Skip to main content

Rotational Diffusion of Membrane Proteins Optical Methods

  • Chapter
The Enzymes of Biological Membranes

Abstract

Optical methods for measurement of Brownian rotational diffusion depend upon the use of linearly polarized light. Furthermore, the molecule under study must be capable of being photoexcited to some state which can be detected separately from the non-excited state. The measurements of rotation depend upon photoselection, which briefly works as follows. An isotropic (random) array of molecules is partially converted to the excited state by a flash of polarized light of appropriate wavelength. Because of the relationship between molecular orientation and the probability of absorbing linearly polarized light, the population of excited molecules is anisotropic. This anisotropy can be detected optically in various ways: by polarization of light emitted from the excited state, e.g., prompt and delayed fluorescence and phosphorescence, by polarized absorption measurements of the excited state absorption bands, i.e., linear dichroism, or of the remaining and also anisotropic ground-state absorption bands. Rotational diffusion will abolish the flash-established anisotropy in a time-dependent fashion. Conversely, measurements of the decay of flash-induced anisotropy enable rotational diffusion coefficients to be calculated. These concepts were established more than half a century ago (Perrin, 1926, 1929) and have been extensively reviewed (Albrecht, 1961, 1970).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albrecht, A. C., 1961, Polarisations and assignments of transitions: The method of photoselection, J. Mol. Spectrosc. 6:301–334.

    Article  Google Scholar 

  • Albrecht, A. C., 1970, The method of photoselection and some recent applications, Prog. React. Kinet. 5:301–334.

    CAS  Google Scholar 

  • Austin, R. H., Chan, S. S., and Jovin, T. M., 1979, Rotational diffusion of cell surface components by time-resolved phosphorescence anisotropy, Proc. Natl. Acad. Sci. USA 76:5650–5654.

    Article  PubMed  CAS  Google Scholar 

  • Axelrod, D., Koppel, D. E., Schlessinger, J., Elson, E., and Webb, W. W., 1976, Mobility measurement by analysis of fluorescence photobleaching recovery kinetics, Biophys. J. 16:1055–1069.

    Article  PubMed  CAS  Google Scholar 

  • Bartholdi, M., Barrantes, F. J., and Jovin, T. M., 1981, Rotational molecular dynamics of the membrane-bound acetylcholine receptor revealed by phosphorescence spectroscopy, Eur. J. Biochem. 120:389–396.

    Article  PubMed  CAS  Google Scholar 

  • Belford, G. G., Belford, R. L., and Weber, G., 1972, Dynamics of fluorescence polarizations in macromolecules, Proc. Natl. Acad. Sci. USA 69:1392–1393.

    Article  PubMed  CAS  Google Scholar 

  • Brand, L., and Witholt, B., 1967, Fluorescence measurements, Meth. Enzymol. 11:776–857.

    Article  CAS  Google Scholar 

  • Burkli, A., and Cherry, R. J., 1981, Rotational motion and flexibility of Ca2+ and Mg2+ dependent adenosine 5′-triphosphatase in sarcoplasmic reticulum membranes, Biochemistry 20:138–145.

    Article  PubMed  CAS  Google Scholar 

  • Chapman, D., and Restall, C. J., 1982, Rotational and lateral movements in biomembranes: The dynamics of biomembrane components, Biochem. Soc. Symp. 46:139–154.

    Google Scholar 

  • Cherry, R. J., 1978, Measurement of protein rotational diffusion in membranes by flash photolysis, Meth. Enzymol. 54:47–61.

    Article  PubMed  CAS  Google Scholar 

  • Cherry, R. J., 1979, Rotational and lateral diffusion of membrane proteins, Biochim. Biophys. Acta 559:289–327.

    Article  PubMed  CAS  Google Scholar 

  • Cherry, R. J., and Godfrey, R. E., 1981, Anisotropie rotation of bacteriorhodopsin in lipid membranes. Comparison of theory with experiment, Biophys. J. 36:251–216.

    Article  Google Scholar 

  • Cherry, R. J., and Schneider, G., 1976, A spectroscopic technique for measuring slow rotational diffusion of macromolecules. 2: Determination of rotational correlation times of proteins in solution, Biochemistry 15:3657–3661.

    Article  PubMed  CAS  Google Scholar 

  • Cherry, R. J., Cogoli, A., Oppliger, M., Schneider, G., and Semenza, G., 1976a, A spectroscopic technique for measuring slow rotational diffusion of macromolecules. I: Preparation and properties of a triplet probe, Biochemistry 15:3653–3656.

    Article  PubMed  CAS  Google Scholar 

  • Cherry, R. J., Burkli, A., Busslinger, M., Schneider, G., and Parish, G. R., 1976b, Rotational diffusion of band 3 proteins in the human erythrocyte membrane, Nature (London) 263:389–393.

    Article  CAS  Google Scholar 

  • Cherry, R. J., Müller, U., and Schneider, G., 1977, Rotational diffusion of bacteriorhodopsin in lipid membranes, FEBS Lett. 80:465–469.

    Article  PubMed  CAS  Google Scholar 

  • Chuang, T. J., and Eisenthal, K. B., 1972, Theory of fluorescence depolarization by anisotropic rotational diffusion, J. Chem. Phys. 57:5094–5097.

    Article  CAS  Google Scholar 

  • Cone, R. A., 1972, Rotational diffusion of rhodopsin in the visual receptor membrane, Nature (London) New Biol. 236:39–43.

    CAS  Google Scholar 

  • Dixit, R. P. S., Waring, A. J., Wells, K. O., Wong, P. S., Woodrow, G. V., and Vanderkooi, J. M., 1982, Rotational motion of cytochrome c derivatives bound to membranes measured by fluorescence and phosphorescence anisotropy, Eur. J. Biochem. 126:1–9.

    Article  PubMed  CAS  Google Scholar 

  • Ehrenberg, M., and Rigler, R., 1976, Fluorescence correlation spectroscopy applied to rotational diffusion of macromolecules, Quart. Rev. Biophys. 9:69–81.

    Article  CAS  Google Scholar 

  • Erecinska, M., Wilson, D. F., and Blasie, J. K., 1978, Studies on the orientation of the mitochondrial redox carriers. I. Orientation of the hemes of cytochrome c oxidase with respect to the plane of a cytochrome oxidase lipid model membrane, Biochim. Biophys. Acta 501:53–62.

    Article  PubMed  CAS  Google Scholar 

  • Frye, L. D., and Edidin, M., 1970, The rapid intermixing of cell surface antigens after formation, J. Cell Sci. 7:319–335.

    PubMed  CAS  Google Scholar 

  • Garland, P., 1981, Letter to the editor. Fluorescence photobleaching recovery: Control of laser intensities with an acousto-optic modulator, Biophys. J. 33:481–482.

    Article  PubMed  CAS  Google Scholar 

  • Garland, P. B., and Johnson, P., 1983, Rotational diffusion measured by depolarization of fluorescence depletion, in: Spectroscopy and the Dynamics of Biological Systems (P. Bailey and R. E. Dale), in press.

    Google Scholar 

  • Garland, P. B., and Moore, C. H., 1979, Phosphorescence of protein-bound eosin and erythrosin. A possible probe for measurements of slow rotational mobility, Biochem. J. 183:561–572.

    PubMed  CAS  Google Scholar 

  • Garland, P. B., Davison, M. T., and Moore, C. H., 1979, Rotational mobility of membrane-bound cytochrome o of Escherichia coli and cytochrome a1 of Thiobacillus ferro-oxidans, Biochem. Soc. Trans. 7:1112–1113.

    PubMed  CAS  Google Scholar 

  • Gouterman, M., and Stryer, L., 1962, Fluorescence polarization of some porphyrins, J. Chem. Phys. 37:2260–2266.

    Article  CAS  Google Scholar 

  • Greinhert, R., Staerk, H., Stier, A., and Weiler, A., 1979, E-type delayed fluorescence depolarization, a technique to probe rotational motion in the microsecond range, J. Biochem. Biophys. Meth. 1:77–83.

    Article  Google Scholar 

  • Gut, J., Richter, C., Cherry, R. J., Winterhalter, K. H., and Kawato, S., 1982, Rotation of cytochrome P-450. II. Specific interactions of cytochrome P-450 with NADPH-cytochrome P-450 reductase in phospholipid vesicles, J. Biol. Chem. 257:7030–7036.

    PubMed  CAS  Google Scholar 

  • Gut, J., Richter, C., Cherry, R. J., Winterhalter, K. H., and Kawato, S., 1983, Rotation of cytochrome P-450. Complex formation of cytochrome P-450 with NADPH-cytochrome P-450 reductase in lipo-somes, J. Biol. Chem. 258:8588–8594.

    PubMed  CAS  Google Scholar 

  • Henderson, R., and Unwin, P. N. T., (1975), Three-dimensional model of purple membrane obtained by electron microscopy, Nature (London) 257:28–32.

    Article  CAS  Google Scholar 

  • Heyn, M. P., Cherry, R. J., and Dencher, N. A., 1981, Lipid-protein interactions in bacteriorhodopsin-dimyristoylphosphatidylcholine vesicles, Biochemistry 20:840–849.

    Article  PubMed  CAS  Google Scholar 

  • Hoffman, W., Sarzala, M. G., and Chapman, D., 1979, Rotational motion and evidence for oligomeric structures of sarcoplasmic reticulum Ca2+-activated ATPase, Proc. Natl. Acad. Sci. USA 76:3860–3864.

    Article  Google Scholar 

  • Hoffman, W., Sarzala, M. G., Gomezfernandez, J., Goni, F. M., Restall, C. J., Chapman, D., 1980, Protein rotational diffusion and lipid structure of reconstituted systems of Ca2+-activated adenosine triphosphatase, J. Mol. Biol. 141:119–132.

    Article  Google Scholar 

  • Inbar, M., Shinitzky, M., and Sachs, L., 1973, Rotational relaxation time of concanavalin A bound to the surface membrane of normal and malignant transformed cells, J. Mol. Biol. 81:245–253.

    Article  PubMed  CAS  Google Scholar 

  • Jablonski, V. A., 1961, Uber die abklingungsvorgange polarisierter photolunineszenz, Aeitschrift Natur-forsch. 16:1–4.

    Google Scholar 

  • Johnson, P., 1983, The lateral and rotational mobility of membrane components measured by fluorescence recovery after photobleaching and fluorescence depletion recovery, Ph.D. thesis, University of Dundee.

    Google Scholar 

  • Johnson, P., and Garland, P. B., 1981, Depolarization of fluorescence depletion: A microscopic method for measuring rotational diffusion of membrane proteins on the surface of a single cell, FEBS Lett. 132:252–256.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, P., and Garland, P. B., 1982a, Fluorescent triplet probes for measuring the rotational diffusion of membrane proteins, Biochem. J. 203:313–321.

    PubMed  CAS  Google Scholar 

  • Johnson, P., and Garland, P. B., 1982b, Carbocyanine dyes used as fluorescent triplet probes for measuring slow rotational diffusion of lipids in membranes, Biochem. J. 203:313–394.

    PubMed  CAS  Google Scholar 

  • Jovin, T. M., Bartholdi, M., Vaz, W. L. C., and Austin, R. H., 1981, Rotational diffusion of biological macromolecules by time-resolved delayed luminescence (phosphorescence, fluorescence) anisotropy, Ann. N.Y. Acad. Sci. USA 399:176–196.

    Article  Google Scholar 

  • Junge, W., 1972, Brownian rotation of the cytochrome oxidase in the mitochondrial membrane, FEBS Lett. 25:109–112.

    Article  PubMed  CAS  Google Scholar 

  • Junge, W., and Devault, D., 1975, Symmetry, orientation and rotational mobility in the a3 heme of cytochrome c oxidase in the inner membrane of mitochondria, Biochem. Biophys. Acta 408:200–214.

    Article  PubMed  CAS  Google Scholar 

  • Kawato, S., and Kinosita, K., 1981, Time dependent absorption anisotropy and rotational diffusion of proteins in membranes, Biochem. J. 36:227–296.

    Google Scholar 

  • Kawato, S., Sigel, E., Carafoli, E., and Cherry, R. J., 1980, Cytochrome oxidase rotates in the inner membrane of intact mitochondria and submitochondrial particles, J. Biol. Chem. 255:5508–5510.

    PubMed  CAS  Google Scholar 

  • Kawato, S., Sigel, E., Carafoli, E., and Cherry, R. J., 1981, Rotation of cytochrome oxidase in phospholipid vesicles. Investigations of interactions between cytochrome oxidases and between cytochrome oxidase and cytochrome bc 1 complex, J. Biol. Chem. 256:7518–7527.

    PubMed  CAS  Google Scholar 

  • Kawato, S., Gut, J., Cherry, R. J., Winterhalter, K. H., and Richter, C., 1982a, Rotation of cytochrome P-450. I. Investigation of protein—protein interactions of cytochrome P-450 in phospholipid vesicles and liver microsomes, J. Biol. Chem. 257:7023–7029.

    PubMed  CAS  Google Scholar 

  • Kawato, S., Lehner, C., Müller, M., and Cherry, R. J., 1982b, Protein-protein interactions of cytochrome oxidase in inner mitochondrial membranes. The effect of liposome fusion on protein rotational mobility, J. Biol. Chem. 257:6470–6476.

    PubMed  CAS  Google Scholar 

  • Koppel, D. E., Axelrod, D., Schlessinger, J., Elson, E. L., and Webb, W. W., 1976, Dynamics of fluorescence marker concentration as a probe of mobility, Biophys. J. 16:1315–1329.

    Article  PubMed  CAS  Google Scholar 

  • Kunze, U., and Junge, W., 1977, Ellipticity of cytochrome a 3 and rotational mobility of cytochrome c-oxidase in the cristae membrane of mitochondria, FEBS Lett. 80:429–434.

    Article  PubMed  CAS  Google Scholar 

  • Lakowicz, J. R., Prendergast, F. G., and Hogan, D., 1979, Differential polarized phase fluorometric investigations of diphenylhexatriene in lipid bilayers. Quantitation of hindered depolarizing rotations, Biochemistry 18:508–519.

    Article  PubMed  CAS  Google Scholar 

  • Lavalette, D., and Amand, B., and Pochon, F., 1977, Rotational relaxation of 70S ribosome by a depolarization method using triplet probes, Proc. Natl. Acad. Sci. USA 74:1407–1411.

    Article  PubMed  CAS  Google Scholar 

  • Lindmo, T., and Steen, H. B., 1977, The effect of numerical aperture of detector optics on polarization values, Biophys. J. 18:173–187.

    Article  PubMed  CAS  Google Scholar 

  • Lo, M. M. S., Garland, P. B., Lamprecht, J., and Barnard, E. A., 1980, Rotational mobility of the membrane-bound acetylcholine receptor of Torpedo electric organ measured by phosphorescence depolarization, FEBS Lett. 111:407–412.

    Article  PubMed  CAS  Google Scholar 

  • Mar, T., Picorel, R., and Gingras, G., 1981, Rotational mobility of the photoreaction center in chromophore membranes of Rhodospirillum rubrum, Biochim. Biophys. Acta 637:546–550.

    Article  CAS  Google Scholar 

  • Matayoshi, E. D., Corin, A. F., Zidovetzki, R., Sawyer, W. H., and Jovin, T. M., 1982, Rotational dynamics of cell surface proteins, in: Proceedings of the FEBS Symposium Konstanz. Mobility and Recognition in Cell Biology. (H. Sund and C. Veeger, eds.), Walter de Gruyter & Co., Berlin.

    Google Scholar 

  • Moore, C. H., and Garland, P. B., 1979, Synthesis of erythrosin isothiocyanate and its use as a phosphorescence depolarization probe for slow rotational mobility of membrane proteins, Biochem. Soc. Trans. 7:945–946.

    PubMed  CAS  Google Scholar 

  • Moore, C., Boxer, D., and Garland, P., 1979, Phosphorescence depolarization and the measurement of rotational motion of proteins in membranes, FEBS Lett. 108:161–166.

    Article  PubMed  CAS  Google Scholar 

  • Muller, M., Krebs, J. J. R., Cherry, R. J., and Kawato, S., 1982, Selective labeling and rotational diffusion of the ADP/ATP translocator in the inner mitochondrial membrane, J. Biol. Chem. 257:1117–1120.

    PubMed  CAS  Google Scholar 

  • Murray, E. K., Restall, C. J., and Chapman, D., 1983, Monitoring membrane protein rotational diffusion using time-averaged phosphorescence, Biochim. Biophys. Acta 732:347–351.

    Article  PubMed  CAS  Google Scholar 

  • Naqvi, K. R., and Wild, U. P., 1975, The use of E-type delayed fluorescence for probing rotational relaxation, Chem. Phys. Lett. 36:222–224.

    Article  CAS  Google Scholar 

  • Naqvi, K. R., Gonzales, R. J., Cherry, R. J., and Chapman, D., 1973, Spectroscopic technique for studying protein rotation in membranes, Nature (London) New Biol. 245:249–251.

    Article  CAS  Google Scholar 

  • Nigg, E. A., and Cherry, R. J., 1979, Influence of temperature and cholesterol on the rotational diffusion of band 3 in the human erythrocyte membrane, Biochemistry 18:3457–3465.

    Article  PubMed  CAS  Google Scholar 

  • Nigg, E. A., and Cherry, R. J., 1980, Anchorage of a band 3 population at the erythrocyte cytoplasmic membrane surface: Protein rotational diffusion measurements, Proc. Natl. Acad. Sci. USA 77:4702–4706.

    Article  PubMed  CAS  Google Scholar 

  • Perrin, P. F., 1926, Polarisation de la lumiere de fluorescence. Vie moyenne des molecules dans l’etat excite, J. Phys. Rad. 7:390.

    Article  CAS  Google Scholar 

  • Perrin, P. F., 1929, La fluorescence des solutions. Induction moleculaire.—polarization et duree d’emission-photochimiew, Annde Phys. 12:169–275.

    CAS  Google Scholar 

  • Peters, R., and Cherry, R. J., 1982, Lateral and rotational diffusion of bacteriorhodopsin in lipid bilayers: An experimental test of the Saffmann—Delbriick equations, Proc. Natl. Acad. Sci. USA 79:4317–4321.

    Article  PubMed  CAS  Google Scholar 

  • Peters, R., Peters, J., Tews, K. H., and Bahr, W., 1974, A microfluorometric study of translational diffusion in erythrocyte membranes, Biochim. Biophys. Acta 367:282–294.

    Article  PubMed  CAS  Google Scholar 

  • Pilipovich, V. A., 1961, Polarization of phosphorescence in organophors, Opt. Spectrosc. 10:104–107.

    Google Scholar 

  • Richter, C., Winterhalter, K. H., and Cherry, R. J., 1979, Rotational diffusion of cytochrome P-450 in rat liver microsomes, FEBS Lett. 102:151–154.

    Article  PubMed  CAS  Google Scholar 

  • Rigler, R., and Ehrenberg, M., 1973, Molecular interactions and structure as analysed by fluorescence relaxation spectroscopy, Quart. Rev. Biophys. 6:139–199.

    Article  CAS  Google Scholar 

  • Saffman, R. G., and Delbrück, M., 1975, Brownian motion in biological membranes, Proc. Natl. Acad. Sci. USA 72:3111–3113.

    Article  PubMed  CAS  Google Scholar 

  • Shinitzky, M., Inbar, M., and Sachs, L., 1973, Rotational diffusion of lectins bound to the surface membrane of normal lymphocytes, FEBS Lett. 34:247–250.

    Article  PubMed  CAS  Google Scholar 

  • Singer, S., and Nicholson, G. L., 1972, The final mosaic model of the structure of cell membranes, Science 175:720–731.

    Article  PubMed  CAS  Google Scholar 

  • Smith, L., Weis, R. M., and McConnell, H. M., 1981, Measurement of rotational motion in membranes using fluorescence recovery after photobleaching, Biophys. J. 36:73–91.

    Article  PubMed  CAS  Google Scholar 

  • Spiers, A., Moore, C. H., Boxer, D. H., and Garland, P. B., 1983, Segmental motion and rotational diffusion of the Ca2+-translocating ATPase of sarcoplasmic reticulum, measured by time-resolved phosphorescence depolarization, Biochem. J. 213:67–74.

    Google Scholar 

  • Strambini, G. B., and Galley, W. C., 1976, Detection of slow rotational motions of proteins by steady-state phosphorescence anisotropy, Nature (London) 260:554–556.

    Article  CAS  Google Scholar 

  • Strambini, G. B., and Galley, W. C., 1980, Time-dependent phosphorescence anisotropy measurements of the slow rotational motions of proteins in viscous solution, Biopolymers 19:383–394.

    Article  CAS  Google Scholar 

  • Teale, F. W. J., 1969, Fluorescence depolarization by light-scattering in turbid solutions, Photobiochem. Photobiophys. 10:363–374.

    Article  CAS  Google Scholar 

  • Trauble, H., and Sackmann, E., 1973, Lipid motion and rhodopsin rotation, Nature (London) 245:210–211.

    Article  CAS  Google Scholar 

  • Valeur, B., and Weber, G., 1977, Anisotropic rotations in 1-naphthylamine. Existence of a red-edge transition moment normal to the ring plane, Chem. Phys. Lett. 45:140–144.

    Article  CAS  Google Scholar 

  • Vaz, W. L. C., Austin, R. H., and Vogel, H., 1979, The rotational diffusion of cytochrome b 5 in lipid bilayer membranes. Influence of the lipid physical state, Biophys. J. 26:415–426.

    Article  PubMed  CAS  Google Scholar 

  • Vaz, W. L. C., Criado, M., Madeira, V. M. C., Schoellmann, G., and Jovin, T. M., 1982, Size dependence of the translational diffusion of large integral membrane proteins in liquid-crystalline phase lipid bilayers. A study using FRAP, Biochemistry 21:5608–5612.

    Article  PubMed  CAS  Google Scholar 

  • Wagner, R., and Junge, W., 1982, Coupling factor for photophosphorylation labelled with eosin isothiocyanate: Activity, size and shape in solution, Biochemistry 21:1890–1899.

    Article  PubMed  CAS  Google Scholar 

  • Wagner, R., Carrillo, N., Junge, W., and Vallejos, R. H., 1981, Heat-activated conformational changes of isolated coupling factor of photophosphorylation CF1, FEBS Lett. 136:208–212.

    Article  CAS  Google Scholar 

  • Wagner, R., Carillo, N., Junge, W., and Vallejos, R. H., 1982, On the conformation of reconstituted ferredoxin: NADP oxidoreductase in the thylakoid membrane. Studies via triplet lifetime and rotational diffusion with eosin isothiocyanate as label, Biochim. Biophys. Acta 680:317–330.

    Article  CAS  Google Scholar 

  • Wagner, R., Andreo, C., and Junge, W., 1983, Evidence for a sequestered solvent space in the chloroplast ATPase, Biochim. Biophys. Acta 723:123–127.

    Article  CAS  Google Scholar 

  • Wahl, P., Kasai, M., and Changeux, J. P., 1971, A study on the motion of proteins in excitable membrane fragments by nanosecond fluorescence polarization spectroscopy, Eur. J. Biochem. 36:257–276.

    Google Scholar 

  • Weber, G., 1953, Rotation, Brownian motion and polarization of the fluorescence of solutions, Adv. Protein Chem. 8:415–459.

    Article  PubMed  CAS  Google Scholar 

  • Weber, G., 1977, Theory of differential phase fluorometry: Detection of anisotropic molecular rotations, J. Chem. Phys. 66:4081–4091.

    Article  CAS  Google Scholar 

  • Willingham, M. C., and Pastan, A., 1978, The visualization of fluorescent proteins in living cells by video intensification microscopy, Clin. Endocrinol. 13:501–507.

    CAS  Google Scholar 

  • Zidovetzki, R., Yarden, Y., Schlessinger, J., and Jovin, T. M., 1981, Rotational diffusion of epidermal growth factor complexed to cell surface receptors reflects rapid microaggregation and endocytosis of occupied receptors, Proc. Natl. Acad. Sci. USA 78:6981–6985.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

Garland, P.B., Johnson, P. (1985). Rotational Diffusion of Membrane Proteins Optical Methods. In: Martonosi, A.N. (eds) The Enzymes of Biological Membranes. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4598-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4598-5_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4600-5

  • Online ISBN: 978-1-4684-4598-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics