Role of Membrane Fluidity in the Expression of Biological Functions

  • Juan Yguerabide
  • Evangelina E. Yguerabide


Biological membranes are composed of proteins, lipids, and carbohydrates. It is generally agreed that proteins are the components most directly responsible for the great diversity of functions displayed by natural membranes while the lipids, arranged in a bimolecular leaflet, provide a highly impermeable and supportive matrix for the proteins. Some of the membrane proteins, the so-called integral membrane proteins, extend into the hydrophobic regions of the lipid bilayer and are exposed on at least one of the membrane surfaces or may span the lipid bilayer and be exposed on both surfaces. Other membrane proteins, the peripheral proteins, are noncovalently attached to the membrane surface and do not extend significantly into hydrophobic regions of the membrane. The carbohydrates reside on the membrane surface, covalently attached to proteins or lipids. The lipid bilayer is not a static structure but can exist in different dynamic states in which the lipid molecules exhibit different degrees of rotational, segmental, and lateral mobilities. When mobility is high, the membrane is said to be in a high fluid state and free membrane proteins can readily translate and rotate in the lipid bilayer.


Lipid Bilayer Lipid Composition Membrane Fluidity Polar Head Fluorescence Anisotropy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amar, A., Rottem, S., and Razin, S., 1979, Is the vertical disposition of mycoplasma membrane proteins affected by membrane fluidity? Biochim. Biophys. Acta 552:457–467.PubMedCrossRefGoogle Scholar
  2. Ben-Bassat, H., Polliak, A., Rosenbaum, S. M., Naparstek, E., Shouval, D., and Inbar, M., 1977, Fluidity of membrane lipids and lateral mobility of concanavalin A receptors in the cell surface of normal lymphocytes and lymphocytes from patients with malignant lymphomas and leukemias, Cancer Res. 37:1307–1312.PubMedGoogle Scholar
  3. Berlin, R. D., and Fera, J. P., 1977, Changes in membrane microviscosity associated with phagocytosis: Effects of colchicine, Proc. Natl. Acad. Sci. USA 74:1072–1076.PubMedCrossRefGoogle Scholar
  4. Berlin, E., Matusik, E. J., and Young, C., Jr., 1980, Effect of dietary fat on the fluidity of platelet membranes, Lipids 15:604–608.PubMedCrossRefGoogle Scholar
  5. Berliner, J. L. (ed.), 1976, Spin Labelling, Theory and Application, Academic Press, New York.Google Scholar
  6. Bienvenue, A., Rousselet, A., Kato, G., and Devaux, P. F., 1977, Fluidity of the lipids next to the acetylcholine receptor protein of Torpedo membrane fragments. Use of amphiphilic reversible spinlabels, Biochemistry 16:841–848.PubMedCrossRefGoogle Scholar
  7. Birrell, G. B., and Griffith, D. H., 1976, Cytochrome c induced lateral phase separation in a diphospha-tidylglycerol-steroid spin-label model membrane, Biochem. N.Y. 15:2925–2929.CrossRefGoogle Scholar
  8. Borochov, H., and Shinitzky, M., 1976, Vertical displacement of membrane proteins mediated by changes in microviscosity, Proc. Natl. Acad. Sci. USA 73:4526–4530.PubMedCrossRefGoogle Scholar
  9. Borochov, H., Abbott, R. E., Schachter, D., and Shinitzky, M., 1975, Modulation of erythrocyte membrane proteins by membrane cholesterol and lipid fluidity, Biochemistry 18:251–255.CrossRefGoogle Scholar
  10. Brotherus, J. R., Jost, P. C., Griffith, O. H., Keana, J. F. W., and Hokin, L. E., 1980, Charge selectivity at the lipid-protein interface of membranous Na, K-ATPase, Proc. Natl. Acad. Sci. USA 77:272–276.PubMedCrossRefGoogle Scholar
  11. Brulet, P., and McConnell, H. M., 1976, Protein—lipid interactions: Glycophorin and dipalmitoylphospha-tidylcholine, BBRC 68:363–368.PubMedGoogle Scholar
  12. Campis, J., and Scandella, C. J., 1980, Bulk membrane fluidity increases after fertilization of partial activation of sea urchin eggs, J. Biol. Chem. 255:5411–5419.PubMedGoogle Scholar
  13. Chen, L. A., Dale, R. E., Roth, S., and Brand, L., 1977, Nanosecond time-dependent fluorescence depolarization of diphenylhexatriene in dimyristoyllecithin vesicles and the determination of “microviscosity,” J. Biol. Chem. 252:2163–2169.PubMedGoogle Scholar
  14. Cooper, R. A., 1977, Abnormalities of cell membrane fluidity in the pathogenesis of disease, New Engl. J. Med. 297:371–377.PubMedCrossRefGoogle Scholar
  15. Cooper, R. A., and Shattil, S. J., 1980, Membrane cholesterol—Is enough too much? New Engl. J. Med. 302:49–50.PubMedCrossRefGoogle Scholar
  16. Cooper, R. A., Leslie, M. H., Knight, D., and Detweiler, D. K., 1980, Red cell cholesterol enrichment and spur cell anemia in dogs fed a cholesterol-enriched atherogenic diet, J. Lipid Res. 21:1082–1089.PubMedGoogle Scholar
  17. Dale, R. E., Chen, L. A., and Brand, L., 1977, Rotational relaxation of the “microviscosity” probe diphenylhexatriene in paraffin oil and egg lecithin vesicles, J. Biol. Chem. 252:7500–7510.PubMedGoogle Scholar
  18. De Laat, S. W., Van Der Saag, P. T., and Shinitzky, M., 1978, Microviscosity modulation during the cell cycle of neuroblastoma cells, Proc. Natl. Acad. Sci. USA 74:4458–4461.CrossRefGoogle Scholar
  19. De Laat, S. W., Van Der Saag, P. T., Elson, E. L., and Schlessinger, J., 1980, Lateral diffusion of membrane lipids and proteins during the cell cycle of neuroblastoma cells, Proc. Natl. Acad. Sci. USA 77:1526–1528.PubMedCrossRefGoogle Scholar
  20. Eldridge, C. A., Elson, E. L., and Webb, W. W., 1980, Fluorescence photobleaching recovery measurements of surface lateral mobilities on normal and SV40-transformed mouse fibroblasts, Biochemistry 19:2075–2079.PubMedCrossRefGoogle Scholar
  21. Elson, H. F., and Yguerabide, J., 1979, Membrane dynamics of differentiating cultured embryonic chick skeletal muscle cells by fluorescence microscopy techniques, J. Supramol. Struct. 12:47–61.PubMedCrossRefGoogle Scholar
  22. Esko, J., Gilmore, J., and Glasser, M., 1977, Use of a fluorescent probe to determine the viscosity of LM cell membranes with altered phospholipid compositions, Biochemistry 16:1881–1890.PubMedCrossRefGoogle Scholar
  23. Feinstein, M. B., Fernandez, S. M., and Sha’afi, R. I., 1975, Fluidity of natural membranes and phosphatidylserine and ganglioside dispersions: Effects of local anesthetics, cholesterol and protein, Biochim. Biophys. Acta 413:354–370.PubMedCrossRefGoogle Scholar
  24. Finch, E. D., and Kiesow, L. A., 1979, Pressure, anaesthetics and membrane structure: A spin-probe study, Undersea Biomed. Res. 6:41–45.PubMedGoogle Scholar
  25. Flanagan, M. T., and Hesketh, T. R., 1973, Electrostatic interactions in the binding of fluorescent probes to lipid membranes, Biochim. Biophys. Acta 298:535–545.PubMedCrossRefGoogle Scholar
  26. Foster, M. C., and Yguerabide, J., 1979, Partition of a fluorescent molecule between liquid—crystalline and crystalline regions of membranes, J. Membr. Biol. 45:125–146.CrossRefGoogle Scholar
  27. Gazzotti, P., and Peterson, S. W., 1977, Lipid requirement of membrane-bound enzymes, J. Bioenerg. Biomembr. 9:373–386.PubMedCrossRefGoogle Scholar
  28. Georgescauld, D., Desmazes, J. P., and Duclohier, H., 1979, Temperature dependence of the fluorescence of pyrene labelled crab nerve membranes, Mol. Cell. Biochem. 27:147–153.PubMedCrossRefGoogle Scholar
  29. Gottlieb, M. H., 1980, Rates of cholesterol exchange between human erythrocytes and plasma lipoproteins, Biochim. Biophys. Acta 600:530–541.PubMedCrossRefGoogle Scholar
  30. Grant, C. W. M., and McConnell, H. M., 1974, Glycophorin in lipid bilayers, Proc. Natl. Acad. Sci. USA 71:4653–4657.PubMedCrossRefGoogle Scholar
  31. Gronowicz, G., Masur, S. K., and Holtzman, E., 1980, Quantitative analysis of exocytosis and endocytosis in the hydroosmotic response of toad bladder, J. Membr. Biol. 52:221–235.PubMedCrossRefGoogle Scholar
  32. Hare, F., and Laussan, C., 1977, Variations in microviscosity values induced by different rotational behavior of fluorescent probes in some aliphatic environments, Biochim. Biophys. Acta 467:267–272.Google Scholar
  33. Herring, F. G., Tatischeff, I., and Weeks, G., 1980, The fluidity of plasma membranes of Dictyostelium discoideum: The effects of incorporation assessed by fluorescence depolarization and electron paramagnetic resonance, Biochim. Biophys. Acta 602:1–9.PubMedCrossRefGoogle Scholar
  34. Hesketh, T. R., Smith, G. A., Houslay, M. D., McGill, K. A., Birdsall, N. J. M., Metcalfe, J. C., and Warren, G. B., 1976, Annular lipids determine the ATPase activity of a calcium transport protein complexed with dipalmitoyllecithin, Biochemistry 15:4145–4151.PubMedCrossRefGoogle Scholar
  35. Horwitz, A. F., 1972, Nuclear magnetic resonance studies on phospholipids and membranes, in: Membrane Molecular Biology (C. F. Fox and A. D. Keith, eds.), Sinauer Associates, Sunderland, Massachusetts, pp. 164–191.Google Scholar
  36. Houslay, M. D., Dipple, I., Rawal, S., Sauerheber, R. D., Esgate, J. A., and Gordon, L. M., 1980, Glucagon-stimulated adenylate cyclase detects a selective perturbation of the inner half of the liver plasma-membrane bilayer achieved by the local anaesthetic prilocaine, Biochem. J. 190:131–137.PubMedGoogle Scholar
  37. Hubbard, R. E., and Garratt, C. J., 1980, The composition and fluidity of adipocyte membranes prepared from young and adult rats, Biochim. Biophys. Acta 600:701–704.PubMedCrossRefGoogle Scholar
  38. Inbar, M., and Ben-Bassat, H., 1976, Fluidity difference in the surface membrane lipid core of human lymphoblastoid and lymphoma cell lines, Int. J. Cancer 18:293–297.PubMedCrossRefGoogle Scholar
  39. Israelachivili, J. N., 1978, Light Transducing Membranes: Structure, Function and Evolution (D. W. Deamer, ed.), Academic Press, New York, p. 91.Google Scholar
  40. Israelachivili, J. N., Mitchell, D. J., and Ninham, B. W., 1977, Theory of self-assembly of lipid bilayers and vesicles, Biochim. Biophys. Acta 470:185–201.CrossRefGoogle Scholar
  41. Israelachivili, J. N., Marcelja, S., and Horn, R. G., 1980, Physical principles of membrane organization, Quart. Rev. Biophys. 13:121–200.CrossRefGoogle Scholar
  42. Jackson, R. L., and Gotto, A. M., Jr., 1976, Hypothesis concerning membrane structure, cholesterol, and atherosclerosis, in: Atherosclerosis Reviews, Vol. 1, Raven Press, New York, pp. 1–21.Google Scholar
  43. Johnson, S. M., and Robinson, R., 1979, The composition and fluidity of normal and leukaemic or lymphomatous lymphocyte plasma membranes in mouse and man, Biochim. Biophys. Acta 558:282–295.PubMedCrossRefGoogle Scholar
  44. Jost, P., Waggoner, A. S., and Griffith, O. H., 1971, Spin labeling and membrane structure, in: Structure and Function of Biological Membranes, Academic Press, New York and London.Google Scholar
  45. Jost, P. C., Griffith, O. H., Capaldi, R. A., and Vanderkooi, G., 1973, Evidence for boundary lipid in membranes, Proc. Natl. Acad. Sci. USA 70:480–484.PubMedCrossRefGoogle Scholar
  46. Kapitulnik, J., Tshershedsky, M., and Barenholz, Y., 1979, Fluidity of the rat liver microsomal membrane: Increase at birth, Science 206:843–844.PubMedCrossRefGoogle Scholar
  47. Kawato, S., Kinosita, K., Jr., and Ikegami, A., 1977, Dynamic structure of lipid bilayers studied by nanosecond fluorescence techniques, Biochemistry 16:2319–2324.PubMedCrossRefGoogle Scholar
  48. King, M. D., and Quinn, P. J., 1980, The use of phospholipid exchange processes to modulate the fluidity of biological membranes, Biochem. Soc. Trans. 8:322–323.PubMedGoogle Scholar
  49. Kinosita, K., Kawato, S., and Ikegami, A., 1977, A theory of fluorescence polarization decay in membranes, Biophys. J. 20:289–305.PubMedCrossRefGoogle Scholar
  50. Kleemann, W., and McConnell, H. M., 1976, Interactions of proteins and cholesterol with lipids in bilayer membranes, Biochim. Biophys. Acta 419:206–222.PubMedCrossRefGoogle Scholar
  51. Koppel, D. É., and Sheetz, M. P., 1981, Fluorescence photobleaching does not alter the lateral mobility of the erythrocyte membrane glycoproteins, Nature 293:159–161.PubMedCrossRefGoogle Scholar
  52. Koppel, D. E., Axelrod, D., Schlessinger, J., Elson, E. L., and Webb, W. W., 1976, Dynamics of fluorescence marker concentration as a probe of mobility, Biophys. J. 16: (2, Part 2):216a (Abst.).Google Scholar
  53. Kuehl, K. S., Yeroushalmy, S., and Holloway, P. W., 1980, Modulation of membrane composition of swine vascular smooth muscle cells by homologous lipoproteins in culture, Biochim. Biophys. Acta 600:689–700.PubMedCrossRefGoogle Scholar
  54. Lai, C. S., Hopwood, L. E., and Swartz, H. M., 1980, Electron spin resonance studies of changes in membrane fluidity of Chinese hamster ovary cells during the cell cycle, Biochim. Biophys. Acta 602:117–126.PubMedCrossRefGoogle Scholar
  55. Lakowicz, J. R., and Knutson, J. R., 1980, Hindered depolarization rotations of perylene in lipid bilayers. Detection by lifetime-resolved fluorescence anisotrophy measurements, Biochemistry 19:905–911.PubMedCrossRefGoogle Scholar
  56. Lakowicz, J. R., and Prendergast, F. G., 1978, Quantitation of hindered rotations of diphenylhexatriene in lipid bilayers by differential polarized phase fluorometry, Science 200:1399–1401.PubMedCrossRefGoogle Scholar
  57. Lands, W. E. M., 1980, Membrane enzymes in their lipid environment, Biochem. Soc. Trans. 8:25–27.PubMedGoogle Scholar
  58. Lentz, B. R., Barenholz, Y., and Thompson, T. E., 1976, Fluorescence depolarization studies of phase transitions and fluidity in phospholipid bilayers. 2. Two-component phosphatidylcholine liposomes, Biochemistry 15:4529–4537.PubMedCrossRefGoogle Scholar
  59. Levine, Y. K., Partington, P., Roberts, G. C. K., Birdsall, N. J. M., Lee, A. G., and Metcalf, J. C., 1972, 13C nuclear magnetic relaxation times and models for chain motion in lecithin vesicles, FEBS Lett. 23:203–207.PubMedCrossRefGoogle Scholar
  60. Ligeti, E., and Horvrath, L. I., 1980, Effect of Mg2+ on membrane fluidity and K+ transport in rat liver mitochondria, Biochim. Biophys. Acta 600:150–156.PubMedCrossRefGoogle Scholar
  61. Livingstone, C. J., and Schachter, D., 1980, Calcium modulates the lipid dynamics of rat hepatocyte plasma membranes by direct and indirect mechanisms, Biochemistry 19:4823–4827.PubMedCrossRefGoogle Scholar
  62. Lussan, C., and Faucon, J., 1974, Effects of ions on vesicles and phospholipid dispersions studied by polarization of fluorescence, Biochim. Biophys. Acta 345:83–101.PubMedCrossRefGoogle Scholar
  63. Marcelja, S., 1976, Lipid-mediated protein interaction in membranes, Biochim. Biophys. Acta 455:1–7.PubMedCrossRefGoogle Scholar
  64. Masur, S. K., Holtzman, E., and Walter, R., 1972, Hormone-stimulated exocytosis in the toad urinary bladder, J. Cell Biol. 52:211–219.PubMedCrossRefGoogle Scholar
  65. McConnell, H. M., and McFarland, E. G., 1970, Physics and chemistry of spin labels, Quart. Rev. Biophys. 3:91–136.CrossRefGoogle Scholar
  66. McMurchie, E. J., and Raison, J. K., 1979, Membrane lipid fluidity and its effect on the activation energy of membrane associated enzymes, Biochim. Biophys. Acta 554:364–374.PubMedCrossRefGoogle Scholar
  67. McMurray, W. C., 1973, Phospholipids in subcellular organelles and membranes, in: Form and Functions of Phospholipids (G. B. Ansell, J. N. Hawthorne, and R. M. C. Dawson, eds.), Elsevier, New York, pp. 205–251.Google Scholar
  68. McVey, E., Yguerabide, J., Hanson, D. C., and Clark, W. R., 1981, The relationship between plasma membrane lipid composition and physical—chemical properties I. Fluorescence polarization studies of fatty acid-altered EL4 tumor cell membranes, Biochim. Biophys. Acta 642:106–118.PubMedCrossRefGoogle Scholar
  69. Mely-Goubert, B., and Freedman, M. H., 1980, Lipid fluidity and membrane protein monitoring using 1,6-diphenyl-1,3,5-hexatriene, Biochim. Biophys. Acta 601:315–327.PubMedCrossRefGoogle Scholar
  70. Mely-Goubert, B., Calvo, F., and Rosenfeld, C., 1979, Study of platelet membrane protein through fluorescence polarization of diphenyl hexatriene, Biomedicine 31:155–156.PubMedGoogle Scholar
  71. Metcalfe, J. C., Birdsall, N. J. M., and Lee, A. G., 1973, NMR studies of lipids in bilayers and membranes, Ann. N.Y. Acad. Sci. USA 222:460–467.CrossRefGoogle Scholar
  72. Meyer, H. H., 1901, Zur theory der alkoholnarkose. III. Mit. der einfluss wechselnder temperatur auf wirkungstarke und teilungskoefficient der narkotika, Arch. Exp. Pathol. Pharmakol 46:338.CrossRefGoogle Scholar
  73. Miller, K. W., and Pang, K. Y. Y., 1976, General anaesthetics can selectively perturb lipid nature bilayer membranes, Nature 263:253–255.PubMedCrossRefGoogle Scholar
  74. Miller, R. G., and Raison, J. K., 1980, The fluidity of chloroplast thylakoid membranes and their constituent lipids, Biochim. Biophys. Acta 599:63–72.CrossRefGoogle Scholar
  75. Mistry, P., Miller, N. E., Laker, M., Hazzard, W. R., and Lewis, B., 1981, Individual variation in the effects of dietary cholesterol on plasma lipoproteins and cellular cholesterol homeostasis in man, J. Clin. Invest. 67:493–502.PubMedCrossRefGoogle Scholar
  76. Morre, D. J., Kartenbeck, J., and Franke, W. W., 1979, Membrane flow and interconversions among endomembranes, Biochim. Biophys. Acta 559:71.PubMedCrossRefGoogle Scholar
  77. Nicolson, G. L., 1976, Transmembrane control of the receptors on normal and tumor cells. I. Cytoplasmic influence over cell components, Biochim. Biophys. Acta 457:57–108.PubMedCrossRefGoogle Scholar
  78. Overath, P., and Trauble, H., 1973, Phase transitions in cells, membranes, and lipids of Escherichia coli. Detection by fluorescent probes, light scattering, and dilatometry, Biochemistry 12:2625–2634.PubMedCrossRefGoogle Scholar
  79. Overton, E., 1901, Studien über die Narkose zugleich ein Beitrag zur allgemeinen Pharmakologie, G. Fischer, Jena.Google Scholar
  80. Owicki, J. C., Springgate, M. W., and McConnell, H. M., 1978, Theoretical study of protein—lipid interactions in bilayer membranes, Proc. Natl. Acad. Sci. USA 75:1616–1619.PubMedCrossRefGoogle Scholar
  81. Pagano, R. E., Ozato, K., and Ruysschaert, J. M., 1977, Intracellular distribution of lipophilic fluorescent probes in mammalian cells, Biochim. Biophys. Acta 465:661–671.PubMedCrossRefGoogle Scholar
  82. Papahadjopoulos, D., 1968, Phospholipids model membranes I. Structural characteristics of hydrated liquid crystals, Biochim. Biophys. Acta 135:624–638.Google Scholar
  83. Papahadjopoulos, D., 1977, Effects of bivalent cations and proteins on thermotropic properties of phospholipid membranes, J. Colloid Interface Sci. 58:459.CrossRefGoogle Scholar
  84. Papahadjopoulos, D., Jacobson, K., Poste, G., and Shepherd, G., 1975, Effects of local anesthetics on membrane properties I. Changes in the fluidity of phospholipid bilayers, Biochim. Biophys. Acta 394:504–519.PubMedCrossRefGoogle Scholar
  85. Perrin, F., 1936, Movement Brownien d’un ellipsoide (II). Rotation libre et depolarisation des fluorescences. Translation et diffusion de molecules ellipsoidales, J. Phis. Rad. 7:1.CrossRefGoogle Scholar
  86. Pessin, J., Salter, D., and Glaser, M., 1978, Use of a fluorescent probe to compare the plasma membrane properties in normal and transparent cells. Evaluation of the interference by triacylglycerols and alkylacylglycerols, Biochemistry 17:1997–2004.PubMedCrossRefGoogle Scholar
  87. Peters, R. J., Peters, J., Tews, K. H., and Bahr, W., 1974, A microfluorometric study of translational diffusion in erythrocyte membranes, Biochim. Biophys. Acta 367:282–294.PubMedCrossRefGoogle Scholar
  88. Pisam, M., and Ripoche, P., 1976, Redistribution of surface macromolecules in dissociated epithelial cells, J. Cell Biol. 71:907–920.PubMedCrossRefGoogle Scholar
  89. Poo, M. M., and Cone, R. A., 1974, Lateral diffusion of rhodopsin in the photoreceptor membrane, Nature 247:438–441.PubMedCrossRefGoogle Scholar
  90. Poste, G., Papahadjopoulos, D., Jacobson, K., and Vail, W. J., 1975, Effects of local anaesthetics of membrane properties II. Enhancement of the susceptibility of mammalian cells to agglutination by plant lectins, Biochim. Biophys. Acta 394:520–539.PubMedCrossRefGoogle Scholar
  91. Rimon, G., Hanski, E., Braun, S., and Levitzki, A., 1978, Mode of coupling between hormone receptors and adenvlate cyclase elucidated by modulation of membrane fluidity, Nature 276:394–396.PubMedCrossRefGoogle Scholar
  92. Rivnay, B., Globersor, A., and Shinitzky, M., 1979, Viscosity of lymphocyte plasma membrane in aging mice and its possible relation to serum cholesterol, Mech. Aging Dev. 10:71–79.PubMedCrossRefGoogle Scholar
  93. Rivnay, B., Bergman, S., Shinitzky, M., and Globerson, A., 1980, Correlations between membrane viscosity serum cholesterol, lymphocyte activation and aging in man, Mech. Aging Dev. 12: 119–126.PubMedCrossRefGoogle Scholar
  94. Rogers, M. J., and Strittmatter, P., 1974, Evidence for random distribution and translational movement of cytochrome b 5 in endoplasmic reticulum, J. Biol. Chem. 249:895–900.PubMedGoogle Scholar
  95. Roozemond, R. C., and Urli, D. C., 1979, Lipid composition and microviscosity of subcellular fraction from rabbit thymocytes: Differences in the microviscosity of plasma membranes from subclasses of thymocytes, Biochim. Biophys. Acta 556:17–37.PubMedCrossRefGoogle Scholar
  96. Roth, S. H., 1980, Mechanisms of anaesthesia: A review, Can. Anaesth. Soc. J. 27:433–439.PubMedCrossRefGoogle Scholar
  97. Rule, G. S., Kruuv, J., and Lepock, J. R., 1979, Membrane lipid fluidity as rate limiting in the concanavalin A-mediated agglutination of PyBHK cells, Biochem. Biophys. Acta 556:399–407.PubMedCrossRefGoogle Scholar
  98. Schachter, D., and Shinitzky, M., 1977, Fluorescence polarization studies of rat intestinal microvillus membranes, J. Clin. Invest. 59:536.PubMedCrossRefGoogle Scholar
  99. Schmidt, C. F., Barenholz, Y., and Thompson, T. E., 1977, A nuclear magnetic resonance study of sphingomyelin in bilayer systems, Biochemistry 16:2649–2656.PubMedCrossRefGoogle Scholar
  100. Seelig, A., and Seelig, J., 1974, The dynamic structure of fatty acyl chains in a phospholipid bilayer measured by deuterium magnetic resonance, Biochemistry 13:4839–4845.PubMedCrossRefGoogle Scholar
  101. Seelig, A., and Seelig, J., 1978, Lipid—protein interaction in reconstituted cytochrome c oxidase/phospholipid membranes, Hoppe-Seyler’s Z. Physiol. Chem. 359:1747.PubMedCrossRefGoogle Scholar
  102. Seelig, A., and Seelig, J., 1980, Lipid conformation in model membranes and biological membranes, Quart. Rev. Biophys. 13:19–61.CrossRefGoogle Scholar
  103. Shattil, S. J., and Cooper, R. A., 1976, Membrane microviscosity and human platelet function, Biochemistry 15:4832–4837.PubMedCrossRefGoogle Scholar
  104. Sheetz, M. P., and Singer, S. J., 1974, Biological membranes as bilayer couples. A molecular mechanism of drug—erythrocyte interactions, Proc. Natl. Acad. Sci. USA 71:4457–4461.PubMedCrossRefGoogle Scholar
  105. Sherwood, D., and Yguerabide, J., 1974, Ph.D. thesis, University of California, San Diego.Google Scholar
  106. Shiga, T., Maeda, N., Suda, T., Kon, K., and Schiya, M., 1979, The decreased membrane fluidity of in vivo aged, human erythrocytes: A spin label study, Biochim. Biophys. Acta 553:84–95.PubMedCrossRefGoogle Scholar
  107. Shinitzky, M., and Barenholz, Y., 1974, Dynamics of the hydrocarbon layer in liposomes of lecithin and sphingomyelin containing dicetylphosphate, J. Biol. Chem. 249:2652–2657.PubMedGoogle Scholar
  108. Shinitzky, M., and Barenholz, Y., 1978, Fluidity parameters of lipid regions determined by fluorescence polarization, Biochim. Biophys. Acta 515:367–394.PubMedCrossRefGoogle Scholar
  109. Shinitzky, M., and Inbar, M., 1974, Difference in microviscosity induced by different cholesterol levels in the surface membrane lipid layer of normal lymphocytes and malignant lymphoma cells, J. Mol. Biol. 85:603–615.PubMedCrossRefGoogle Scholar
  110. Shinitzky, M., and Inbar, M., 1976, Microviscosity parameters and protein mobility in biological membranes, Biochim. Biophys. Acta 433:133–149.PubMedCrossRefGoogle Scholar
  111. Shinitzky, M., and Souroujon, M., 1979, Passive modulation of blood-group antigens, Proc. Natl. Acad. Sci. USA 76:4438–4440.PubMedCrossRefGoogle Scholar
  112. Shinitzky, M., Dianoux, A. C., Gitler, C., and Weber, G., 1971, Microviscosity and order in the hydrocarbon region of micells and membranes determined with fluorescent probes. I. Synthetic micells, Biochemistry 10:2106–2113.PubMedCrossRefGoogle Scholar
  113. Shroeder, F., 1978, Isothermal regulation of membrane fluidity in marine fibroblasts with altered phospholipid polar head groups, Biochim. Biophys. Acta 511:356–376.CrossRefGoogle Scholar
  114. Singer, S. J., 1974, The molecular organization of membranes, Annu. Rev. Biochem. 43:805–833.PubMedCrossRefGoogle Scholar
  115. Singer, S. J., and Nicolson, G. L., 1972, The fluid mosaic model of the structure of cell membrane, Science 175:720–730.PubMedCrossRefGoogle Scholar
  116. Sklar, L. A., and Doody, M. C., 1980, Differences in fluidity between bilayer halves of plasma cell membranes, Nature 287:255–256.PubMedCrossRefGoogle Scholar
  117. Sklar, L. A., Hudson, B. S., and Simoni, R. D., 1975, Conjugated polyene fatty acids as membrane probes: Preliminary characterization, Proc. Natl. Acad. Sci. USA 72:1649–1653.PubMedCrossRefGoogle Scholar
  118. Sklar, L. A., Hudson, B. S., Peterson, M., and Diamond, J., 1977a, Conjugated polyene fatty acids on fluorescent probes: Spectroscopic characterization, Biochemistry 16:813–819.PubMedCrossRefGoogle Scholar
  119. Sklar, L. A., Hudson, B. S., and Simoni, R. D., 1977b, Conjugated polyene fatty acids as fluorescent probes: Synthetic phospholipid membrane studies, Biochemistry 16:819–828.PubMedCrossRefGoogle Scholar
  120. Smith, B. A., Clark, W. R., and McConnell, H. M., 1979, Anisotropie molecular motion on cell surfaces, Proc. Natl. Acad. Sci. USA 76:5641–5644.PubMedCrossRefGoogle Scholar
  121. Speigel, R. J., Magrath, I. T., and Shutte, J. A., 1981, Role of cytoplasmic lipids in altering diphenyl-hexatriene fluorescence polarization in malignant cells, Cancer Res. 41:452–458.Google Scholar
  122. Stier, A., and Sackmann, E., 1973, Spin labels as enzyme substrates heterogeneous lipid distribution in liver microsomal membranes, Biochim. Biophys. Acta 311:400–408.PubMedCrossRefGoogle Scholar
  123. Thompson, G. A., Jr., 1973, Phospholipid metabolism in animal tissues, in: Form and Functions of Phospholipids, Elsevier, New York, pp. 67–116.Google Scholar
  124. Thulborn, K. R., Tilley, L. M., Sawyer, W. H., and Treloar, F. E, 1979, The use of n(9-anthroyloxy) fatty acids to determine fluidity and polarity gradients in phospholipid bilayers, Biochim. Biophys. Acta 558:166–178.PubMedCrossRefGoogle Scholar
  125. Traüble, A., and Eibl, H., 1974, Electrostatic effects on lipid phase transitions: Membrane structure and ionic environment, Proc. Natl. Acad. Sci. USA 71:214–219.PubMedCrossRefGoogle Scholar
  126. Trudell, J. R., 1977, A unitary theory of anaesthesia based on lateral phase separations in nerve membranes, Anaesthesiology 46:5–10.CrossRefGoogle Scholar
  127. Van Blitterswijk, W. J., Emmelot, P., Hillkmann, H. A. M., Obmen-Meulemans, E. P. M., and Inbar, M., 1977, Differences in lipid fluidity among isolated plasma membranes of normal and leukemic lymphocytes and membranes exfoliated from their cell surface, Biochim. Biophys. Acta 467:309–320.PubMedCrossRefGoogle Scholar
  128. Vanderkooi, J., Fischott, S., Chance, B., and Cooper, R. A., 1974, Fluorescent probe analysis of the lipid architecture of natural and experimental-rich membranes, Biochemistry 13:1589–1595.PubMedCrossRefGoogle Scholar
  129. Van Hoeven, R. P., Von Blitterswijk, W. J., and Emmelot, P., 1979, Fluorescence polarization measurements on normal and tumor cells and their corresponding plasma membranes, Biochim. Biophys. Acta 551:44–54.PubMedCrossRefGoogle Scholar
  130. Verkleij, A. J., DeKruyff, B., Ververgaert, P. H. J. Th., Tocanne, J. F., and Van Deenen, L. L. M., 1974, The influence of pH, Ca2+ and protein on the thermotropic behaviour of the negatively charged phospholipid, phosphatidylglycerol, Biochim. Biophys. Acta 339:432–437.PubMedCrossRefGoogle Scholar
  131. Warren, G. B., Houslay, M. D., Metcalfe, J. C., and Birdsall, N. J. M., 1975, Cholesterol as excluded from the phospholipid annulus surrounding an active calcium transport protein, Nature 255:684–687.PubMedCrossRefGoogle Scholar
  132. Yamane, I., and Tomioka, F., 1979, The concomitant effect of unsaturated fatty acid supplemented to medium on cellular growth and membrane fluidity of cultured cells, Cell Biol. Int. Rep. 3:515–523.PubMedCrossRefGoogle Scholar
  133. Yguerabide, J., 1972a, Lecture presented at the 16th Annual Meeting, Biophysical Society, Toronto, Canada.Google Scholar
  134. Yguerabide, J., 1972b, Nanosecond fluorescence spectroscopy of biological macromolecule and membrane, in: Fluorescence Techniques in Cell Biology (A. A. Thaer and M. Serentz, eds.), Springer-Verlag, New York, pp. 311–331.Google Scholar
  135. Yguerabide, J., 1980, Spectroscopic and calorimetric probe methods, in: Cell Membranes and Viral Envelopes, Academic Press, New York, pp. 71–140.Google Scholar
  136. Yguerabide, J., and Foster, M. C., 1981, Fluorescence spectroscopy of biological membranes, in: Membrane Spectroscopy (E. Grell, ed.), Springer-Verlag, New York, pp. 199–269.CrossRefGoogle Scholar
  137. Ziomek, C. A., Schulman, S., and Edidin, M., 1980, Redistribution of membrane proteins in isolated mouse intestinal epithelial cells, J. Cell Biol. 86:849–857.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Juan Yguerabide
    • 1
  • Evangelina E. Yguerabide
    • 1
  1. 1.Department of BiologyUniversity of California at San DiegoLa JollaUSA

Personalised recommendations