E. coli and other gram-negative bacteria, Biochim. Biophys. Acta 737:51–115.PubMedCrossRefGoogle Scholar
  107. Lutz, H. A., Shin-Chun, L., and Palek, J., 1977, Release of spectrin-free vesicles from human erythrocytes during ATP depletion. I. Characterization of spectrin-free vesicles, J. Cell Biol. 73:548–560.PubMedCrossRefGoogle Scholar
  108. Luzzati, V., 1968, X-ray diffraction studies of lipid-water systems, in: Biological Membranes (D. Chapman, ed.), Academic Press, New York, pp. 71–123.Google Scholar
  109. Luzzati, V., Gulik-Krzywicki, T., and Tardieu, A., 1968, Polymorphism of lecithins, Nature 218:1031–1034.PubMedCrossRefGoogle Scholar
  110. Madden, T. D., and Cullis, P. R., 1982, Stabilization of bilayer structure for unsaturated phosphatidylethanolamines by detergens, Biochim. Biophys. Acta 684:149–153.PubMedCrossRefGoogle Scholar
  111. Mantsch, H. H., Martin, A., and Cameron, D. G., 1981, Characterization by infra-red spectroscopy of the bilayer to non-bilayer phase transition of phosphatidylethanolamines, Biochemistry 20:3138–3145.PubMedCrossRefGoogle Scholar
  112. Marchesi, V. T., Tillack, T. W., Jackson, R. L., Segrest, J. P., and Scott, R. E., 1972, Chemical characterization and surface orientation of the major glycoprotein of the human erythrocyte membrane, Proc. Natl. Acad. Sci. USA 69:1445–1449.PubMedCrossRefGoogle Scholar
  113. Marchesi, V. T., Furthermayr. H., and Tomita, M., 1976, The red cell membrane, Annu. Rev. Biochem. 45:667–698.PubMedCrossRefGoogle Scholar
  114. Marsh, D., and Seddon, J. M., 1982, Gel-to-inverted hexagonal (Lβ-HII) phase transitions in phosphatidylethanolamines and fatty acid-phosphatidylcholine mixtures, demonstrated by 31P-NMR spectroscopy and X-ray diffraction, Biochim. Biophys. Acta 690:117–123.PubMedCrossRefGoogle Scholar
  115. McLaughlin, A. C., Cullis, P. R., Hemminga, M. A., Hoult, D. I., Radda, G. K., Ritchie, G. A., Seeley, P. J., and Richards, R. E., 1975, Application of 31P-NMR to model and biological membrane systems, FEBS Lett. 57:213–218.PubMedCrossRefGoogle Scholar
  116. McLaughlin, A. C., Herbette, L., Blasie, J. K., Wang, C. T., Hymel, L., and Fleischer, S., 1981, 31P-NMR studies of oriented multilayers formed from isolated sarcoplasmic reticulum and reconstituted sarcoplasmic reticulum. Evidence that “boundary-layer” phospholipid is not immobilized, Biochim. Biophys. Acta 643:1–16.PubMedCrossRefGoogle Scholar
  117. Miller, R. G., 1980, Do “lipidic particles” represent intermembrane attachment sites? Nature 287:166–167.PubMedCrossRefGoogle Scholar
  118. Minnikin, D. E., Abdolrahimzadeh, H., and Baddiley, J., 1971, The interrelation of phosphatidylethanolamine and glycosyldiglycerides in bacterial membranes, Biochem. J. 124:447–448.PubMedGoogle Scholar
  119. Mombers, C., Verkleij, A. J., De Gier, J., and Van Deenen, L. L. M., 1979, The interaction of spectrinactin and synthetic phospholipids. II. The interaction with phosphatidylserine. Biochim. Biophys. Acta 551:271–281.PubMedGoogle Scholar
  120. Moor, H., Kistler, J., and Muller, M., 1976, Freezing in a propane jet, Experientia 32:805–815.Google Scholar
  121. Morré, D. J., Kartenbeck, J., and Franke, W. W., 1979, Membrane flow and interconversions among endomembranes, Biochim. Biophys. Acta 559:71–152.PubMedCrossRefGoogle Scholar
  122. Murphy, D. J., 1982, The importance of non-bilayer regions in photosynthetic membranes and their stabilization by galactolipids, FEBS Lett. 150:19–27.CrossRefGoogle Scholar
  123. Nayar, R., Schmid, S. L., Hope, M. J., and Cullis, P. R., 1982, Structured preferences of phosphatidylinositol and phosphatidylinositol-phosphatidylethanolamine model membranes. Influence of Ca2+ and Mg2+, Biochim. Biophys. Acta 688:169–176.PubMedCrossRefGoogle Scholar
  124. Nesmeyanova, M. A., 1982, On the possible participation of acid phospholipids in the translocation of secreted proteins through the bacterial cytoplasmic membrane, FEBS Lett. 142:189–193.PubMedCrossRefGoogle Scholar
  125. Nicholls, P., 1974, Cytochrome c binding to enzymes and membranes, Biochim. Biophys. Acta 346:261–310.PubMedCrossRefGoogle Scholar
  126. Nicolson, G. L., 1976, Transmembrane control of the receptors on normal and tumor cells. I. Cytoplasmic influence over cell surface components, Biochim. Biophys. Acta 457:57–108.PubMedCrossRefGoogle Scholar
  127. Noordam, P. C., Van Echteld, C. J. A., De Kruijff, B., Verkleij, A. J., and De Gier, J., 1980, Barrier characteristics of membrane model systems containing unsaturated phosphatidylethanolamines, Chem. Phys. Lipids 27:221–232.PubMedCrossRefGoogle Scholar
  128. Noordam, P. C., Van Echteld, C. J. A., De Kruijff, B., and De Gier, J., 1981, Rapid transbilayer movement of phosphatidylcholine in unsaturated phosphatidylethanolamine containing model systems, Biochim. Biophys. Acta 646:483–487.CrossRefGoogle Scholar
  129. Ogawa, S., Rottenberg, H., Brown, T. R., Schulman, R. G., Costello, C. L., and Glynn, P., 1975, High-resolution 31P nuclear magnetic resonance study of rat liver mitochondria, Proc. Natl. Acad. Sci. USA 75:1796–1800.CrossRefGoogle Scholar
  130. Op Den Kamp, J. A. F., 1979, Lipid asymmetry in membranes, Annu. Rev. Biochem. 48:47–71.PubMedCrossRefGoogle Scholar
  131. Paiement, J., Beaufay, H., and Godelaine, D., 1980, Coalescence of microsomal vesicles from rat liver: A phenomenon occurring in parellel with enhancement of the glycosylation activity during incubation of stripped rough microsomes with GTP, J. Cell Biol. 86:29–37.PubMedCrossRefGoogle Scholar
  132. Papahadjopoulos, D., Vail, W. J., Jacobson, K., and Poste, G., 1975a, Cochleate lipid cylinders: Formation by fusion of unilamellar lipid vesicles, Biochim. Biophys. Acta 394:483–491.PubMedCrossRefGoogle Scholar
  133. Papahadjopoulos, D., Moscarello, M., Eylar, E. H., and Isac, T., 1975b, Effects of proteins on thermotropic phase transitions of phospholipid membranes, Biochim. Biophys. Acta 401:317–335.PubMedCrossRefGoogle Scholar
  134. Papahadjopoulos, D., Vail, W. J., Pangborn, W. A., and Poste, G., 1976, Induction of fusion in pure phospholipid membranes by calcium ions and other divalent metals, Biochim. Biophys. Acta 448: 265–283.PubMedCrossRefGoogle Scholar
  135. Papahadjopoulos, D., Portis, A., and Pangborn, W., 1978, Calcium-induced lipid phase transitions and membrane fusion, Ann. N.Y. Acad. Sci. 308:50–66.PubMedCrossRefGoogle Scholar
  136. Pasvol, G., Wainscoat, J. S., and Weatherall, D. J., 1982, Erythrocytes deficient in glycophorin resist invasion by the material parasite Plasmodium falcipaurus, Nature 297:64–66.PubMedCrossRefGoogle Scholar
  137. Pinto da Silva, P., and Kachar, B., 1982, On tight-junction structure, Cell 28:441–450.PubMedCrossRefGoogle Scholar
  138. Putney, J. W., Weiss, S. J., Van Der Walle, C. M., and Haddas, R. A., 1980, Is phosphatidic acid a calcium ionophore under neurohumoral control? Nature 284:345–347.PubMedCrossRefGoogle Scholar
  139. Rand, R. P., and Sengupta, S., 1972, Cardiolipin forms hexagonal structures with divalent cations, Biochim. Biophys. Acta 255:484–492.PubMedCrossRefGoogle Scholar
  140. Rand, R. P., Tinker, D. A., and Fast, P. G., 1971, Polymorphism of phosphatidylethanolamines from two natural sources, Chem. Phys. Lipids 6:333–342.PubMedCrossRefGoogle Scholar
  141. Rand, R., Pangborn, W. A., Purdas, A. D., and Tinker, D. O., 1975, Lysolecithin and cholesterol interact stoichiometrically forming bimolecular lamellar structures in the presence of excess water, or lysolecithin or cholesterol, Can. J. Biochem. 53:189–195.PubMedCrossRefGoogle Scholar
  142. Rand, P. R., Reese, T. S., and Miller, R. G., 1981, Phospholipid bilayer deformations associated with interbilayer contact and fusion, Nature 293:237–238.PubMedCrossRefGoogle Scholar
  143. Reiss-Husson, F., 1967, Structure des phases liquides-cristallines de differentes phospholipides, monoglycerides, sphingolipides, anhydres ou en presence d’ eau, J. Mol. Biol. 25:363–382.PubMedCrossRefGoogle Scholar
  144. Rivas, E., and Luzzatti, V., 1969, Polymorphisme des lipides polaires et des galacto-lipides de choroplastes de mais, en presence d’ eau, J. Mol. Biol. 41:261–281.PubMedCrossRefGoogle Scholar
  145. Rothman, J. E., 1981, The Golgi apparatus: Two organelles in tandem, Science 213:1212–1219.PubMedCrossRefGoogle Scholar
  146. Rothman, J. E., and Lenard, J., 1977, Membrane asymmetry: The nature of membrane asymmetry provides clues to the puzzle of how membranes are assembled, Science 195:743–753.PubMedCrossRefGoogle Scholar
  147. Rüppel, D., Kapitza, H.-G., Galla, H. J., Sixl, F., and Sachmann, E., 1982, On the microstructure and phase diagram of dimyristoylphosphatidylcholine-glycophorin bilayers. The role of defects and the hydrophilic lipid-protein interactions, Biochim. Biophys. Acta 692:1–17.CrossRefGoogle Scholar
  148. Ruygrok, T. J. C., Van Zaane, D., Wirtz, K. W. A., and Scherphof, G. L., 1972, The effects of calcium acetate on mitochondria in the perfused rat liver. II. Enhanced transfer of phosphatidylcholine from outer to inner mitochondrial membranes, Cytobiologie 5:412–421.Google Scholar
  149. Salmon, D. M., and Honeyman, T. W., 1980, Proposed mechanism of cholinergic action in smooth muscle. Nature 284:344–345.PubMedCrossRefGoogle Scholar
  150. Seelig, J., 1977, Deuterium magnetic resonance: Theory and application to lipid membranes, Q. Rev. Biophys. 10:353–418.PubMedCrossRefGoogle Scholar
  151. Seelig, J., 1978, 31P nuclear magnetic resonance and the head group structure of phospholipids in membranes, Biochim. Biophys. Acta 515:105–140.PubMedCrossRefGoogle Scholar
  152. Seelig, J., and Gally, H. U., 1976, Investigation of phosphatidylethanolamine bilayers by deuterium and phosphorus-31 nuclear magnetic resonance, Biochemistry 15:5199–5204.PubMedCrossRefGoogle Scholar
  153. Seelig, J., and Seelig, A., 1980, Lipid conformation in model membranes and biological membranes, Q. Rev. Biophys. 13:19–61.PubMedCrossRefGoogle Scholar
  154. Seelig, J., Tamm, L., Hymel, L., and Fleischer, S., 1981, Deuterium and phosphorus nuclear magnetic resonance and fluorescence depolarization studies of functional reconstituted sarcoplasmic reticulum membrane vesicles, Biochemistry 20:3922–3932.PubMedCrossRefGoogle Scholar
  155. Seeman, P., 1972, The molecular mechanism of anaesthesia, Pharmacol. Rev. 24:583–655.PubMedGoogle Scholar
  156. Sen, A., Brain, A. P. R., Quinn, P. J., and Williams, W. P., 1982, Formation of inverted lipid micelles in aqueous dispersions of mixed sn-galactosyldiacylglycerols induced by heat and ethylene glycol, Biochim. Biophys. Acta 686:215–224.PubMedCrossRefGoogle Scholar
  157. Serhan, C., Anderson, P., Goodman, E., Durham, P., and Weissman, G., 1981, Phosphatidate and oxidized fatty acids are calcium ionophores. Studies employing arsenazo III in liposomes, J. Biol. Chem. 256:2736–2741.PubMedGoogle Scholar
  158. Shaw, D. O., and Schulman, J. H., 1965, Binding of metal ions to monolayers of lecithins, plasmalogen, cardiolipin, and dicetyl phosphate, J. Lipid Res. 6:341–349.Google Scholar
  159. Shipley, G. G., 1973, Recent X-ray diffraction studies of biological membranes and membrane components, in: Biological Membranes, Vol. 2 (D. Chapman and D. F. H. Wallach, eds.), Academic Press, London and New York, pp. 1–89.Google Scholar
  160. Simpson, D. J., 1978, Freeze-fracture studies on barley plastid membranes. I. Wild-type etioplast, Carlsberg Res. Commun. 43:145–170.CrossRefGoogle Scholar
  161. Singer, S. J., and Nicolson, G. L., 1972, The fluid mosaic model of the structure of cell membranes, Science 175:720–731.PubMedCrossRefGoogle Scholar
  162. Stier, A., Finch, S. A. E., and Bösterling, B., 1978, Non-lamellar structure in rabbit liver microsomal membranes, FEBS Lett. 91:109–112.PubMedCrossRefGoogle Scholar
  163. Taraschi, T. F., and Mendelsohn, R., 1980, Lipid-protein interaction in the glycophorin-dipalmitoylphosphatidylcholine system: Raman spectroscopic investigation, Proc. Natl. Acad. Sci. USA 77:2362–2366.PubMedCrossRefGoogle Scholar
  164. Taraschi, T. F., De Kruijff, B., Verkleij, A. J., and Van Echteld, C. J. A., 1982a, Effect of glycophorin on lipid polymorphism. A 31P-NMR study, Biochim. Biophys. Acta 685:153–161.PubMedCrossRefGoogle Scholar
  165. Taraschi, T. F., Van der Steen, A. T. M., De Kruijff, B., Tellier, C., and Verkleij, A. J., 1982b, Lectin-receptor interactions in liposomes: Evidence that binding of wheat germ agglutinin to glycoprotein-phosphatidylethanolamine vesicles induces nonbilayer structures, Biochemistry 21:5756–5764.PubMedCrossRefGoogle Scholar
  166. Taraschi, T. F., De Kruijff, B., and Verkleij, A. J., 1983, The effect of an integral membrane protein on lipid polymorphism on the cardiolipin-Ca2+ system, Eur. J. Biochem. 129:621–625.PubMedCrossRefGoogle Scholar
  167. Taylor, M. G., and Smith, I. C. P., 1981, A comparison of spin probe ESR, 2H-and 31P-nuclear magnetic resonance for the study of hexagonal phase lipids, Chem. Phys. Lipids 28:119–136.CrossRefGoogle Scholar
  168. Thayer, A. M., and Kohler, S. J., 1981, Phosphorus-31 nuclear magnetic resonance spectra characteristic of phosphatidylethanolamine in the bilayer phase, Biochemistry 20:6831–6834.PubMedCrossRefGoogle Scholar
  169. Tilcock, C. P. S., and Cullis, P. R., 1980, The polymorphic phase behaviour of mixed phosphatidylserine-phosphatidylethanolamine model systems as detected by 31P-NMR. Effects of divalent cations and pH, Biochim. Biophys. Acta 641:189–201.Google Scholar
  170. Tilcock, C. P. S., and Cullis, P. R., 1982, The polymorphic phase behaviour and miscibility properties of synthetic phosphatidylethanolamines, Biochim. Biophys. Acta 684:212–218.CrossRefGoogle Scholar
  171. Tilcock, C. P. S., Bally, M. B., Farren, S. B., and Cullis, P. R., 1982, Influence of cholesterol on the structural preferences of dioleoyl-phosphatidylethanolamine—dioleoylphosphatidylcholine systems: A phosphorus-31 and deuterium nuclear magnetic resonance study, Biochemistry 21:4596–4601.PubMedCrossRefGoogle Scholar
  172. Tomita, M., and Marchesi, V. T., 1975, Amino-acid sequence and oligosaccharide attachment sites of human erythrocyte glycophorin, Proc. Natl. Acad. Sci. USA 72:2964–2968.PubMedCrossRefGoogle Scholar
  173. Tyson, C. A., Zande, H. V., and Green, D. E., 1976, Phospholipids as ionophores, J. Biol. Chem. 251:1326–1332.PubMedGoogle Scholar
  174. Urry, D. W., 1971, The gramicidin A transmembrane channel: A proposed (L.D) Helix, Proc. Natl. Acad. Sci. USA 68:672–676.PubMedCrossRefGoogle Scholar
  175. Van den Besselaar, A. M. H. P., De Kruijff, B., Van den Bosch, H., and Van Deenen, L. L. M., 1978, Phosphatidylcholine mobility in liver microsomal membranes, Biochim. Biophys. Acta 510:242–255.PubMedCrossRefGoogle Scholar
  176. Van den Bosch, H., 1974, Phosphoglyceride metabolism, Annu. Rev. Biochem. 43:243–277.PubMedCrossRefGoogle Scholar
  177. Van der Steen, A. T. M., De Jong, W. A. C., De Kruyff, B., and Van Deenen, L. L. M., 1981, Lipid dependence of glycophorin-induced transbilayer movement of lysophosphatidylcholine in large unilamellar vesicles, Biochim. Biophys. Acta 647:63–72.CrossRefGoogle Scholar
  178. Van der Steen, A. T. M., de Kruijff, B., and De Gier, J., 1982, Glycophorin incorporation increases the bilayer permeability of large unilamellar vesicles in a lipid-dependent manner, Biochim. Biophys. Acta 691:13–23.CrossRefGoogle Scholar
  179. Van Dyck, P. W. M., De Kruijff, B., Van Deenen, L. L. M., De Gier, J., and Demel, R. A., 1976, The preference of cholesterol for phosphatidylcholine in mixed phosphatidylcholine-phosphatidylethanolamine bilayers, Biochim. Biophys. Acta 455:576–587.CrossRefGoogle Scholar
  180. Van Dyck, P. W. M., De Kruijff, B., Aarts, P. A. M. M., Verkleij, A. J., and De Gier, J., 1978, Transitions in phospholipid model membranes of different curvature, Biochim. Biophys. Acta 506:183–191.CrossRefGoogle Scholar
  181. Van Echteld, C. J. A., Van Stigt, R., De Kruijff, B., Leunissen-Bijvelt, J., Verkleij, A. J., and De Gier, J., 1981a, Gramicidin promotes formation of the hexagonal HII phase in aqueous dispersions of phosphatidylethanolamine and phosphatidylcholine, Biochim. Biophys. Acta 648:287–291.CrossRefGoogle Scholar
  182. Van Echteld, C. J. A., De Kruijff, B., Mandersloot, J. G., and De Gier, J., 1981b, Effects of lysophos-phatidylcholines on phosphatidylcholine and phosphatidylcholine/cholesterol liposome systems as revealed by 31P-NMR, electron microscopy and permeability studies, Biochim. Biophys. Acta 649: 211–220.PubMedCrossRefGoogle Scholar
  183. Van Echteld, C. J. A., De Kruijff, B., Verkleij, A. J., Leunissen-Bijvelt, J., and De Gier, J., 1982, Gramicidin induces the formation of non-bilayer structures in phosphatidylcholine dispersions in a fatty acid chain length depended way, Biochim. Biophys. Acta 692:126–138.CrossRefGoogle Scholar
  184. Van Meer, G., and Simons, K., 1982, Viruses budding from either the apical or the basolateral membrane domain of MDCK cells have unique phospholipid compositions, EMBO J. 1:847–852.PubMedGoogle Scholar
  185. Van Meer, G., De Kruijff, B., Op Den Kamp, J. A. F., and Van Deenen, L. L. M., 1980, Preservation of bilayer structure in human erythrocytes and erythrocyte ghosts after phospholipase treatment, Biochim. Biophys. Acta 596:1–9.PubMedCrossRefGoogle Scholar
  186. Van Venetië, R., and Verkleij, A. J., 1981, Analysis of hexagonal II phase and its relations to lipidic particles and the lamellar phase. A freeze-fracture study, Biochim. Biophys. Acta 645:262–269.PubMedCrossRefGoogle Scholar
  187. Van Venetië, R., and Verkleij, A. J., 1982, Possible role of non-bilayer lipids in the structure of mitochondria, Biochim. Biophys. Acta 692:397–405.PubMedCrossRefGoogle Scholar
  188. Van Venetië, R., Hage, W. J., Bluemink, J. G., and Verkleij, A. J., 1981, Propane jet-freezing: A valid ultra-rapid freezing method for preservation of temperature-dependent lipid phases, J. Microsc. 123:287–292.PubMedCrossRefGoogle Scholar
  189. Van Zoelen, E. J. J., Van Dyck, P. W. M., De Kruijff, B., Verkleij, A. J., and Van Deenen, L. L. M., 1978, Effect of glycophorin incorporation on the physico-chemical properties of phospholipid bilayers, Biochim. Biophys. Acta 514:9–24.PubMedCrossRefGoogle Scholar
  190. Vasilenko, I., De Kruijff, B., and Verkleij, A. J., 1982a, Polymorphic phase behaviour of cardiolipin from bovine heart and from Bacillus subtilis as detected by 31P-NMR and freeze-fracture. Effects of Ca2+, Mg2+, Ba2+ and temperature, Biochim. Biophys. Acta 684:282–286.PubMedCrossRefGoogle Scholar
  191. Vasilenko, I., De Kruijff, B., and Verkleij, A. J., 1982b, The synthesis and use of thionphospholipids in 31P-NMR studies of lipid polymorphism, Biochim. Biophys. Acta 685:144–152.PubMedCrossRefGoogle Scholar
  192. Verkleij, A. J., 1980, The nature of the intramembrane particle, Proc. Electr. Microsc. Soc. Am. 38:688–691.Google Scholar
  193. Verkleij, A. J., and De Kruijff, B., 1981, Reply to: “Lipidic particles” are intermembrane attachment sites, Nature 290:427–428.CrossRefGoogle Scholar
  194. Verkleij, A. J., and Ververgaert, P. H. J. Th., 1978, Freeze-fracture morphology of biological membranes, Biochim. Biophys. Acta 515:303–327.PubMedCrossRefGoogle Scholar
  195. Verkleij, A. J., De Kruijff, B., Ververgaert, P. H. J. Th., Tocanne, J. F., and Van Deenen, L. L. M., 1974, The influence of pH, Ca2+ and protein on the thermotropic behaviour of the negatively charged phospholipid phosphatidylglycerol, Biochim. Biophys. Acta 339:432–437.PubMedCrossRefGoogle Scholar
  196. Verkleij, A. J., Mombers, C., Leunissen-Bijvelt, J., and Ververgaert, P. H. J. Th., 1979a, Lipidic intramembranous particles, Nature 279:162–163.PubMedCrossRefGoogle Scholar
  197. Verkleij, A. J., Mombers, C., Gerritsen, W. J., Leunissen-Bijvelt, J., and Cullis, P. R., 1979b, Fusion of phospholipid vesicles in association with the appearance of lipidic particles as visualized by freeze fracturing, Biochim. Biophys. Acta 555:358–362.PubMedCrossRefGoogle Scholar
  198. Verkleij, A. J., Van Echteld, C. J. A., Gerritsen, W. J., Cullis, P. R., and De Kruijff, B., 1980, The lipidic particle as an intermediate structure in membrane fusion processes and bilayer to hexagonal HII transitions, Biochim. Biophys. Acta 600:620–624.PubMedCrossRefGoogle Scholar
  199. Verkleij, A. J., De Maagd, R., Leunissen-Bijvelt, J., and De Kruijff, B., 1982, Divalent cations and chlorpromazine can induce non-bilayer structures in phosphatidic acid-containing model membranes, Biochim. Biophys. Acta 684:255–262.PubMedCrossRefGoogle Scholar
  200. Verkleij, A. J., Van Venetie, R., Leunissen-Bijlevelt, J., De Kruijff, B., Hope, M. J., and Cullis, P. R., 1983, Membrane fusion and polymorphism, in: Physical Methods on Biological Membranes and Their Model Systems (F. Conti, ed.), Plenum Press, New York, in press.Google Scholar
  201. Verpoorte, J. A., 1975, Purification and characterization of glycoprotein from human erythrocyte membranes, Int. J. Biochem. 6:855–862.CrossRefGoogle Scholar
  202. Wallace, B. A., Veatch, W. R., and Blout, E. R., 1981, Conformation of gramicidin A in phospholipid vesicles: Circular dichroism studies of effects of ion binding, chemical modification, and lipid structure, Biochemistry 20:5754–5760.PubMedCrossRefGoogle Scholar
  203. Weinstein, S., Wallace, B. A., Morrow, J. S., and Veatch, W. R., 1980, Conformation of the gramicidin A transmembrane channel: A 13C nuclear magnetic resonance study of 13C-enriched gramicidin in phosphatidylcholine vesicles, J. Mol. Biol. 143:1–19.PubMedCrossRefGoogle Scholar
  204. Wickner, W., 1980, Assembly of proteins into membranes, Science 210:861–863.PubMedCrossRefGoogle Scholar
  205. Wieslander, Å, Christiansson, A., Rilfors, L., and Lindblom, G., 1980, Lipid bilayer stability in membranes. Regulation of lipid composition in Acholeplasma laidlawii as governed by molecular shape, Biochemistry 19:3650–3655.PubMedCrossRefGoogle Scholar
  206. Wieslander, Å, Christiansson, A., Rilfors, L., Khan, A., Johansson, L. B. A., and Lindblom, G., 1981a, Lipid phase structure governs the regulation of lipid composition in membranes of Acholeplasma laidlawii, FEBS Lett. 124:273–278.CrossRefGoogle Scholar
  207. Wieslander, Å, Rilfors, L., Johansson, L. B. A., and Lindblom, G., 1981b, Reversed cubic phase with membrane glucolipids from Acholeplasma laidlawii, H, H and diffusion nuclear magnetic resonance measurements. Biochemistry 20:730–735.PubMedCrossRefGoogle Scholar
  208. Zilversmit, D. B., and Hughes, M. E., 1977, Extensive exchange of rat liver microsomal phospholipids, Biochim. Biophys. Acta 469:99–110.PubMedCrossRefGoogle Scholar
  209. Zingsheim, H. P., 1972, Membrane structure and electron microscopy. The significance of physical problems and technics (freeze etching), Biochim. Biophys. Acta 265:339–366.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • B. de Kruijff
    • 1
  • P. R. Cullis
    • 3
  • A. J. Verkleij
    • 1
  • M. J. Hope
    • 3
  • C. J. A. Van Echteld
    • 2
  • T. F. Taraschi
    • 4
  1. 1.Department of Molecular BiologyState University of UtrechtUtrechtThe Netherlands
  2. 2.Department of BiochemistryState University of UtrechtUtrechtThe Netherlands
  3. 3.Department of BiochemistryUniversity of British ColumbiaVancouverCanada
  4. 4.Department of PathologyHahnemann Medical CollegePhiladelphiaUSA

Personalised recommendations