Associations of Cytoskeletal Proteins with Plasma Membranes

  • Carl M. Cohen
  • Deborah K. Smith


Eukaryotic cells contain an extensive network of self-associated, interconnected filaments and tubules referred to collectively as the cytoskeleton. The proteins of the cytoskeleton are responsible for the generation of nearly all types of cellular movement, from gross amoeboid migration to subtle intracellular motions of organelles or chromosomes. Cytoskeletons may be defined teleologically as the intracellular filaments or proteins which combine to generate cell movement and to control cell shape. The cytoskeleton can also be defined operationally as the protein residue which remains when cells are extracted with non-ionic detergents such as Triton X-100. Examination of these detergent-resistant cellular residues by electron microscopy shows them to consist of several types of filaments. Each filament type has a distinct diameter and each is distributed within the cell in a characteristic pattern.


Actin Filament Focal Adhesion Erythrocyte Membrane Stress Fiber Cytoskeletal Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abercrombie, M., and Dunn, G. A., 1975, Adhesions of fibroblasts to substratum during contact inhibition observed by interference reflection microscopy, Exp. Cell Res. 92:57–62.PubMedCrossRefGoogle Scholar
  2. Abercrombie, M., Heaysman, J. E. M., and Pegrum, S. M., 1971, The locomotion of fibroblasts in culture: IV. Electron microscopy of the leading lamella, Exp. Cell Res. 67:359–369.PubMedCrossRefGoogle Scholar
  3. Aggeler, J., and Werb, Z., 1982, Initial events during phagocytosis by macrophages viewed from outside and inside the cell: Membrane-particle interactions and clathrin, J. Cell Biol. 94:613–623.PubMedCrossRefGoogle Scholar
  4. Albertini, D. F., and Anderson, E., 1977, Microtubule and microfilament rearrangments during capping of concanavalin A receptors on cultured ovarian granulosa cells, J. Cell Biol. 73:111–127.PubMedCrossRefGoogle Scholar
  5. Albertini, D. F., and Clark, J. I., 1975, Membrane-microtubule interactions, Proc. Natl. Acad. Sci. USA 72:4976–4980.PubMedCrossRefGoogle Scholar
  6. Albertini, D. F., Berlin, R. D., and Oliver, J. M., 1977, The mechanism of concanavalin A cap formation in leukocytes, J. Cell Sci. 26:57–75.PubMedGoogle Scholar
  7. Ali, I. U., and Hynes, R. O., 1977, Effects of cytochalasin B and colchicine on attachment of a major surface protein of fibroblasts, Biochim. Biophys. Acta 471:16–24.PubMedCrossRefGoogle Scholar
  8. Ali, I. U., Mautner, V. M., Lanta, R. P., and Hynes, R. O., 1977, Restoration of normal morphology, adhesion and cytoskeleton in transformed cells by addition of a transformation-sensitive surface protein, Cell 11:115–126.PubMedCrossRefGoogle Scholar
  9. Allen, R. D., 1968, A reinvestigation of cross sections of cilia, J. Cell Biol. 37:825–831.PubMedCrossRefGoogle Scholar
  10. Allison, A. C., and Davies, P., 1974, Mechanisms of endocytosis and exocytosis, Symp. Soc. Exp. Biol. 28:419–446.PubMedGoogle Scholar
  11. Allore, R. J., and Barber, B. H., 1982, Structural studies of purified pig lymph node plasma membrane: Association of cytoskeletal components with the plasma membrane and the effect of detergent solubilization, Can. J. Biochem. 60:57–70.PubMedCrossRefGoogle Scholar
  12. Ash, J. F., Louvard, D., and Singer, S. J., 1977, Antibody-induced linkages of plasma membrane proteins to intracellular actomyosin-containing filaments in cultured fibroblasts, Proc. Natl. Acad. Sci. USA 74:5584–5588.PubMedCrossRefGoogle Scholar
  13. Ash, J. F., Louvard, D., and Singer, S. J., 1980, Interactions between the plasma membrane and cytoskeleton of culture fibroblasts, Prog. Clin. Biol. Res. 41:925–930.PubMedGoogle Scholar
  14. Atkinson, M., Morrow, J., and Marchesi, V., 1982, The polymeric state of actin in the human erythrocyte cytoskeleton, J. Cellular Biochem. 18:493–505.CrossRefGoogle Scholar
  15. Avnur, Z., and Geiger, B., 1981, The removal of extracellular fibronectin from areas of cell-substrate contact, Cell 25:121–132.PubMedCrossRefGoogle Scholar
  16. Axline, S. G., and Reaven, E. P., 1974, Inhibition of phagocytosis and plasma membrane mobility of the cultured macrophage by cytochalasin B. Role of subplasmalemmal microfilaments, J. Cell Biol. 62:647–659.PubMedCrossRefGoogle Scholar
  17. Badley, R. A., Woods, A., Smith, C. G., and Rees, D. A., 1980, Actomyosin relationships with surface features in fibroblast adhesions, Exp. Cell Res. 126:263–272.PubMedCrossRefGoogle Scholar
  18. Bayley, S. A., and Rees, D. A., 1982, Analysis of the proteins, glycoproteins and glycosaminoglycans of fibroblast adhesions to substratum, Biochim. Biophys. Acta 689:351–362.PubMedCrossRefGoogle Scholar
  19. Begg, D. A., Rodewald, R., and Rebhun, L. I., 1978, The visualization of actin filament polarity in thin sections. Evidence for the uniform polarity of membrane associated filaments, J. Cell Biol. 79:846–852.PubMedCrossRefGoogle Scholar
  20. Behnke, O., 1970, Microtubules in disk-shaped blood cells, Int. Rev. Exp. Pathol. 9:1–92.PubMedGoogle Scholar
  21. Bennett, V., 1979, Immunoreactive forms of human erythrocyte ankyrin are present in diverse cells and tissues, Nature 281:597–599.PubMedCrossRefGoogle Scholar
  22. Bennett, V., 1982a, The molecular basis for membrane-cytoskeleton association in human erythrocytes, J. Cellular Biochem. 18:49–65.CrossRefGoogle Scholar
  23. Bennett, V., 1982b, Isolation of an ankyrin-band 3 oligomer from human erythrocyte membranes, Biochim. Biophys. Acta 689:475–484.PubMedCrossRefGoogle Scholar
  24. Bennett, V., and Davis, J., 1981, Erythrocyte ankyrin: Immunoreactive analogues and associated with mitotic structures in cultured cells and with microtubules in brain, Proc. Natl. Acad. Sci. USA 78:7550–7554.PubMedCrossRefGoogle Scholar
  25. Bennett, V., Davis, J., and Fowler, W. E., 1982, Brain spectrin. A membrane-associated protein related in structure and function to erythrocyte spectrin, Nature 299:126–131.PubMedCrossRefGoogle Scholar
  26. Ben-Ze’ev, A., Duerr, A., Solomon, F., and Penman, S., 1979, The outer boundary of the cytoskeleton: A lamina derived from plasma membrane proteins, Cell 17:859–865.CrossRefGoogle Scholar
  27. Berlin, R. D., and Oliver, J. M., 1978, Analogous ultrastructure and surface properties during capping and phagocytosis in leukocytes, J. Cell Biol. 77:789–804.PubMedCrossRefGoogle Scholar
  28. Berlin, R. D., Caron, J. M., and Oliver, J. M., 1979, Microtubules and the structure and function of cell surfaces, in: Microtubules (K. Roberts and J. S. Hyans, eds.), Academic Press, New York, pp. 443–486.Google Scholar
  29. Bernier-Valentin, F., and Rousset, B., 1982, Interaction of tubulin with rat liver mitochondria, J. Biol. Chem. 257:7092–7099.PubMedGoogle Scholar
  30. Bernstein, L. H., and Wollman, S. H., 1975, Association of mitochondria with desmosomes in the rat thyroid gland, J. Ultrastruct. Res. 53:87–92.PubMedCrossRefGoogle Scholar
  31. Bhattacharyya, B., and Wolff, J., 1975, Membrane-bound tubulin in brain and thyroid tissue, J. Biol. Chem. 250:7639–7646.PubMedGoogle Scholar
  32. Bhattacharyya, B., and Wolff, J., 1976, Polymerization of membrane tubulin, Nature 264:576–577.PubMedCrossRefGoogle Scholar
  33. Birchmeier, C., Kreis, T. E., Eppenberger, H. M., Winterhalter, K. H., and Birchmeier, W., 1980, Corrugated attachment membrane in WI-38 fibroblasts: Alternating fibronectin fibers and actin-containing focal contacts, Proc. Natl. Acad. Sci. USA 77:4108–4112.PubMedCrossRefGoogle Scholar
  34. Blitz, A. L., and Fine, R. E., 1974, Muscle-like contractile proteins and tubulin in synaptosomes, Proc. Natl. Acad. Sci. USA 74:4472–4476.CrossRefGoogle Scholar
  35. Bloom, W. S., Fields, K. L., Yen, S. H., Haver, K., Schook, W., and Puszkin, S., 1980, Brain clathrin: Immunofluorescent patterns in cultured cells and tissues, Proc. Natl. Acad. Sci. USA 77:5520–5524.PubMedCrossRefGoogle Scholar
  36. Bourguignon, G. J., and Bourguignon, L. Y. W., 1981a, Isolation and initial characterization of a lymphocyte cap structure, Biochim. Biophys. Acta 646:109–118.PubMedCrossRefGoogle Scholar
  37. Bourguignon, L. Y. W., and Bourguignon, G. J., 1981b, Immunocytochemical localization of intermediate filament proteins during lymphocyte capping, Cell Biol. Int. Rep. 5:783–789.PubMedCrossRefGoogle Scholar
  38. Bourguignon, L. Y. W., and Rozek, R. J., 1980, Capping of concanavalin A receptors and their association with microfilaments in monolayer grown human fibroblastoid cells, Cell Tissue Res. 205:77–84.PubMedCrossRefGoogle Scholar
  39. Bourguignon, L. Y. W., and Singer, S. J., 1977, Transmembrane interactions and the mechanism of capping of surface receptors by their specific ligands, Proc. Natl. Acad. Sci USA 74:5031–5035.PubMedCrossRefGoogle Scholar
  40. Bourguignon, L. Y. W., Tokoyasu, K. T., and Singer, S. J., 1978, The capping of lymphocytes and other cells, studied by an improved method for immunofluorescence staining of frozen sections, J. Cell Physiol. 95:239–258.PubMedCrossRefGoogle Scholar
  41. Bourguignon, L. Y. W., Nagpal, M. L., and Hsing, Y.-C., 1981, Phosphorylation of myosin light chain during capping of mouse T-lymphoma cells, J. Cell Biol. 91:889–894.PubMedCrossRefGoogle Scholar
  42. Boyles, J., and Bainton, D. F., 1979, Changing patterns of plasma membrane-associated filaments during the initial phases of polymorphonuclear leukocyte adherence, J. Cell Biol. 82:347–368.PubMedCrossRefGoogle Scholar
  43. Boyles, T., and Bainton, D. F., 1981, Changes in plasma membrane associated filaments during endocytosis and exocytosis in polymorphonulcear leukocytes, Cell 24:905–914.PubMedCrossRefGoogle Scholar
  44. Bradley, T. J., and Satir, P., 1979, Evidence of microfilament-associated mitochondrial movement, J. Supramol. Struct. 12:165–175.PubMedCrossRefGoogle Scholar
  45. Branton, D., Cohen, C., and Tyler, J., 1981, Interaction of cytoskeletal proteins on the human erythrocyte membrane, Cell 24:24–32.PubMedCrossRefGoogle Scholar
  46. Braun, J., Fujiwara, K., Pollard, T. D., and Unanue, E., 1978, Two distinct mechanisms for redistribution of lymphocyte surface macromolecules. I. Relationship to cytoplasmic myosin, J. Cell Biol. 79:409–418.PubMedCrossRefGoogle Scholar
  47. Bray, D., and Thomas, C., 1975, The actin content of fibroblasts, J. Biochem. 147:221–228.Google Scholar
  48. Brenner, S., and Korn, E., 1980, Spectrin/actin complex isolated from sheep erythrocytes accelerates actin polymerization by simple nucleation, J. Biol. Chem. 255:1670–1676.PubMedGoogle Scholar
  49. Bretscher, M. S., 1976, Directed lipid flow in cell membranes, Nature 260:21–23.PubMedCrossRefGoogle Scholar
  50. Bretscher, A., and Weber, K., 1978a, Purification of microvilli and an analysis of the protein components of the microfilament core bundle, Exp. Cell Res. 116:397–407.PubMedCrossRefGoogle Scholar
  51. Bretscher, A., and Weber, K., 1978b, Localization of actin and microfilament-associated proteins in the microvilli and terminal web of the intestinal brush border by immunofluorescence microscopy, J. Cell Biol. 79:839–845.PubMedCrossRefGoogle Scholar
  52. Bretscher, A., and Weber, K., 1979, Villin: The major microfilament-associated protein of the intestinal microvillus, Proc. Natl. Acad. Sci. USA 76:2321–2325.PubMedCrossRefGoogle Scholar
  53. Bretscher, A., and Weber, K., 1980a, Fimbrin, a new microfilament-associated protein present in microvilli and other cell surface structures, J. Cell Biol. 86:335–340.PubMedCrossRefGoogle Scholar
  54. Bretscher, A., and Weber, K., 1980b, Villin is a major protein of the microvillus cytoskeleton which binds both G and F actin in a calcium-dependent manner, Cell 20:839–847.PubMedCrossRefGoogle Scholar
  55. Brunser, O., and Luft, J. H., 1970, Fine structure of the apex of absorptive cells from rat small intestine, J. Ultrastruct. Res. 31:291–311.PubMedCrossRefGoogle Scholar
  56. Burridge, K., and Feramisco, J. R., 1980, Microinjection and localization of a 130K protein in living fibroblasts: A relationship to actin and fibronectin, Cell 19:587–595.PubMedCrossRefGoogle Scholar
  57. Burridge, K., and Feramisco, J. R., 1982, α-Actinin and vinculin from nonmuscle cells: Calcium-sensitive interactions with actin, in: Cold Spring Harbor Symposia on Quantitative Biology, Volume 46, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp. 587–598.Google Scholar
  58. Burridge, K., and McCullough, L., 1980, The association of α-actinin with the plasma membrane, J. Supramol. Struct. 13:53–65.PubMedCrossRefGoogle Scholar
  59. Burridge, K., and Phillips, J. H., 1975, Association of actin and myosin with secretory granule membranes, Nature 254:526–529.PubMedCrossRefGoogle Scholar
  60. Burridge, K., Feramisco, J., and Blose, S., 1980, The association of α-actinin and clathrin with the plasma membrane, Prog. Clin. Biol. Res. 41:907–924.PubMedGoogle Scholar
  61. Burridge, K., Kelly, T., and Mangeat, P., 1982, Nonerythrocyte spectrins: Actin-membrane attachment proteins occurring in many cell types, J. Cell Biol. 95:478–486.PubMedCrossRefGoogle Scholar
  62. Butman, B., Bourguignon, G. J., and Bourguignon, L. Y. W., 1980, Lymphocyte capping induced by polycationized ferritin, J. Cell Physiol. 105:7–15.PubMedCrossRefGoogle Scholar
  63. Byers, H. R., and Fujiwara, K., 1982, Stress fibers in cells in situ: Immunofluorescence visualization with antiactin, antimyosin and anti-alpha-actin, J. Cell Biol. 93:804–811.PubMedCrossRefGoogle Scholar
  64. Carley, W. W., Barak, L. S., and Webb, W. W., 1981, F-actin aggregates in transformed cells, J. Cell Biol. 90:797–802.PubMedCrossRefGoogle Scholar
  65. Caron, J. M., and Berlin, R. D., 1979, Interaction of microtubule proteins with phospholipid vesicles, J. Cell Biol. 81:665–671.PubMedCrossRefGoogle Scholar
  66. Carraway, K. L., Cerra, R. F., Jung, G., and Carothers Carraway, C. A., 1982, Membrane-associated actin from the microvillar membranes of ascites tumor cells, J. Cell Biol. 94:624–630.PubMedCrossRefGoogle Scholar
  67. Chang, C., Takeuchi, H., Ito, T., Machida, K., and Ohnishi, S., 1981, Lateral mobility of erythrocyte membrane proteins studied by the fluorescence photobleaching recovery technique, J. Biochem. 90:997–1004.PubMedGoogle Scholar
  68. Chen, W.-T., and Singer, S. J., 1980, Fibronectin is not present in the focal adhesions formed between normal cultured fibroblasts and their substrata, Proc. Natl. Acad. Sci. USA 77:7318–7322.PubMedCrossRefGoogle Scholar
  69. Chen, W.-T., and Singer, S. J., 1982, Immunoelectron microscopic studies of the sites of cell-substratum and cell—cell contacts in cultured fibroblasts, J. Cell Biol. 95:205–222.PubMedCrossRefGoogle Scholar
  70. Cherry, R. J., 1979, Rotational and lateral diffusion of membrane proteins, Biochim. Biophys. Acta 559: 289–327.PubMedCrossRefGoogle Scholar
  71. Cherry, R. J., and Nigg, E. A., 1981, Rotational diffusion of erythrocyte membrane proteins, in: The Function of Red Blood Cells: Erythrocyte Pathobiology (D. F. H. Wallach, ed.), Alan R. Liss, New York, pp. 59–77.Google Scholar
  72. Cherry, R. J., Bürkli, A., Busslinger, M., Schneider, G., and Parish, G. R., 1976, Rotational diffusion of band 3 proteins in the human erythrocyte membrane, Nature 263:389–393.PubMedCrossRefGoogle Scholar
  73. Clarke, M., Schatten, G., Mazia, D., and Spudich, J. A., 1975, Visualization of actin fibers associated with the cell membrane in amoebae of Dictyostelium discoideum, Proc. Natl. Acad. Sci. USA 72:1758–1762.PubMedCrossRefGoogle Scholar
  74. Cohen, C. M., 1983, The molecular organization of the red cell membrane skeleton, Semin. Haematol. 20:141–158.Google Scholar
  75. Cohen, C. M., and Branton, D., 1979, The role of spectrin in erythrocyte membrane-stimulated actin polymerisation, Nature 279:163–165.PubMedCrossRefGoogle Scholar
  76. Cohen, C. M., and Branton, D., 1981, The normal and abnormal red cell cytoskeleton: A renewed search for molecular defects, Trends Biochem. Sci. 6:266–268.CrossRefGoogle Scholar
  77. Cohen, C. M., and Foley, S., 1982, The role of band 4.1 in the association of actin with erythrocyte membranes, Bioehim. Biophys. Acta 688:691–701.CrossRefGoogle Scholar
  78. Cohen, C. M., Jackson, P., and Branton, D., 1978, Actin-membrane interactions: Association of G-actin with the red cell membrane, J. Supramol. Struct. 9:113–124.PubMedCrossRefGoogle Scholar
  79. Cohen, C. M., Tyler, J., and Branton, D., 1980, Spectrin-actin associations studied by electron microscopy of shadowed preparations, Cell 21:875–883.PubMedCrossRefGoogle Scholar
  80. Cohen, C. M., Foley, S. F., and Korsgren, C., 1982, A protein immunologically related to erythrocyte band 4.1 is found on stress fibers of non-erythroid cells, Nature 299:648–650.PubMedCrossRefGoogle Scholar
  81. Cohen, W. D., 1978, Observations on the marginal band system of nucleated erythrocytes, J. Cell Biol. 78:260–273.PubMedCrossRefGoogle Scholar
  82. Collett, M. S., and Erikson, R. L., 1978, Protein kinase activity associated with ovarian sarcoma virus src gene product, Proc. Natl. Acad. Sci. USA 75:2021–2024.PubMedCrossRefGoogle Scholar
  83. Condeelis, J., 1979, Isolation of concanavalin A caps during various stages of formation and their association with actin and myosin, J. Cell Biol. 80:751–758.PubMedCrossRefGoogle Scholar
  84. Condeelis, J. S., 1981, Reciprocal interactions between the actin lattice and cell membrane, Neurosci. Res. Prog. Bull. 19:83–99.Google Scholar
  85. Cooke, P. H., 1976, A filamentous cytoskeleton in vertebrate smooth muscle fibers, J. Cell Biol. 68:539–556.PubMedCrossRefGoogle Scholar
  86. Cooke, P. H., and Chase, R. H., 1971, Potassium chloride-insoluble myofilaments in vertebrate smooth muscle cells, Exp. Cell Res. 66:417–425.PubMedCrossRefGoogle Scholar
  87. Coudrier, E., Reggio, H., and Louvard, D., 1981, Immunolocalization of the 110,000 molecular weight cytoskeletal protein of intestinal microvilli, J. Mol. Biol. 152:49–66.PubMedCrossRefGoogle Scholar
  88. Coudrier, E., Reggio, H., and Louvard, D., 1982, The cytoskeleton of intestinal microvilli contains two Polypeptides immunologically related to proteins of striated muscle, in: Cold Spring Harbor Symposia on Quantitative Biology, Volume XLVI, Part 2, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp. 881–892.Google Scholar
  89. Craig, S., and Powell, L., 1980, Regulation of actin polymerization by villin, a 95,000 dalton cytoskeletal component of intestinal brush borders, Cell 22:739–746.PubMedCrossRefGoogle Scholar
  90. Curtis, A. S. G., 1964, The mechanism of adhesion of cells to glass. A study by interference reflection microscopy, J. Cell Sci. 20:199–218.Google Scholar
  91. David-Pfeuty, T., and Singer, S. J., 1980, Altered distributions of the cytoskeletal proteins vinculin and α-actinin in cultured fibroblasts transformed by Rous sarcoma virus, Proc. Natl. Acad. Sci. USA 77:6687–6691.PubMedCrossRefGoogle Scholar
  92. Davis, J., and Bennett, V., 1982, Microtubule-associated protein 2, a microtubule-associated protein from brain, is immunologically related to the a subunit of erythrocyte spectrin, J. Biol. Chem. 257:5816–5820.PubMedGoogle Scholar
  93. Dellagi, K., and Brouet, J. C., 1982, Redistribution of intermediate filaments during capping of lymphocyte surface molecules, Nature 298:284–286.PubMedCrossRefGoogle Scholar
  94. Dentler, W. L., 1980, Structures linking the tips of ciliary and flagellar microtubules to the membrane, J. Cell Sci. 42:207–220.PubMedGoogle Scholar
  95. Dentler, W. L., 1981, Microtubule-membrane interactions in cilia and flagella, Int. Rev. Cytol. 72:1–47.PubMedCrossRefGoogle Scholar
  96. dePetris, S., 1975, Concanavalin A receptors, Immunoglobulins and O antigen of the lymphocyte surface. Interactions with concanavalin A and with cytoplasmic structures, J. Cell Biol. 65:123–146.CrossRefGoogle Scholar
  97. dePetris, S., 1977, Distribution and mobility of plasma membrane components on lymphocytes, in: Dynamic Aspects of Cell Surface Organization (G. Poste and G. L. Nicholson, eds.), North Holland Publishing Co., New York, pp. 643–728.Google Scholar
  98. Der, C. J., Ash, J. F., and Stanbridge, E. J., 1981, Cytoskeletal and transmembrane interactions in the expression of tumorigenicity in human cell hybrids, J. Cell Sci., 52:151–166.PubMedGoogle Scholar
  99. Edelman, G. M., 1976, Surface modulation in cell recognition and cell growth, Science 192:218–226.PubMedCrossRefGoogle Scholar
  100. Edelman, G. M., Yahara, I., and Wang, J. L., 1973, Receptor mobility and receptor-cytoplasmic interactions in lymphocytes, Proc. Natl. Acad. Sci. USA 70:1442–1446.PubMedCrossRefGoogle Scholar
  101. Eldridge, C. A., Elson, E. L., and Webb, W. W., 1980, Fluorescence photobleaching recovery measurements of surface lateral mobilities on normal and SV40-transformed mouse fibroblasts, Biochemistry 19:2075–2079.PubMedCrossRefGoogle Scholar
  102. Elgsaeter, A., and Branton, D., 1974, Intramembrane particle aggregation in erythrocyte ghosts. I. The effects of protein removal, J. Cell Biol. 63:1018–1030.PubMedCrossRefGoogle Scholar
  103. Elgsaeter, A., Shotton, D. M., and Branton, D., 1976, Intramembrane particle aggregation in erythrocyte ghosts. II. The influence of spectrin aggregation, Biochim. Biophys. Acta 426:101–122.PubMedCrossRefGoogle Scholar
  104. Feit, H., Kelly, P., and Cotman, C. W., 1977, Identification of a protein related to tubulin in the post synaptic density, Proc. Natl. Acad. Sci. USA 74:1047–1051.PubMedCrossRefGoogle Scholar
  105. Feramisco, J. R., 1979, Microinjection of fluorescently labeled α-actinin into living fibroblasts, Proc. Natl. Acad. Sci. USA 76:3967–3971.PubMedCrossRefGoogle Scholar
  106. Fishman, M. C., Dragsten, P. R., and Spector, I., 1981, Immobilization of concanavalin A receptors during differentiation of neuroblastoma cells, Nature 290:781–783.PubMedCrossRefGoogle Scholar
  107. Flanagan, J., and Koch, G. L. E., 1978, Cross-linked surface Ig attaches to actin, Nature 273:278–281.PubMedCrossRefGoogle Scholar
  108. Fowler, V., and Bennett, V., 1978, Association of spectrin with its membrane attachment site restricts lateral mobility of human erythrocyte integral membrane proteins, J. Supramol. Struct. 8:215–221.CrossRefGoogle Scholar
  109. Fowler, V., and Branton, D., 1977, Lateral mobility of human erythrocyte integral membrane proteins, Nature 268:23–26.PubMedCrossRefGoogle Scholar
  110. Fowler, V. M., and Pollard, H. B., 1982, In vitro reconstitution of chromaffin granule-cytoskeleton interactions: Ionic factors influencing the association of F-actin with purified chromaffin granule membranes, J. Cell. Biochem. 18:295–311.PubMedCrossRefGoogle Scholar
  111. Fox, C. H., Cottier-Fox, M. H., and Yamada, K. M., 1980, The distribution of fibronectin in attachment sites of chick fibroblasts, Exp. Cell Res. 130:477–481.PubMedCrossRefGoogle Scholar
  112. Franke, W. W., Weber, K., Osborn, M., Schmid, E., and Freudenstein, C., 1978, Antibody to prekeratin. Decoration of tonofilament-like arrays in various cells of epithelial character, Exp. Cell Res. 116:429–445.PubMedCrossRefGoogle Scholar
  113. Franke, W. W., Appelhans, B., Schmid, E., Freudenstein, C., Obborn, M., and Weber, K., 1979, The organization of cytokeratin filaments in the intestinal epithelium, Eur. J. Cell Biol. 19:255–268.PubMedGoogle Scholar
  114. Fujiwara, K., and Pollard, T. D., 1976, Fluorescent antibody localization of myosin in the cytoplasm, cleavage furrow, and mitotic spindle of human cells, J. Cell Biol. 71:848–875.PubMedCrossRefGoogle Scholar
  115. Gabbiani, G., Chaponnier, C., Zumbe, A., and Vassalli, P., 1977, Actin and tubulin co-cap with surface Immunoglobulins in mouse B lymphocytes, Nature 269:697–698.PubMedCrossRefGoogle Scholar
  116. Geiger, B., 1979, A 130K protein from chicken gizzard: Its localization at the termini of microfilament bundles in cultured chicken cells, Cell 18:193–205.PubMedCrossRefGoogle Scholar
  117. Geiger, B., 1982, Involvement of vinculin in contact-induced cytoskeletal interactions, in: Cold Spring Harbor Symposia on Quantitative Biology, Volume 46, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp. 671–682.Google Scholar
  118. Geiger, B., and Singer, S. J., 1979, The participation of α-actinin in the capping of cell membrane components, Cell 16:213–222.PubMedCrossRefGoogle Scholar
  119. Geiger, B., Tokuyasu, K. T., and Singer, S. J., 1979, Immunocytochemical localization of α-actinin in intestinal epithelial cells, Proc. Natl. Acad. Sci. USA 76:2833–2837.PubMedCrossRefGoogle Scholar
  120. Geiger, B., Tokuyasu, K. T., Dutton, A. H., and Singer, S. J., 1980, Vinculin, an intracellular protein localized at specialized sites where microfilament bundles terminate at cell membranes, Proc. Natl. Acad. Sci. USA 77:4127–4131.PubMedCrossRefGoogle Scholar
  121. Geiger, B., Dutton, A. H., Tokuyasu, K. T., and Singer, S. J., 1981, Immunoelectron microscopy studies of membrane-microfilament interactions: Distributions of α-actinin, tropomyosin, and vinculin in intestinal epithelial brush border and chicken gizzard smooth cells, J. Cell Biol. 91:614–628.PubMedCrossRefGoogle Scholar
  122. Geiger, B., Avnur, Z., and Schlessinger, J., 1982, Restricted mobility of membrane constituents in cell-substrate focal contacts of chicken fibroblasts, J. Cell Biol. 93:495–500.PubMedCrossRefGoogle Scholar
  123. George, J. N., Lyons, R. M., and Morgan, R. K., 1980, Membrane changes associated with platelet activation, J. Clin. Invest. 66:1–9.PubMedCrossRefGoogle Scholar
  124. Glenney, J. R., and Weber, K., 1980, Calmodulin-binding proteins of the microfilaments present in isolated brush borders and microvilli of intestinal epithelial cells, J. Biol. Chem. 255:10551–10554.PubMedGoogle Scholar
  125. Glenney, J. R., Jr., Glenney, P., Osborn, M., and Weber, K., 1982a, An F-actin-and calmodulin-binding protein from isolated intestinal brush borders has a morphology related to spectrin, Cell 28:843–854.PubMedCrossRefGoogle Scholar
  126. Glenney, J. R., Jr., Glenney, P., and Weber, K., 1982b, Erythroid spectrin, brain fodrin, and intestinal brush border proteins (TW-260/240) are related molecules containing a common calmodulin-binding subunit bound to a variant cell type-specific subunit, Proc. Natl. Acad. Sci. USA 79:4002–4005.PubMedCrossRefGoogle Scholar
  127. Glenney, J. R., Jr., Osborn, M., and Weber, K., 1982c, The intracellular localization of the microvillus 110K protein, a component considered to be involved in side-on membrane attachment of F-actin, Exp. Cell Res. 138:199–205.PubMedCrossRefGoogle Scholar
  128. Glenney, V. R., Kaulfus, P., Matsudaira, P., and Weber, K., 1981, F-actin binding and bundling properties of fimbrin, a major cytoskeletal protein of microvillus core filaments, J. Biol. Chem. 256:9283–9288.PubMedGoogle Scholar
  129. Golan, D. E., and Veatch, W., 1980, Lateral mobility of band 3 in the human erythrocyte membrane studied by fluorescence photobleaching recovery: Evidence for control by cytoskeletal interactions, Proc. Natl. Acad. Sci. USA 77:2537–2541.PubMedCrossRefGoogle Scholar
  130. Goldstein, J. L., Anderson, R. G. W., and Brown, M. S., 1979, Coated pits, coated vesicles, and receptor-mediated endocytosis, Nature 279:679–685.PubMedCrossRefGoogle Scholar
  131. Goodman, S. R., Zagon, I. S., and Kulikowski, R. R., 1981, Identification of a spectrin-like protein in nonerythroid cells, Proc. Natl. Acad. Sci. USA 78:7570–7574.PubMedCrossRefGoogle Scholar
  132. Goodman, S. R., Yu, J., Whitfield, C., Culp, E., and Posnak, E., Erythrocyte membrane skeletal protein bands 4.1a and b are sequence-related phosphoproteins, J. Biol. Chem. 257:4564–4569.Google Scholar
  133. Gordon, W. E., III, and Bushneil, A., 1979, Immunofluroescent and ultrastructural studies of polygonal microfilament networks in respreading non-muscle cells, Exp. Cell Res. 120:335–348.PubMedCrossRefGoogle Scholar
  134. Granger, B. L., and Lazarides, E., 1982, Structural associations of synemin and vimentin filaments in avian erythrocytes revealed by immunoelectron microscopy, Cell 30:263–275.PubMedCrossRefGoogle Scholar
  135. Gratzer, W., 1981, The red cell membrane and its cytoskeleton, J. Biochem. 198:1–8.Google Scholar
  136. Gray, E. G., 1975, Presynaptic microtubules and their association with synaptic vesicles, Proc. R. Soc. Lond. (Biol.) 190:367–372.CrossRefGoogle Scholar
  137. Greenquist, A. C., Shohet, S. G., and Bernstein, S. E., 1978, Marked reduction of spectrin in hereditary spherocytosis in the common house mouse, Blood 51:1149–1155.PubMedGoogle Scholar
  138. Grinnell, F., 1980, Visualization of cell substratum adhesion plaques by antibody exclusion, Cell Biol. Int. Rep. 4:1031–1036.PubMedCrossRefGoogle Scholar
  139. Gruenstein, E., Rich, A., and Weihing, R. R., 1975, Actin associated with membranes from 3T3 mouse fibroblast and HeLa cells, J. Cell Biol. 64:223–234.PubMedCrossRefGoogle Scholar
  140. Hargreaves, W., Giedd, K., Verkleij, A., and Branton, D., 1980, Reassociation of ankyrin with band 3 in erythrocyte membranes and in lipid vesicles, J. Biol. Chem. 255:11965–11972.PubMedGoogle Scholar
  141. Harris, A., 1976, Recycling of dissolved plasma membrane components as an explanation of the capping phenomenon, Nature 263:781–783.PubMedCrossRefGoogle Scholar
  142. Hartwig, J. H., Davies, W. A., and Stossel, T. P., 1977, Evidence for contractile protein translocation in macrophage spreading, phagocytosis and phagolysosome formation, J. Cell Biol. 75:956–967.PubMedCrossRefGoogle Scholar
  143. Hartwig, J. H., Yin, H. L., and Stossel, T. D., 1980, Contractile proteins and the mechanism of phagocytosis in macrophages, in: Mononuclear Phagocytes, Vol. II (R. van Fürth, ed.), Martinus Nijhoff, The Hague, pp. 971–996.Google Scholar
  144. Heggeness, M. H., Ash, J. F., and Singer, S. J., 1978, Transmembrane linkage of fibronectin to intracellular actin-containing filaments in cultured human fibroblasts, N.Y. Acad. Sci. 414-417.Google Scholar
  145. Henis, Y. I., and Elson, E. L., 1981, Inhibition of the mobility of mouse lymphocyte surface Immunoglobulins by locally bound concanavalin A, Proc. Natl. Acad. Sci. USA 78:1072–1076.PubMedCrossRefGoogle Scholar
  146. Herman, B. A., and Fernandez, S. M., 1982, Dynamics and topographical distribution of surface glyco-proteins during myoblast fusion: A resonance energy transfer study, Biochemistry 21:3275–3283.PubMedCrossRefGoogle Scholar
  147. Herman, I. M., Crisona, N. J., and Pollard, T. D., 1981, Relation between cell activity and the distribution of cytoplasmic actin and myosin, J. Cell Biol. 90:84–91.PubMedCrossRefGoogle Scholar
  148. Heuser, J. E., 1980, Three-dimensional visualization of coated vesicle formation in fibroblasts, J. Cell Biol. 84:560–583.PubMedCrossRefGoogle Scholar
  149. Heuser, J. E., and Kirschner, M. W., 1980, Filament organization revealed in platinum replicas of freeze-dried cytoskeletons, J. Cell Biol. 86:212–234.PubMedCrossRefGoogle Scholar
  150. Hewitt, J. A., 1979, Surf-riding model for cell capping, J. Theoret. Biol. 80:115–127.CrossRefGoogle Scholar
  151. Hirokawa, N., 1982, Cross-linker system between neurofilaments, microtubules, and membranous organelles in frog axons revealed by the quick-freeze, deep-etching method, J. Cell Biol. 94:129–142.PubMedCrossRefGoogle Scholar
  152. Hirokawa, N., and Heuser, J. E., 1981, Quick-freeze, deep-etch visualization of the cytoskeleton beneath surface differentiations of intestinal epithelial cells, J. Cell Biol. 91:399–409.PubMedCrossRefGoogle Scholar
  153. Hirokawa, N., and Tilney, L. G., 1982, Interactions between actin filaments and between actin filaments and membranes in quick-frozen and deeply etched hair cells of the chick ear, J. Cell Biol. 95:249–261.PubMedCrossRefGoogle Scholar
  154. Hirokawa, N., Tilney, L. G., Fujiwara, K., and Heuser, J. E., 1982, Organization of actin, myosin, and intermediate filaments in the brush border of intestinal epithelial cells, J. Cell Biol. 94:425–443.PubMedCrossRefGoogle Scholar
  155. Hoessli, D., Rungger-Brandle, E., Jockusch, B. M., and Gabbiani, G., 1980, Lymphocyte α-actinin: Relationship to cell membrane and co-capping with surface receptors, J. Cell Biol. 84:305–314.PubMedCrossRefGoogle Scholar
  156. Holmes, G. R., Goll, E. E., and Suzuki, A., 1971, Effect of α-actinin on actin viscosity, Biochim. Biophys. Acta 253:240–253.PubMedCrossRefGoogle Scholar
  157. Howe, C. L., Mooseker, M. S., and Graves, T. A., 1980, Brush-border calmodulin: A major component of the isolated microvillus core, J. Cell Biol. 85:916–923.PubMedCrossRefGoogle Scholar
  158. Howell, S. L., and Tyhurst, M., 1979, Interaction between insulin-storage granules and F-actin in vitro, J. Biochem. 178:367–371.Google Scholar
  159. Hull, B. E., and Staehelin, L. A., 1979, The terminal web. A re-evaluation of its structure and function, J. Cell Biol. 81:67–82.PubMedCrossRefGoogle Scholar
  160. Hunter, T., and Sefton, B. M., 1980, The transforming gene product of Rous sarcoma virus phosphorylates tyrosine, Proc. Natl. Acad. Sci. USA 77:1311–1315.PubMedCrossRefGoogle Scholar
  161. Hynes, R., 1982, Phosphorylation of vinculin by pp60src: What might it mean? Cell 28:437–438.PubMedCrossRefGoogle Scholar
  162. Hynes, R. O., 1981, Relationships between fibronectin and the cytoskeleton; in: Cytoskeletal Elements and Plasma Membrane Organization (G. Poste and G. L. Nicolson, eds.) North Holland Pub. Co., New York, pp. 100–137.Google Scholar
  163. Hynes, R. O., and Destree, A. T., 1978, Relationships between fibronectin (LETS protein) and actin, Cell 15:875–886.PubMedCrossRefGoogle Scholar
  164. Isenberg, G., Leonard, K., and Jockusch, B. M., 1982, Structural aspects of vinculin-actin interactions, J. Mol. Biol. 158:231–249.PubMedCrossRefGoogle Scholar
  165. Ishikawa, H., Bischoff, R., and Holtzer, H., 1969, The formation of arrowhead complexes with heavy meromyosin in a variety of cell types, J. Cell Biol. 43:312–328.PubMedCrossRefGoogle Scholar
  166. Izzard, C. S., and Lochner, L. R., 1976, Cell-to-substrate contacts in living fibroblasts: An interference reflexion study with an evaluation of the technique, J. Cell Sci. 21:129–159.PubMedGoogle Scholar
  167. Izzard, C. S., and Lochner, L. R., 1980, Formation of cell-to-substrate contacts during fibroblast motility: An interference-reflexion study, J. Cell Sci. 42:81–116.PubMedGoogle Scholar
  168. Jacobson, B. S., 1980, Actin binding to the cytoplasmic surface of the plasma membrane isolated from Dictyostelium discoideum, Biochem. Biophys. Res. Commun. 97:1493–1498.PubMedCrossRefGoogle Scholar
  169. Ji, T. H., and Nicolson, G. L., 1974, Lectin binding and perturbation of the outer surface of the cell membrane induces a transmembrane organizational alteration at the inner surface, Proc. Natl. Acad. Sci. USA 71:2212–2216.PubMedCrossRefGoogle Scholar
  170. Jockusch, B. M., and Isenberg, G., 1981, Interaction of α-actinin and vinculin with actin: Opposite effects on filament network formation, Proc. Natl. Acad. Sci. USA 78:3005–3009.PubMedCrossRefGoogle Scholar
  171. Jockusch, B. M., and Isenberg, G., 1982, Vinculin and α-actinin: Interaction with actin and effect on microfilament network formation, in: Cold Spring Harbor Symposia on Quantitative Biology, Vol. 46, Cold Spring Harbor, New York, pp. 613–623.Google Scholar
  172. Jockusch, B. M., Burger, M. M., DaPrada, M., Richards, J. G., Chaponnier, C., and Gabbiani, G., 1977, α-Actinin attached to membranes of secretory vesicles, Nature 270:628–629.PubMedCrossRefGoogle Scholar
  173. Kapitza, H.-G., and Sackmann, E., 1980, Local measurement of lateral motion in erythrocyte membranes by photobleaching techniques, Biochim. Biophys. Acta 595:56–64.PubMedCrossRefGoogle Scholar
  174. Kaplan, J., 1981, Polypeptide-binding membrane receptors: Analysis and classification, Science 212:14–20.PubMedCrossRefGoogle Scholar
  175. Keen, J. H., Willingham, M. C., and Pastan, I. H., 1979, Clathrin-coated vesicles: Isolation, dissociation, and factor-dependent reassociation of clathrin baskets, Cell 16:303–312.PubMedCrossRefGoogle Scholar
  176. Kelley, R. O., Trotter, J. A., Marek, L. F., Perdue, B. D., andTaylor, C. B., 1980, Variation in cytoskeletal assembly during spreading of progressively subcultivated human embryo fibroblasts (IMR-90), Mech. Aging Dev. 13:127–141.PubMedCrossRefGoogle Scholar
  177. Keski-Oja, J., Sen, A., and Todaro, G. J., 1980, Direct association of fibronectin and actin molecules in vitro, J. Cell Biol. 85:527–533.PubMedCrossRefGoogle Scholar
  178. Klausner, R. D., Kumar, N., Weinstein, J. N., Blumenthal, R., and Flavin, M., 1981, Interaction of tubulin with phospholipid vesicles, J. Biol. Chem. 256:5879–5885.PubMedGoogle Scholar
  179. Koch, G. L. E., and Smith, M. J., 1978, An association between actin and the major histocompatibility antigen H-2, Nature 273:274–278.PubMedCrossRefGoogle Scholar
  180. Koppel, D. E., Sheetz, M. P., and Schindler, M., 1981, Matrix control of protein diffusion in biological membranes, Proc. Natl. Acad. Sci. USA 78:3576–3580.PubMedCrossRefGoogle Scholar
  181. Koppel, D. E., Oliver, J. M., and Berlin, R. D., 1982, Surface functions during mitosis III. Quantitative analysis of ligand-receptor movement into the cleavage furrow: Diffusion vs. flow, J. Cell Biol. 93:950–960.PubMedCrossRefGoogle Scholar
  182. Korn, E. D., 1978, Biochemistry of actomyosin-dependent cell motility (a review), Proc. Natl. Acad. Sci. USA 75:588–599.PubMedCrossRefGoogle Scholar
  183. Korn, E. D., 1982, Actin polymerization and its regulation by proteins from nonmuscle cells, Phys. Rev. 62:672–737.Google Scholar
  184. Korn, E. D., Bowers, B., Batzri, S., Simons, S. R., and Victoria, E. J., 1974, Endocytosis and exocytosis: Role of microfilaments and involvement of phospholipids in membrane fusion, J. Supramol. Struct. 2:517–528.PubMedCrossRefGoogle Scholar
  185. Kornguth, S. E., and Sunderland, E., 1975, Isolation and partial characterization of a tubulin-like protein from human and swine synaptosomal membrane, Biochim. Biophys. Acta 393:100–114.PubMedCrossRefGoogle Scholar
  186. Koteliansky, V. E., Glukhova, M. A., Morozkin, A. D., Musatov, A. P., Shirinsky, V. P., Tskhovrebova, L. A., and Smirnov, V. N., 1981, A study of actin-fibronectin interaction, FEBS Lett. 133:31–35.PubMedCrossRefGoogle Scholar
  187. Kumar, N., Klausner, R. D., Weinstein, J. N., Blumenthal, R., and Flavin, M., 1981, Interaction of tubulin with phospholipid vesicles. II. Physical changes of the protein, J. Cell Biol. 256:5886–5889.Google Scholar
  188. Kurkinen, M., Wartiovaaara, J., and Vaheri, A., 1978, Cytochalasin B releases a major surface associated glycoprotein, fibronectin, from cultured fibroblasts, Exp. Cell Res. 111:127–137.PubMedCrossRefGoogle Scholar
  189. Laemmli, U. K., 1970, Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature 227:680–685.PubMedCrossRefGoogle Scholar
  190. Lasek, R. J., and Hoffman, P. N., 1976, The neuronal cytoskeleton, axonal transport and axonal growth, in: Cell Motility, Book A (R. Goldman, T. Pollard, and J. Rosenbaum, eds.), Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp. 1021–1050.Google Scholar
  191. Lazarides, E., 1976a, Actin, alpha-actinin and tropomyosin interaction in the structural organization of actin filaments in nonmuscle cells, J. Cell Biol. 68:202–219.PubMedCrossRefGoogle Scholar
  192. Lazarides, E., 1976b, Aspects of the structural organization of actin filaments in tissue culture cells, in: Cell Motility, Book A (R. Goldman, T. Pollard, and J. Rosenbaum, eds.), Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp. 347–360.Google Scholar
  193. Lazarides, E., 1980, Intermediate filaments as mechanical integrators of cellular space, Nature 283:249–256.PubMedCrossRefGoogle Scholar
  194. Lazarides, E., and Burridge, K., 1975, α-Actinin: Immunofluorescent localization of a muscle structural protein in nonmuscle cells, Cell 6:289–298.PubMedCrossRefGoogle Scholar
  195. Lehto, V. P., Virtanen, I., and Kurki, P., 1978, Intermediate filaments anchor the nuclei in nuclear monolayers of cultured human fibroblasts, Nature 272:175–177.PubMedCrossRefGoogle Scholar
  196. Lehto, V. P., Vartio, T., and Virtanen, I., 1980, Enrichment of a 140 Kd surface glycoprotein in adherent, detergent-resistant cytoskeletons of cultured human fibroblasts, Biochem. Biophys. Res. Commun. 95:909–916.PubMedCrossRefGoogle Scholar
  197. Leuther, M. D., Peacock, J. S., Krakaver, H., and Barisas, B. G., 1981, Changes in lectin receptor lateral mobilities accompany lymphocyte stimulation, J. Immunol. 127:893–899.PubMedGoogle Scholar
  198. Lin, D., 1981, Spectrin-4.1-actin complex of the human erythrocyte: Molecular basis of its ability to bind cytochalasins with high-affinity and to accelerate actin polymerization in vitro, J. Supramol. Struct. Cellular Biochem. 15:129–138.CrossRefGoogle Scholar
  199. Lin, D., and Lin, S., 1979, Actin polymerization induced by a motility-related high-affinity cytochalasin binding complex from human erythrocyte membrane, Proc. Natl. Acad. Sci. USA 76:2345–2349.PubMedCrossRefGoogle Scholar
  200. Litman, D., Hsu, C., and Marchesi, V., 1980, Evidence that spectrin binds to macromolecular complexes on the inner surface of the red cell membrane, J. Cell Biol. 42:1–22.Google Scholar
  201. Loor, F., Forni, F., and Pernis, B., 1972, The dynamic state of the lymphocyte membrane. Factors affecting the distribution and turnover of surface Immunoglobulin, Eur. J. Immunol. 2:203–212.PubMedCrossRefGoogle Scholar
  202. Luna, E. J., Fowler, V. M., Swanson, J., Branton, D., and Taylor, D. L., 1981, A membrane cytoskeleton from Dictyostelium discoideum. I. Identification and partial characterization of an actin-binding activity, J. Cell Biol. 88:396–409.PubMedCrossRefGoogle Scholar
  203. Mabuchi, I., and Ikuno, M., 1977, The effect of myosin antibody on the division of starfish blastomeres, J. Cell Biol. 74:251–263.PubMedCrossRefGoogle Scholar
  204. Marek, L. F., Kelley, R. O., and Perdue, B. D., 1982, Organization of the cytoskeleton in square fibroblasts, Cell Motil. 2:115–130.PubMedCrossRefGoogle Scholar
  205. Matsudaira, P. T., and Burgess, D. R., 1979, Identification and organization of the components in the isolated microvillus cytoskeleton, J. Cell Biol. 83:667–673.PubMedCrossRefGoogle Scholar
  206. Matsudaira, P. T., and Burgess, D. R., 1982a, Partial reconstruction of the microvillus core bundle: Characterization of villin as a Ca+-dependent, actin-bundling/depolymerizing protein, J. Cell Biol. 92:648–656.PubMedCrossRefGoogle Scholar
  207. Matsudaira, P. T., and Burgess, D. R., 1982b, Organization of the cross-filaments in intestinal microvilli, J. Cell Biol. 92:657–664.PubMedCrossRefGoogle Scholar
  208. Maupin, P., and Pollard, T. D., 1981, Visualization of coated membrane regions, membrane specializations, and cytoplasmic filaments of cultured cells, J. Cell Biol. 91:300a.Google Scholar
  209. Mautner, V., and Hynes, R. O., 1977, Surface distribution of LETS protein in relation to the cytoskeleton of normal and transformed cells, J. Cell Biol. 75:743–768.PubMedCrossRefGoogle Scholar
  210. McNutt, S. N., 1978, A thin-section and freeze-fracture study of microfilament-membrane attachments in choroid plexus and intestinal microvilli, J. Cell Biol. 79:774–787.PubMedCrossRefGoogle Scholar
  211. Mescher, M. F., Jose, M. J. L., and Balk, S. P., 1981, Actin-containing matrix associated with the plasma membrane of murine tumor and lymphoid cells, Nature 289:139–144.PubMedCrossRefGoogle Scholar
  212. Mesland, D. A. M., Spiele, H., and Roos, E., 1981, Membrane-associated cytoskeleton and coated vesicles in cultured hepatocytes visualized by dry-cleaving, Exp. Cell Res. 132:169–184.PubMedCrossRefGoogle Scholar
  213. Meyer, R. K., Schindler, H., and Burger, M. M., 1982, α-Actinin interacts specifically with model membranes containing glycerides and fatty acids, Proc. Natl. Acad. Sci. USA 79:4280–4284.PubMedCrossRefGoogle Scholar
  214. Middaugh, C. R., and Ji, T. H., 1980, A photochemical crosslinking study of the subunit structure of membrane-associated spectrin, Eur. J. Biochem. 110:567–592.CrossRefGoogle Scholar
  215. Moore, P. B., Ownby, C. L., and Carraway, K. L., 1978, Interactions of cytoskeletal elements with the plasma membrane of sarcoma 180 ascites tumor cells, Exp. Cell Res. 115:331–342.PubMedCrossRefGoogle Scholar
  216. Mooseker, M. S., and Stephens, R. E., 1980, Brush-border alpha actinin? Comparison of two proteins of the microvillus core with alpha-actinin by two-dimensional peptide mapping, J. Cell Biol. 86:466–474.PubMedCrossRefGoogle Scholar
  217. Mooseker, M. S., and Tilney, L. G., 1975, The organization of an actin filament-membrane complex: Filament polarity and membrane attachment in the microvilli of intestinal epithelial cells, J. Cell Biol. 67:725–743.PubMedCrossRefGoogle Scholar
  218. Mooseker, M. S., Pollard, T. D., and Fujiwara, K., 1978, Characterization and localization of myosin in the brush border of intestinal epithelial cells, J. Cell Biol. 79:444–453.PubMedCrossRefGoogle Scholar
  219. Mooseker, M. S., Graves, T. A., Wharton, K. A., Falco, N., and Howe, C. L., 1980, Regulation of microvillus structure: Calcium-dependent solation and cross-linking of actin filaments in the microvilli of intestinal epithelial cells, J. Cell Biol. 87:809–822.PubMedCrossRefGoogle Scholar
  220. Mooseker, M. S., Pollard, T. D., and Wharton, K. A., 1982, Nucleated polymerization of actin from the membrane-associated ends of microvillar filaments in the intestinal brush border, J. Cell Biol. 95:223–233.PubMedCrossRefGoogle Scholar
  221. Morrow, J., Speicher, D., and Knowles, W., 1980, Identification of functional domains of human erythrocyte spectrin, Proc. Natl. Acad. Sci. USA 77:6592–6596.PubMedCrossRefGoogle Scholar
  222. Mousa, G. Y., Trevithick, J. R., Bechberger, J., and Blain, D. G., 1978, Cytohalasin D induces the capping of both leukaemia viral proteins and actin in infected cells, Nature 274:808–809.PubMedCrossRefGoogle Scholar
  223. Mueller, T., and Morrison, M., 1977, Detection of a variant of protein 3, the major transmembrane protein of the human erythrocyte, J. Biol. Chem. 252:6573–6576.PubMedGoogle Scholar
  224. Mueller, T., and Morrison, M., 1981, Glycoconnectin (PAS 2), A membrane attachment site for the human erythrocyte cytoskeleton, in: Erythrocyte Membranes 2: Recent Clinical and Experimental Advances (W. Kruckeberg, J. Eaton, and G. Brewer, eds.), Alan R. Liss, New York, pp. 95–112.Google Scholar
  225. Mukherjee, T. M., and Staehelin, L. A., 1971, The fine structural organization of the brush border of intestinal epithelial cells, J. Cell Sci. 8:573–599.PubMedGoogle Scholar
  226. Neutra, M. R., 1979, Linear arrays of intramembrane particles on microvilli in primate large intestine, Anat. Rec. 193:367–381.PubMedCrossRefGoogle Scholar
  227. Nicolson, G. L., and Painter, R. G., 1973, Anionic sites of human erythrocyte membranes. II. Transmembrane effects of anti-spectrin on the topography of bound positively charged colloidal particles, J. Cell Biol. 59:395–406.PubMedCrossRefGoogle Scholar
  228. Nigg, E. A., and Cherry, R. J., 1979, Influence of temperature and cholesterol on the rotational diffusion of band 3 in the human erythrocyte membrane, Biochemistry 18:3457–3465.PubMedCrossRefGoogle Scholar
  229. Nigg, E. A., and Cherry, R. J., 1980, Anchorage of a band 3 population at the erythrocyte cytoplasmic membrane surface: Protein rotational diffusion measurements, Proc. Natl. Acad. Sci. USA 77:4702–4706.PubMedCrossRefGoogle Scholar
  230. Nigg, E. A., Bron, C., Girardet, M., and Cherry, R. J., 1980, Band 3-glycophorin A association in erythrocyte membranes demonstrated by combining protein diffusion measurements with antibody-induced cross-linking, Biochemistry 19:1887–1893.PubMedCrossRefGoogle Scholar
  231. Norton, E. K., and Izzard, C. S., 1982, Fibronectin promotes formation of the close cell-to-substrate contact in cultured cells, Exp. Cell Res. 139:463–467.PubMedCrossRefGoogle Scholar
  232. Nunnally, M. H., D’Angelo, J. M., and Craig, S. W., 1980, Filamin concentration in cleavage furrow and midbody region: Frequency of occurrence compared with that of alpha-actinin and myosin, J. Cell Biol. 87:219–226.PubMedCrossRefGoogle Scholar
  233. Oliver, J. M., and Berlin, R. D., 1982, Mechanisms that regulate the structural and functional architecture of cell surfaces, Int. Rev. Cytol. 74:55–94.PubMedCrossRefGoogle Scholar
  234. Oliver, J. M. Albertini, D. F., and Berlin, R. D., 1976, Effects of glutathione-oxidizing agents on microtubule assembly and microtubule-dependent surface properties of human neutrophils, J. Cell Biol. 71:921–932.PubMedCrossRefGoogle Scholar
  235. Oliver, J. M., Lalchandani, R., and Becker, E. L., 1977, Actin redistribution during concanavalin A cap formation in rabbit neutrophils, J. Reticuloendothel. Soc. 21:359–364.PubMedGoogle Scholar
  236. Oliver, J. M., Gelfand, E. W., Pearson, C. B., Pfeiffer, J. R., and Dosch, H-M., 1980, Microtubule assembly and concanavalin A capping in lymphocytes: Reappraisal using normal and abnormal human peripheral blood cells, Proc. Natl. Acad. Sci. USA 77:3499–3503.PubMedCrossRefGoogle Scholar
  237. Oosawa, F., and Kasai, M., 1971, Actin, in: Subunits in Biological Systems, Part A (S. N. Timasheff and G. D. Fasman, eds.), Marcel Dekker, New York, pp. 261–321.Google Scholar
  238. Ostlund, R., Leung, J., and Kipnis, D., 1977, Muscle actin filaments bind pituitary secretory granules in vitro, J. Cell Biol. 73:78–87.PubMedCrossRefGoogle Scholar
  239. Owen, M. J., Auger, J., Barber, B. H., Edwards, A. J., Walsh, F. S., and Crumpton, M. J., 1978, Actin may be present on the lymphocyte surface, Proc. Natl. Acad. Sci. USA 75:4484–4488.PubMedCrossRefGoogle Scholar
  240. Owens, J., Mueller, T., and Morrison, M., 1980, A minor sialoglycoprotein of the human erythrocyte membrane, Arch. Biochem. Biophys. 204:247–254.PubMedCrossRefGoogle Scholar
  241. Painter, R. G., and McIntosh, A. T., 1979, The regional association of actin and myosin with sites of particle phagocytosis, J. Supramol. Struct. 12:369–384.PubMedCrossRefGoogle Scholar
  242. Painter, R. G., Whisenand, J., and McIntosh, A. T., 1981, Effects of cytochalasin B on actin and myosin association with particle binding sites in mouse macrophages: Implications with regard to the mechanism of action of the cytochalasins, J. Cell Biol. 91:373–384.PubMedCrossRefGoogle Scholar
  243. Pastan, I. H., and Willingham, M. C., 1981, Receptor-mediated endocytosis of hormones in cultured cells, Annu. Rev. Physiol. 43:239–250.PubMedCrossRefGoogle Scholar
  244. Pearse, B. M. F., 1975, Coated vesicles from pig brain: Purification and biochemical characterization, J. Mol. Biol. 97:93–98.PubMedCrossRefGoogle Scholar
  245. Pearse, B. M. F., 1976, Clathrin: A unique protein associated with intracellular transfer of membranes by coated vesicles, Proc. Natl. Acad. Sci. USA 73:1255–1259.PubMedCrossRefGoogle Scholar
  246. Peters, R., 1981, Translational diffusion in the plasma membrane of single cells as studied by fluorescence microphotolysis, Cell Biol. Int. Rep. 5:733–760.PubMedCrossRefGoogle Scholar
  247. Peters, R., Peters, J., Tews, K. H., and Bähr, W., 1974, A microfluorimetric study of translational diffusion in erythrocyte membranes, Biochim. Biophys. Acta 367:282–294.PubMedCrossRefGoogle Scholar
  248. Phillips, M. J., Oda, M., Yousef, I. M., and Funatsu, K., 1981, Effects of cytochalasin B on membrane-associated microfilaments in a cell-free system, J. Cell Biol. 91:524–527.PubMedCrossRefGoogle Scholar
  249. Pick, E., and Wilner, I., 1979, Cytoskeletal control of concanavalin A receptor mobility in peritoneal macrophages, Exp. Cell Res. 118:151–158.PubMedCrossRefGoogle Scholar
  250. Pinder, J., Ungewickell, E., and Bray, D., 1978, The spectrin-actin complex and erythrocyte shape, J. Supramol. Struct. 8:439–445.PubMedCrossRefGoogle Scholar
  251. Pinder, J., Ungewickell, E., and Calvert, R., 1979, Polymerization of G-actin by spectrin preparations: Identification of the active constituent, FEBS Lett. 104:396–400.PubMedCrossRefGoogle Scholar
  252. Podlubnaya, Z. A., Tskhovrebova, L. A., Zualishtsbvili, M. M., and Stefanenko, G. A., 1975, Electron microscopic study of alpha actinin, J. Mol. Biol. 92:357–359.PubMedCrossRefGoogle Scholar
  253. Pollack, R., and Rifkin, D. B., 1976, Modification of mammalian cell shape: Redistribution of intracellular actin by SV40 virus, proteases, cytochalasin B and dimethyl sulfoxide, in: Cell Motility (R. Goldman, T. Pollard, and J. Rosenbaum, eds.), Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp. 389–401.Google Scholar
  254. Pollack, R., Osborn, M., and Weber, K., 1975, Patterns of organization of actin and myosin in normal and transformed cultured cells, Proc. Natl. Acad. Sci. USA 72:994–998.PubMedCrossRefGoogle Scholar
  255. Pollard, T. D., and Korn, E. D., 1973, Electron microscopic identification of actin associated with isolated amoeba plasma membranes, J. Cell Chem. 248:448–450.Google Scholar
  256. Pollard, T. D., and Weihing, R. R., 1974, Actin and myosin and cell movement, CRC Crit. Rev. Biochem. 2:1–65.PubMedCrossRefGoogle Scholar
  257. Poste, G., Papahadjopoulos, D., Jacobson, K., and Vail, W. J., 1975, Local anesthetics increase susceptibility of untransformed cells to agglutination by con A, Nature 253:552–554.PubMedCrossRefGoogle Scholar
  258. Puszkin, S., Maimon, J., and Schook, W. J., 1979, Clathrin association with low-molecular weight proteins acting as cofactors for the assembly/disassembly of baskets, J. Cell Biol. 83:293a.Google Scholar
  259. Ralston, G., 1976, The influence of salt on the aggregation state of spectrin from bovine erythrocyte membranes, Biochim. Biophys. Acta 443:387–393.PubMedGoogle Scholar
  260. Ralston, G., and Crisp, E., 1981, The action of organic mercurials on the erythrocyte membrane, Biochim. Biophys. Acta 649:98–104.PubMedCrossRefGoogle Scholar
  261. Reaven, E. P., and Axline, S. G., 1973, Subplasmalemmal microfilaments and microtubules in resting and phagocytizing cultivated macrophages, J. Cell Biol. 59:12–27.PubMedCrossRefGoogle Scholar
  262. Repasky, E. A., Granger, B. L., and Lazarides, E., 1982, Wide-spread occurrence of avian spectrin in nonerythroid cells, Cell 29:821–833.PubMedCrossRefGoogle Scholar
  263. Ringo, D. L., 1967, Flagellar motion and fine structure of the flagellar apparatus in Chlamydomonas, J. Cell Biol. 33:543–571.PubMedCrossRefGoogle Scholar
  264. Rodewald, R., Newman, S. B., and Karnovsky, M. J., 1976, Contraction of isolated brush borders from the intestinal epithelium, J. Cell Biol. 70:541–554.PubMedCrossRefGoogle Scholar
  265. Ryan, G. B., Unanue, E. R., and Karnovsky, M. J., 1974, Inhibition of surface capping of macromolecules by local anesthetics and tranquilisers, Nature 250:56–57.PubMedCrossRefGoogle Scholar
  266. Saffman, P. G., 1976, Brownian motion in thin sheets of viscous fluid, J. Fluid Mech. 73:593–602.CrossRefGoogle Scholar
  267. Saffman, P. G., and Delbrück, M., 1975, Brownian motion in biological membranes, Proc. Natl. Acad. Sci. USA 72:3111–3113.PubMedCrossRefGoogle Scholar
  268. Sakaki, T., Tsuji, A., Chang, C.-H., and Ohnishi, S. I., 1982, Rotational mobility of an erythrocyte membrane integral protein band 3 in dimyristoylphosphatidylcholine reconstituted vesicles and effect of binding of cytoskeletal proteins, Biochemistry 21:2366–2372.PubMedCrossRefGoogle Scholar
  269. Salisbury, J. L., Condeelis, J. S., and Satir, P., 1980, Role of coated vesicles, microfilaments, and calmodulin in receptor-mediated endocytosis by cultured B lymphoblastoid cells, J. Cell Biol. 87:132–141.PubMedCrossRefGoogle Scholar
  270. Salisbury, J. L., Condeelis, J. S., Maihle, N. J., and Satir, P., 1981, Calmodulin localization during capping and receptor-mediated endocytosis, Nature 294:163–164.PubMedCrossRefGoogle Scholar
  271. Sattler, C. A., and Staehelin, L. A., 1974, Ciliary membrane differentiations in Tetrahymena pyriformis. Tetrahymena has four types of cilia, J. Cell Biol., 62:473–490.PubMedCrossRefGoogle Scholar
  272. Scheele, R. B., and Borisy, G. C., 1979, In vitro assembly of microtubules, in: Microtubules (J. S. Hyams and K. Roberts, eds.), Academic Press, New York, pp. 175–254.Google Scholar
  273. Schindler, M., Koppel, D. E., and Sheetz, M. P., 1980, Modulation of membrane protein lateral mobility by polyphosphates and polyamines, Proc. Natl. Acad. Sci. USA 77:1457–1461.PubMedCrossRefGoogle Scholar
  274. Schlessinger, J., Koppel, D. E., Axelrod, D., Jacobson, K., Webb, W. W., and Elson, E. L., 1976a, Lateral transport on cell membranes: Mobility of concanavalin A receptors on myoblasts, Proc. Natl. Acad. Sci. USA 73:2409–2413.PubMedCrossRefGoogle Scholar
  275. Schlessinger, J., Webb, W. W., Elson, E. L., and Metzger, H., 1976b, Lateral motion and valence of Fc receptors on rat peritoneal mast cells, Nature 264:550–552.PubMedCrossRefGoogle Scholar
  276. Schlessinger, J., Axelrod, D., Koppel, D. E., Webb, W. W., and Elson, E. L., 1977a, Lateral transport of a lipid probe and labeled proteins on a cell membrane, Science 195:305–309.CrossRefGoogle Scholar
  277. Schlessinger, J., Elson, E. L., Webb, W. W., Yahara, I., Rutishauser, U., and Edelman, G. M., 1977b, Receptor diffusion on cell surfaces modulated by locally bound concanavalin A, Proc. Natl. Acad. Sci. USA 74:1110–1114.PubMedCrossRefGoogle Scholar
  278. Schollmeyer, J. V., Goll, D. E., Tilney, L. G., Mooseker, M. S., Robson, R. M., and Stromer, M. H., 1974, Localization of α-actinin in non-muscle material, J. Cell Biol. 63:304a.Google Scholar
  279. Schook, W. J., Puszkin, S., Bloom, W. S., Ores, C., and Kochwa, S., 1979, Mechanochemical properties of brain clathrin: Interactions with actin and α-actinin and polymerization into basketlike structures or filaments, Proc. Natl. Acad. Sci. USA 76:116–120.PubMedCrossRefGoogle Scholar
  280. Schreiner, G. F., and Unanue, E. R., 1975a, The modulation of spontaneous and anti-Ig-stimulated motility of lymphocytes by cyclic nucleotides and adrenergic and cholinergic agents, J. Immunol. 114:802–808.PubMedGoogle Scholar
  281. Schreiner, G. F., and Unanue, E. R., 1975b, Anti-Ig-triggered movement of lymphocytes. Specificity and lack of evidence for directional migration, J. Immunol. 114:809–814.PubMedGoogle Scholar
  282. Schreiner, G. F., and Unanue, E. R., 1976a, Calcium-sensitive modulation of Ig capping: Evidence supporting a cytoplasmic control of ligand-receptor complexes, J. Exp. Med. 143:15–31.PubMedCrossRefGoogle Scholar
  283. Schreiner, G. F., and Unanue, E. R., 1976b, The disruption of Immunoglobulin caps by local anesthetics, Clin. Immunol. Immunopathol. 6:264–269.PubMedCrossRefGoogle Scholar
  284. Schreiner, G. F., Braun, J., and Unanue, E. R., 1976, Spontaneous redistribution of surface Immunoglobulin in the motile B lymphocyte, J. Exp. Med. 144:1683–1688.PubMedCrossRefGoogle Scholar
  285. Schreiner, G. F., Fujiwara, K., Pollard, T., and Unanue, E. R., 1977, Redistribution of myosin accompanying capping of surface Ig, J. Exp. Med. 145:1393–1398.PubMedCrossRefGoogle Scholar
  286. Schroeder, T. E., 1975, Dynamics of the contractile ring, in: Molecules and Cell Movement (S. Inoue and R. E. Stephens, eds.), Raven Press, New York, pp. 305–334.Google Scholar
  287. Schroeder, T. E., 1981, Interrelations between the cell surface and the cytoskeleton in cleaving sea urchin eggs, in: Cytoskeleton Elements and Plasma Membrane Organization (G. Poste and G. L. Nicolson, eds.), North-Holland, New York, pp. 170–209.Google Scholar
  288. Sefton, B. M., Hunter, T., Ball, E. H., and Singer, S. J., 1981, Vinculin: A cytoskeletal target of the transforming protein of rous sarcoma virus, Cell 24:165–174.PubMedCrossRefGoogle Scholar
  289. Sheetz, M. P., 1979, Integral membrane protein interaction with Triton cytoskeletons of erythrocytes, Biochim. Biophys. Acta 557:122–134.PubMedCrossRefGoogle Scholar
  290. Sheetz, M. P., and Casaly, J., 1980, 2,3-Diphosphoglycerate and ATP dissociate erythrocyte membrane skeletons, J. Biol. Chem. 255:9955–9960.PubMedGoogle Scholar
  291. Sheetz, M. P., Schindler, M., and Koppel, D. E., 1980, Lateral mobility of integral membrane proteins is increased in spherocytic erythrocytes, Nature 285:510–512.PubMedCrossRefGoogle Scholar
  292. Sheetz, M. P., Febbroriello, P., and Koppel, D. E., 1982, Triphosphoinositide increases glycoprotein lateral mobility in erythrocyte membranes, Nature 296:91–93.PubMedCrossRefGoogle Scholar
  293. Shotton, D. M., Thompson, K., Wofsy, L., and Branton, D., 1978, Appearance and distribution of surface proteins of the human erythrocyte membrane: An electron microscope and immunochemical labeling study, J. Cell Biol. 76:512–531.PubMedCrossRefGoogle Scholar
  294. Shotton, D., Burke, B., and Branton, D., 1979, The molecular structure of human erythrocyte spectrin, J. Mol. Biol. 131:303–329.PubMedCrossRefGoogle Scholar
  295. Shriver, K., and Rohrschneider, L., 1981, Organization of pp60src and selected cytoskeletal proteins within adhesion plaques and junctions of rous sarcoma virus-transformed rat cells, J. Cell Biol. 89:525–533.PubMedCrossRefGoogle Scholar
  296. Siegel, D., and Branton, D., 1982, Human erythrocyte band 4.9, J. Cell Biol. 95:265a.Google Scholar
  297. Siliciano, J. D., and Craig, S. W., 1982, Meta-vinculin—a vinculin-related protein with solubility properties of a membrane protein, Nature 300:533–535.PubMedCrossRefGoogle Scholar
  298. Silverstein, S. C., and Loike, J. D., 1980, Phagocytosis, in: Mononuclear Phagocytes, Vol. II (R. van Furth, ed.), Martinus Nijhoff, The Hague, pp. 895–917.Google Scholar
  299. Silverstein, S. C., Steinman, R. M., and Cohn, Z. A., 1977, Endocytosis, Annu. Rev. Biochem. 46:669–722.PubMedCrossRefGoogle Scholar
  300. Singer, I. I., 1979, The fibronexus: a transmembrane association of fibronectin-containing fibers and bundles of 5 nm microfilaments in hamster and human fibroblasts, Cell 16:675–685.PubMedCrossRefGoogle Scholar
  301. Singer, I. I., 1982, Association of fibronectin and vinculin with focal contacts and stress fibers in stationary hamster fibroblasts, J. Cell Biol. 92:398–408.PubMedCrossRefGoogle Scholar
  302. Singer, I. I., and Paradiso, P. R., 1981, A transmembrane relationship between fibronectin and vinculin (130 kd protein): Serum modulation in normal and transformed hamster fibroblasts, Cell 24:481–492.PubMedCrossRefGoogle Scholar
  303. Singer, S. J., Ash, J. F., Bourguignon, L. Y. W., Heggeness, M. H., and Louvard, D., 1978, Transmembrane interactions and the mechanisms of transport of proteins across membranes, J. Supramol. Struct. 9:373–389.PubMedCrossRefGoogle Scholar
  304. Small, J. V., and Celis, J. E., 1978, Direct visualization of the 10 nm (100 Å) filament network in whole and enucleated cultured cells, J. Cell Sci. 31:393–409.PubMedGoogle Scholar
  305. Smith, D. K., and Palek, J., 1982, Modulation of lateral mobility of band 3 in the erythrocyte membrane by oxidative cross-linking of spectrin, Nature 297:424–425.PubMedCrossRefGoogle Scholar
  306. Smith, L. M., Smith, B. A., and McConnell, H. M., 1979, Lateral diffusion of M-13 coat protein in model membranes, Biochemistry 18:2256–2259.PubMedCrossRefGoogle Scholar
  307. Spudich, J. A., 1974, Biochemical and structural studies of actomyosin-like proteins from non-muscle cells. II. Purification, properties, and membrane association of actin from amoebae of Dictyostelium discoideum, J. Biol. Chem. 249:6013–6020.PubMedGoogle Scholar
  308. Steck, T., 1974, The organization of proteins in the human red cell membrane, J. Cell Biol. 62:1–19.PubMedCrossRefGoogle Scholar
  309. Steck, T., and Yu, J., 1973, Selective solubilization of proteins from red blood cell membranes by protein perturbants, J. Supramol. Struct. 1:220–232.PubMedCrossRefGoogle Scholar
  310. Stendahl, O. I., Hartwig, J. H., Brotschi, E. A., and Stossel, T. P., 1980, Distribution of actin-binding protein and myosin in macrophages during spreading and phagocytosis, J. Cell Biol. 84:215–224.PubMedCrossRefGoogle Scholar
  311. Stephens, R. E., 1977, Major membrane protein differences in cilia and flagella: Evidence for a membrane-associated tubulin, Biochemistry 16:2047–2048.PubMedCrossRefGoogle Scholar
  312. Stossel, T. P., 1978, Contractile proteins in cell structure and function, Annu. Rev. Med. 29:427–457.PubMedCrossRefGoogle Scholar
  313. Stossel, T. P., and Hartwig, J. H., 1976, Phagocytosis and the contractile proteins of pulmonary macrophages, in: Cell Motility (R. Goldman, T. Pollard, and J. Rosenbaum, eds.), Cold Spring Harbor Laboratory, New York, vol. B., pp. 529–544.Google Scholar
  314. Sugrue, S. P., and Hay, E. D., 1981, Response of basal epithelial cell surface and cytoskeleton to solubilized extracellular matrix molecules, J. Cell Biol. 91:45–54.PubMedCrossRefGoogle Scholar
  315. Sundqvist, K.-G., and Ehrnst, A., 1976, Cytoskeletal control of surface membrane mobility, Nature 264:226–231.PubMedCrossRefGoogle Scholar
  316. Sundqvist, K.-G., Oheskog, P., and Ege, T., 1978, Cytochalasin B induces polarisation of plasma membrane components and actin in transformed cells, Nature 274:915–917.PubMedCrossRefGoogle Scholar
  317. Tank, D. W., Wu, E.-S., and Webb, W. W., 1982, Enhanced molecular diffusibility in muscle membrane blebs: Release of lateral constraints, J. Cell Biol. 92:207–212.PubMedCrossRefGoogle Scholar
  318. Tanner, M. J. A., and Anstee, D. J., 1976, A method for the direct demonstration of the lectin-binding components of the human erythrocyte membrane, Biochem. J. 153:265–270.PubMedGoogle Scholar
  319. Taylor, D. L., and Condeelis, J. S., 1979, Cytoplasmic structure and contractility in amoeboid cells, Int. Rev. Cytol. 56:57–143.PubMedCrossRefGoogle Scholar
  320. Taylor, R. B., Duffus, P. H., Raff, M. C., and dePetris, S., 1971, Redistribution and pinocytosis of lymphocyte surface Immunoglobulin molecules induced by anti-immunoglobulin antibody, Nature New Biol. 233:225–229.PubMedCrossRefGoogle Scholar
  321. Thompson, N. L., and Axelrod, D., 1980, Reduced lateral mobility of a fluorescent lipid probe in cholesterol-depleted erythrocyte membrane, Biochim. Biophys. Acta 597:155–165.PubMedCrossRefGoogle Scholar
  322. Tilney, L. G., 1978, Polymerization of actin. V. A new organelle, the actomere, that initiates the assembly of actin filaments in thyone sperm, J. Cell Biol. 47:408–422.CrossRefGoogle Scholar
  323. Tilney, L. G., and Cardell, R. R., Jr., 1970, Factors controlling the reassembly of the microvillus border of the small intestine of the salamander, J. Cell Biol. 47:408–422.PubMedCrossRefGoogle Scholar
  324. Tilney, L. G., and Mooseker, M. S., 1976, Actin filament-membrane attachment: Are membrane particles involved? J. Cell Biol. 71:402–416.PubMedCrossRefGoogle Scholar
  325. Tilney, L. G., Kiehart, D. P., Sardet, C., and Tilney, M., 1978, Polymerization of actin. IV. Role of Ca++ and H+ in the assembly of actin and in membrane fusion in the acrosomal reaction of echinoderm sperm, J. Cell Biol. 77:536–550.PubMedCrossRefGoogle Scholar
  326. Tilney, L. G., Bonder, E. M., and DeRosier, D. J., 1981, Actin filaments elongate from their membrane-associated ends, J. Cell Biol. 90:485–494.PubMedCrossRefGoogle Scholar
  327. Toh, B. H., and Hard, G. C., 1977, Actin co-caps with concanavalin A receptors, Nature 269:696–697.CrossRefGoogle Scholar
  328. Trotter, J. A., 1981, The organization of actin in spreading macrophages, Exp. Cell Res. 132:235–248.PubMedCrossRefGoogle Scholar
  329. Tsukita, S., Tsukita, S., and Ishikawa, H., 1980, Cytoskeletal network underlying the human erythrocyte membrane, J. Cell Biol. 85:567–576.PubMedCrossRefGoogle Scholar
  330. Tsukita, S., Tsukita, S., and Ishikawa, H., 1981, Electron microscopic study of reassociation of spectrin and actin with the human erythrocyte membrane, J. Cell Biol. 90:70–77.PubMedCrossRefGoogle Scholar
  331. Tyler, J., Hargreaves, W., and Branton, D., 1979, Purification of two spectrin-binding proteins: Biochemical and electron microscopic evidence for site-specific reassociation between spectrin and bands 2.1 and 4.1, Proc. Natl. Acad. Sci. USA 76:5192–5196.PubMedCrossRefGoogle Scholar
  332. Tyler, J., Reinhardt, B., and Branton, D., 1980, Associations of erythrocyte membrane proteins. Binding of purified bands 2.1 and 4.1 to spectrin, J. Biol. Chem. 255:7034–7039.PubMedGoogle Scholar
  333. Uehara, Y., Campbell, G. R., and Burnstock, G., 1971, Cytoplasmic filaments in developing and adult vertebrate smooth muscle, J. Cell Biol. 50:484–497.PubMedCrossRefGoogle Scholar
  334. Unanue, E. R., 1976, Cytological analysis of histocompatibility molecules, in: The Role of the Products of the Histocompatibility Gene Complex in Immune Response (D. H. Katz and B. Benacerraf, eds.), Academic Press, New York, pp. 603–642.Google Scholar
  335. Unanue, E. R., and Schreiner, G. F., 1977, Structure and function of surface Immunoglobulin of lymphocytes, in: Dynamic Aspects of Cell Surface Organization (G. Poste and G. L. Nicolson, eds.), North-Holland Publishing Co., New York, pp. 619–641.Google Scholar
  336. Unanue, E. R., Ungewickell, E., and Branton, D., 1981, The binding of clathrin triskelions to membranes from coated vesicles, Cell 26:439–446.PubMedCrossRefGoogle Scholar
  337. Ungewickell, E., and Gratzer, W., 1978, Self-association of human spectrin, Eur. J. Biochem. 88:379–385.PubMedCrossRefGoogle Scholar
  338. Vasiliev, J. M., and Gelfand, I. M., 1977, Mechanisms of morphogenesis in cell cultures, Int. Rev. Cytol. 50:159–274.PubMedCrossRefGoogle Scholar
  339. Vaz, W. L. C., Kapitza, H. G., Stümpel, J., Sackmann, E., and Jovin, T. M., 1981, Translational mobility of glycophorin in bilayer membranes of dimyristoylphosphatidyl choline, Biochemistry 20:1392–1396.PubMedCrossRefGoogle Scholar
  340. Verderame, M., Alcorta, D., Egnor, M., Smith, K., and Pollack, R., 1980, Cytoskeletal F-actin patterns quantitated with fluorescein isothiocyanate-phalloidin in normal and transformed cells, Proc. Natl. Acad. Sci. USA 77:6624–6628.PubMedCrossRefGoogle Scholar
  341. Virtanen, I., Kurkinen, M., and Lento, V.-P., 1979, Nucleus anchoring cytoskeleton in chicken red blood cells, Cell Biol. Int. Rep. 3:157–162.PubMedCrossRefGoogle Scholar
  342. Virtanen, I., Vartio, T., Badley, R. A., and Lento, V.-P., 1982, Fibronectin in adhesion, spreading and cytoskeletal organization of cultured fibroblasts, Nature 298:660–663.PubMedCrossRefGoogle Scholar
  343. Walter, R. J., Berlin, R. D., Pfeiffer, J. R., and Oliver, J. M., 1980, Polarization of endocytosis and receptor topography on cultured macrophages, J. Cell Biol. 86:199–211.PubMedCrossRefGoogle Scholar
  344. Wang, E., and Goldberg, A. R., 1976, Changes in microfilament organization and surface topography upon transformation of chick embryo fibroblasts with Rous sarcoma virus, Proc. Natl. Acad. Sci. USA 73:4065–4069.PubMedCrossRefGoogle Scholar
  345. Weatherbee, J. A., 1981, Membranes and cell movements: Interactions of membranes with the proteins of the cytoskeleton, in: International Review of Cytology, Supplement 12, Academic Press, New York, pp. 113–176.Google Scholar
  346. Webb, W. W., Barak, L. S., Tank, D. W., and Wu, E.-S., 1981, Molecular mobility on the cell surface, Biochem. Soc. Symp. 46:191–205.PubMedGoogle Scholar
  347. Weeds, A., 1982, Actin-binding proteins—regulators of cell architecture and motility, Nature 296:811–816.PubMedCrossRefGoogle Scholar
  348. Weinstein, R., Khodadad, J., and Steck, T., 1980, The band 3 protein intramembrane particle of the human red blood cell, in: Membrane Transport in Erythrocytes (U. Lassen, H. Ussing; and J. Wieth, eds.), Munksgaard, Copenhagen, pp. 35–50.Google Scholar
  349. West, C. M., McMahon, D., and Molday, R. S., 1978, Identification of glycoproteins, using lectins as probes, in plasma membranes from Dictyostelium discoideum and human erythrocytes, J. Biol. Chem. 253:1716–1724.PubMedGoogle Scholar
  350. Wickus, G., Gruenstein, E., Robbins, P. W., and Rich, A., 1975, Decrease in membrane-associated actin of fibroblasts after transformation by Rous sarcoma virus, Proc. Natl. Acad. Sci. USA 72:746–749.PubMedCrossRefGoogle Scholar
  351. Wilkins, J. A., and Lin, S., 1981, Association of actin with chromaffin granule membranes and the effect of cytochalasin B on the polarity of actin filament elongation, Biohim. Biophys. Acta 642:55–66.CrossRefGoogle Scholar
  352. Wilkins, J. A., and Lin, S., 1982, High-affinity interaction of vinculin with actin filaments in vitro, Cell 28:83–90.PubMedCrossRefGoogle Scholar
  353. Willingham, M. C., Yamada, K. M., Yamada, S. S., Pouyssegur, J., and Pastan, I., 1977, Microfilament bundles and cell shape are related to adhesiveness to substratum and are dissociable from growth control in cultured fibroblasts, Cell 10:375–380.PubMedCrossRefGoogle Scholar
  354. Wolfe, S. L., 1967, Microtubular elements and cell membranes isolated from nucleated erythrocytes, J. Ultrastruct. Res. 17:588–597.PubMedCrossRefGoogle Scholar
  355. Wu, E.-S., Jacobson, K., Szoka, F., and Portis, A., Jr., 1978, Lateral diffusion of a hydrophobic peptide, N-4-nitrobenz-2-oxa-1,3-diazole gramicidin S, in phospholipid multibilayers, Biochemistry 17:5543–5550.PubMedCrossRefGoogle Scholar
  356. Wu, E.-S., Tank, D. W., and Webb, W. W., 1982, Unconstrained lateral diffusion of concanavalin A receptors on bulbous lymphocytes, Proc. Natl. Acad. Sci. USA 79:4962–4966.PubMedCrossRefGoogle Scholar
  357. Yahara, I., and Edelman, G. M., 1972, Restrictions of the mobility of lymphocyte Immunoglobulin receptors by concanavalin A, Proc. Natl. Acad. Sci. USA 69:608–612.PubMedCrossRefGoogle Scholar
  358. Yahara, I., and Edelman, G. M., 1973, The effects of concanavalin A on the mobility of lymphocyte surface receptors, Exp. Cell Res. 81:143–155.PubMedCrossRefGoogle Scholar
  359. Yahara, I., and Kamimoto-Sameshima, F., 1977, Ligand-independent cap formation: Redistribution of surface receptors on mouse lymphocytes and thymocytes in hypertonic medium, Proc. Natl. Acad. Sci. USA 74:4511–4515.PubMedCrossRefGoogle Scholar
  360. Yahara, I., and Kamimoto-Sameshima, F., 1979, Analysis of ligand-independent cap formation induced in hypertonic medium, Exp. Cell Res. 119:237–252.PubMedCrossRefGoogle Scholar
  361. Yahara, I., Iwashita, S., Ebina, T., Satake, M., and Ishida, N., 1979, Inhibition of ligand-independent cap formation of mouse lymphocytes and Raji cells by neocarzinostatin, Cancer Res. 39:4687–4793.PubMedGoogle Scholar
  362. Yeltman, D. R., Jung, G., and Carraway, K. L., 1981, Isolation of α-actinin from sarcoma 180 ascites cell plasma membranes and comparison with smooth muscle α-actinin, Biochim. Biophys. Acta 668:201–208.PubMedCrossRefGoogle Scholar
  363. Yu, J., and Branton, D., 1976, Reconstitution of intramembrane particles in recombinants of erythrocyte protein band 3 and lipid: Effects of spectrin-actin association, Proc. Natl. Acad. Sci. USA 73:3891–3895.PubMedCrossRefGoogle Scholar
  364. Yu, J., and Goodman, S., 1979, Syndeins: The spectrin-binding protein(s) of the human erythrocyte membrane, Proc. Natl. Acad. Sci. USA 76:2340–2344.PubMedCrossRefGoogle Scholar
  365. Yu, J., Fischman, D., and Steck, T. L., 1973, Selective solubilization of proteins and phospholipids from red blood cell membranes by non-ionic detergents, J. Supramol. Struct. 1:233–248.PubMedCrossRefGoogle Scholar
  366. Ziparo, E., Lemay, A., and Marchesi, V., 1978, The distribution of spectrin along the membranes of normal and echinocytic human erythrocytes, J. Cell Sci. 34:91–101.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Carl M. Cohen
    • 1
    • 2
  • Deborah K. Smith
    • 1
  1. 1.Department of Biomedical ResearchSt. Elizabeth’s HospitalBostonUSA
  2. 2.Departments of Medicine and of Molecular Biology and MicrobiologyTufts University School of MedicineBostonUSA

Personalised recommendations