Advertisement

Calcium Ions, Enzymes, and Cell Fusion

  • Jack A. Lucy

Abstract

Membrane fusion is a phenomenon of major importance in cell biology. It embraces events at the subcellular level, e.g., ndocytcosis and exocytosis, and it is an essential dynamic component of secretion, membrane flow, and lysosomal activity. Cell fusion is a special case of membrane fusion that occurs naturally in a comparatively small number of situations. Of these, fertilization and the fusion of myoblasts in the development of skeletal muscle are probably the most extensively investigated. There are also, however, a number of experimental ways of inducing cells to fuse artificially by, for example, treating them with viruses, e.g., Sendai virus, with chemicals, e.g., Poly(ethylene glycol), and most recently by the application of electrical forces (Zimmermann, 1982). In addition to its physiological significance, cell fusion has therefore recently become valuable as a laboratory tool, particularly in the production of hybridoma cells that secrete monoclonal antibodies.

Keywords

Benzyl Alcohol Human Erythrocyte Cell Fusion Fusion Reaction Membrane Fusion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahkong, Q. F., Fisher, D., Tampion, W., and Lucy, J. A., 1973, The fusion of erythrocytes by fatty acids, esters, retinol and α-tocopherol, Biochem. J. 136:147–155.PubMedGoogle Scholar
  2. Ahkong, Q. F., Tampion, W., and Lucy, J. A., 1975a, Promotion of cell fusion by divalent cation ionophores, Nature 256:208–209.PubMedCrossRefGoogle Scholar
  3. Ahkong, Q. F., Fisher, D., Tampion, W., and Lucy, J. A., 1975b, Mechanisms of cell fusion, Nature 253:194–195.PubMedCrossRefGoogle Scholar
  4. Ahkong, Q. F., Botham, G. M., Woodward, A. W., and Lucy, J. A., 1980, Calcium-activated thiol-proteinase activity in the fusion of rat erythrocytes induced by benzyl alcohol, Biochem. J. 192:829–836.PubMedGoogle Scholar
  5. Aldwinckle, T. J., Ahkong, Q. F., Bangham, A. D., Fisher, D., and Lucy, J. A., 1982, Effects of poly(ethylene glycol) on liposomes and erythrocytes. Permeability changes and membrane fusion, Biochim. Biophys. Acta 689:548–560.PubMedCrossRefGoogle Scholar
  6. Baines, A. J., 1983, Cell membrane skeleton. The spread of spectrin, Nature 301:377–378.PubMedCrossRefGoogle Scholar
  7. Baker, R. F., and Kalra, V. K., 1979, Chemically induced fusion of fresh human erythrocytes, Biochem. Biophys. Res. Commun. 86:920–928.PubMedCrossRefGoogle Scholar
  8. Banerjee, S., Vandenbranden, M., and Ruysschaert, J-M., 1981, Tobacco mosaic virus protein induces fusion of liposome membranes, Biochim. Biophys. Acta 646:360–364.PubMedCrossRefGoogle Scholar
  9. Bangham, A. D., and Horne, R. W., 1964, Negative staining of phospholipids and their structural modification by surface-active agents as observed in the electron microscope, J. Mol. Biol. 8:660–668.PubMedCrossRefGoogle Scholar
  10. Bearer, E. L., Duzgunes, N., Friend, D. S., and Papahadjopoulos, D., 1982, Fusion of phospholipid vesicles arrested by quick-freezing. The question of lipidic particles as intermediates in membrane fusion, Biochim. Biophys. Acta 693:93–98.PubMedCrossRefGoogle Scholar
  11. Bersten, A. M., Ahkong, Q. F., Hallinan, T., Nelson, S. J., and Lucy, J. A., 1983, Inhibition of the formation of myotubes in vitro by inhibitors of transglutaminase, Biochim. Biophys. Acta 762: 429–436.PubMedCrossRefGoogle Scholar
  12. Bischoff, R., 1978, Myoblast fusion, in: Cell Surface Reviews, Vol. 5 (G. Poste and G. L. Nicholson, eds.), Elsevier/North-Holland Biomedical Press, Amsterdam, pp. 127–179.Google Scholar
  13. Bischoff, R., and Holtzer, H., 1968, The effect of mitotic inhibitors on myogenesis in vitro, J. Cell Biol. 36:111–127.CrossRefGoogle Scholar
  14. Blow, A. M. J., Botham, G. M., Fisher, D., Goodall, A. M., Tilcock, C. P. S., and Lucy, J. A., 1978, Water and calcium ions in cell fusion induced by poly(ethylene glycol), FEBS Lett. 94:305–310.PubMedCrossRefGoogle Scholar
  15. Blow, A. M. J., Botham, G. M., and Lucy, J. A., 1979, Calcium ions and cell fusion. Effects of chemical fusogens on the permeability of erythrocytes to calcium and other ions, Biochem. J. 182:555–563.PubMedGoogle Scholar
  16. Boni, L. T., Stewart, T. P., Alderfer, J. L., and Hui, S. W., 1981, Lipid-polyethylene glycol interactions: I. Induction of fusion between liposomes, J. Membr. Biol. 62:65–70.PubMedCrossRefGoogle Scholar
  17. Coakley, W. T., Nwafor, A., and Deeley, J. O. T., 1983, Tetracaine modifies the fragmentation mode of heated human erythrocytes and can induce heated cell fusion, Biochim. Biophys. Acta 727:303–312.PubMedCrossRefGoogle Scholar
  18. Couch, C. B., and Strittmatter, W. J., 1983, Rat myoblast fusion requires metalloendoprotease activity, Cell 32:257–265.PubMedCrossRefGoogle Scholar
  19. Cullis, P. R., and Hope, M. J., 1978, Effects of fusogenic agent on membrane structure of erythrocyte ghosts and the mechanism of membrane fusion, Nature 271:672–674.PubMedCrossRefGoogle Scholar
  20. Cullis, P. R., and Verkleij, A. J., 1979, Modulation of membrane structure by Ca2+ and dibucaine as detected by 31P NMR, Biochim. Biophys. Acta 552:546–551.PubMedCrossRefGoogle Scholar
  21. Cuthbertson, K. S. R., Whittingham, D. G., and Cobbold, P. H., 1981, Free Ca2+ increases in exponential phases during mouse oocyte activation, Nature 294:754–757.PubMedCrossRefGoogle Scholar
  22. Dahl, G., Schudt, C., and Gratzl, M., 1978, Fusion of isolated myoblast plasma membranes. An approach to the mechanism, Biochim. Biophys. Acta 514:105–116.PubMedCrossRefGoogle Scholar
  23. David, J. D., and Higginbotham, C-A., 1981, Fusion of chick embryo skeletal myoblasts: Interactions of Prostaglandin E1, adenosine 3′: 5′ monophosphate, and calcium influx, Dev. Biol. 82:308–316.PubMedCrossRefGoogle Scholar
  24. David, J. D., See, W. M., and Higginbotham, C-A., 1981, Fusion of chick embryo skeletal myoblasts: Role of calcium influx preceding membrane union, Dev. Biol. 82:297–307.PubMedCrossRefGoogle Scholar
  25. de Kruijff, B., Verkley, A. J., van Echteld, C. J. A., Gerritsen, W. J., Mombers, C., Noordam, P. C., and de Gier, J., 1979, The occurrence of lipidic particles in lipid bilayers as seen by 31 P NMR and freeze-fracture electron microscopy, Biochim. Biophys. Acta 555:200–209.PubMedCrossRefGoogle Scholar
  26. de Kruijff, B., Cullis, P. R., and Verkleij, A. J., 1980, Nonbilayer lipid structures in model and biological membranes, Trends Biochem. Sci. 5:79–81.CrossRefGoogle Scholar
  27. Duzgunes, N., Wilschut, J., Fraley, R., and Papahadjopoulos, D., 1981, Studies on the mechanism of membrane fusion. Role of head-group composition in calcium-and magnesium-induced fusion of mixed phospholipid vesicles, Biochim. Biophys. Acta 642:182–195.PubMedCrossRefGoogle Scholar
  28. Ekerdt, R., and Papahadjopoulos, D., 1982, Intermembrane contact affects calcium binding to phospholipid vesicles, Proc. Natl. Acad. Sci. USA 79:2273–2277.PubMedCrossRefGoogle Scholar
  29. Eytan, G. D., and Almary, T., 1983, Melittin-induced fusion of acidic liposomes, FEBS Lett. 156:29–32.PubMedCrossRefGoogle Scholar
  30. Fraley, R., Wilschut, J., Duzgunes, N., Smith, C., and Papahadjopoulos, D., 1980, Studies on the mechanism of membrane fusion: Role of phosphate in promoting calcium ion induced fusion of phospholipid vesicles, Biochemistry 19:6021–6029.PubMedCrossRefGoogle Scholar
  31. Fulton, A. B., Prives, J., Farmer, S. R., and Penman, S., 1981, Developmental reorganization of the skeletal framework and its surface lamina in fusing muscle cells, J. Cell Biol. 91:103–112.PubMedCrossRefGoogle Scholar
  32. Fumigalli, G. M., Brigonzi, A., Tachikawa, T., and Clementi, F., 1981, Rat myoblast fusion: Morphological study of membrane apposition, fusion, and fission during controlled myogenesis in vitro, J. Ultrastruct. Res. 75:112–125.CrossRefGoogle Scholar
  33. Gratzl, M., Schudt, C., Ekerdt, C., and Dahl, G., 1980, Fusion of isolated biological membranes, in: Membrane Structure and function, Vol. 3 (E. E. Bittar, ed.), John Wiley, Chichester, pp. 59–92.Google Scholar
  34. Haest, C. W. M., 1982, Interactions between membrane skeleton proteins and the intrinsic domain of the erythrocyte membrane, Biochim. Biophys. Acta 694:331–352.PubMedCrossRefGoogle Scholar
  35. Hart, C. A., Fisher, D., Hallinan, T., and Lucy, J. A., 1976, Effects of calcium ions and the bivalent cation ionophore A23187 on the agglutination and fusion of chicken erythrocytes by Sendai virus, Biochem. J. 158:141–145.PubMedGoogle Scholar
  36. Haydon, D. A., and Taylor, J., 1963, The stability and properties of bimolecular lipid leaflets in aqueous solutions, J. Theoret. Biol. 4:281–296.CrossRefGoogle Scholar
  37. Helenius, A., and Marsh, M., 1982, Membrane Recycling, CIBA Foundation Symposium No. 92 (D. Evered and G. M. Collins, eds.) Pitman, London, pp. 59–74.Google Scholar
  38. Hong, K., Duzgunes, N., and Papahadjopoulos, D., 1981, Role of synexin in membrane fusion, J. Biol. Chem. 256:3641–3644.PubMedGoogle Scholar
  39. Hope, M. J., and Cullis, P. R., 1981, The role of nonbilayer lipid structures in the fusion of human erythrocytes induced by lipid fusogens, Biochim. Biophys. Acta 640:82–90.PubMedCrossRefGoogle Scholar
  40. Hope, M. J., Walker, D. C., and Cullis, P. R., 1983, Ca2+ and pH induced fusion of small unilamellar vesicles consisting of phosphatidylethanolamine and negatively charged phospholipids: A freeze fracture study, Biochem. Biophys. Res. Commun. 110:15–22.PubMedCrossRefGoogle Scholar
  41. Howell, J. I., and Lucy, J. A., 1969, Cell fusion induced by lysolecithin, FEBS Lett. 4:147–150.PubMedCrossRefGoogle Scholar
  42. Howell, J. I., Fisher, D., Goodall, A. H., Verrinder, M., and Lucy, J. A., 1973, Interactions of membrane phospholipids with fusogenic lipids, Biochim. Biophys. Acta 332:1–10.Google Scholar
  43. Hui, S. W., and Stewart, T. P., 1981, “Lipidic particles” are intermembrane attachment sites, Nature 290:427–428.PubMedCrossRefGoogle Scholar
  44. Kalderon, N., and Gilula, N. B., 1979, Membrane events involved in myoblast fusion, J. Cell Biol. 81:411–425.PubMedCrossRefGoogle Scholar
  45. Kaur, H., and Sanwal, B. D., 1981, Regulation of the activity of a calcium-activated neutral protease during differentiation of skeletal myoblasts, Can. J. Biochem. 59:743–747.PubMedCrossRefGoogle Scholar
  46. Knudsen, K. A., and Horwitz, A. F., 1978, Toward a mechanism of myoblast fusion, Prog. Clin. Biol. Res. 23:563–568.PubMedGoogle Scholar
  47. Knutton, S., and Pasternak, C. A., 1979, The mechanism of cell-cell fusion, Trends Biochem. Sci. 4:220–223.CrossRefGoogle Scholar
  48. Lang, R. D., Wickenden, C., Wynne, J., and Lucy, J. A., 1984, Proteolysis of ankyrin and of band 3 in chemically-induced cell fusion: Ca2+ is not mandatory for fusion, Biochem. J., 218:295–305.PubMedGoogle Scholar
  49. Lau, A. L. Y., and Chan, S. I., 1975, Alamethicin-mediated fusion of lecithin vesicles, Proc. Natl. Acad. Sci. USA 72:2170–2174.PubMedCrossRefGoogle Scholar
  50. Lorand, L., Siefring, G. E., and Lowe-Krentz, L., 1980, Ca2+-triggered and enzyme-mediated cross-linking of membrane proteins in intact human erythrocytes, in: Membrane Transport in Erythrocytes, Alfred Benzon Symposium 14 (U. V. Lassen, H. H. Ussing, and J. O. Wieth, eds.), Munksgaard, Copenhagen, p. 285–299.Google Scholar
  51. Lucy, J. A., 1969, Lysosomal membranes, in: Lysosomes in Biology and Pathology, Vol. 2 (J. T. Dingle and H. B. Fell, eds.), North Holland, Amsterdam, pp. 313–341.Google Scholar
  52. Lucy, J. A., 1970, The fusion of biological membranes, Nature 227:814–817.CrossRefGoogle Scholar
  53. Lucy, J. A., 1984, Fusogenic mechanisms, in: Cell Fusion, CIBA Symposium No 103 (J. Evered and J. Whelan, eds.), Pitman, London, pp. 28–44.Google Scholar
  54. Lucy, J. A., Ahkong, Q. F., Cramp, F. C., Fisher, D., and Howell, J. I., 1971, Cell fusion without viruses, Biochem. J. 124:46–47P.Google Scholar
  55. Lyman, G. H., and Preisler, H. D., 1976, Membrane action of DMSO and other chemical inducers of Friend leukaemic cell differentiation, Nature 262:360–363.CrossRefGoogle Scholar
  56. Maggio, B., and Lucy, J. A., 1978, Interactions of water-soluble fusogens with phospholipids in monolayers, FEBS Lett. 94:301–304.PubMedCrossRefGoogle Scholar
  57. Majumdar, S., and Baker, R. F., 1980, Phosphate-calcium induced fusion of chicken erythrocytes, Exp. Cell Res. 126:175–182.PubMedCrossRefGoogle Scholar
  58. Majumdar, S., Baker, R. F., and Kalra, V. K., 1980, Fusion of human erythrocytes induced by uranyl acetate and rare earth metals, Biochim. Biophys. Acta 598:411–416.PubMedCrossRefGoogle Scholar
  59. Mason, W. T., Lane, N. J., Miller, N. G. A., and Bangham, A. D., 1980, Fusion of liposome membranes by the n-alkyl bromides, J. Membr. Biol. 55:69–79.PubMedCrossRefGoogle Scholar
  60. Michell, R. H., 1982, Is phosphatidylinositol really out of the calcium gate? Nature 296:492–493.PubMedCrossRefGoogle Scholar
  61. Miller, R. G., 1980, Do “lipidic particles” represent intermembrane attachment sites? Nature 87:166–167.CrossRefGoogle Scholar
  62. Morgan, C. G., Thomas, E. W., Moras, T. S., and Yianni, Y. P., 1982, The use of a phospholipid analogue of diphenyl-1,3,5-hexatriene to study melittin-induced fusion of small unilamellar phospholipid vesicles, Biochim. Biophys. Acta 692:196–201.PubMedCrossRefGoogle Scholar
  63. Murachi, T., Tanaka, K., Hatanaka, M., and Murakami, T., 1981, Intracellular Ca2+-dependent protease (calpain) and its high-molecular-weight endogenous inhibitor (calpastatin), in: Advances in Enzyme Regulation, Vol. 19 (G. Weber, ed.), Pergamon Press, New York and Oxford, pp. 407–424.Google Scholar
  64. Papahadjopoulos, D., 1978, Calcium-induced phase changes and model membranes, in: Cell Surface Reviews, Vol. 5 (G. Poste and G. L. Nicolson, eds.), Elsevier/North-Holland, Amsterdam, pp. 765–790.Google Scholar
  65. Papahadjopoulos, D., Poste, G., Schaeffer, B. E., and Vail, W. J., 1974, Membrane fusion and molecular segregation in phospholipid vesicles, Biochim. Biophys. Acta 352:10–28.PubMedCrossRefGoogle Scholar
  66. Papahadjopoulos, D., Vail, W. J., Jacobson, K., and Poste, G., 1975, Cochleate lipid cylinders: Formation by fusion of unilamellar lipid vesicles, Biochim. Biophys. Acta 394:483–491.PubMedCrossRefGoogle Scholar
  67. Papahadjopoulos, D., Vail, W. J., Newton, C., Nir, S., Jacobson, K., Poste, G., and Lazo, R., 1977, Studies on membrane fusion. III. The role of calcium-induced phase changes, Biochim. Biophys. Acta 465:579–598.PubMedCrossRefGoogle Scholar
  68. Papahadjopoulos, D., Poste, G., and Vail, W. J., 1979, Studies on membrane fusion with natural and model membranes, in: Methods in Membrane Biology, Vol. 10 (E. D. Korn, ed.), Plenum Press, New York, pp. 1–121.CrossRefGoogle Scholar
  69. Peretz, H., Toister, Z., Laster, Y., and Loyter, A., 1974, Fusion of intact human erythrocytes and erythrocyte ghosts, J. Cell Biol. 63:1–11.PubMedCrossRefGoogle Scholar
  70. Poole, A. R., Howell, J. I., and Lucy, J. A., 1970, Lysolecithin and cell fusion, Nature 227:810–813.PubMedCrossRefGoogle Scholar
  71. Portis, A., Newton, C., Pangborn, W., and Papahadjopoulos, D., 1979, Studies on the mechanism of membrane fusion: Evidence for an intermembrane Ca2+-phospholipid complex, synergism with Mg2+, and inhibition by spectrin, Biochemistry 18:780–790.PubMedCrossRefGoogle Scholar
  72. Poste, G., and Allison, A. C., 1973, Membrane fusion, Biochim. Biophys. Acta 300:421–465.PubMedCrossRefGoogle Scholar
  73. Poste, G., and Nicolson, G. L., 1978, Membrane fusion, Cell Surface Reviews, Vol. 5, Elsevier/North-Holland, Amsterdam.Google Scholar
  74. Quirk, S. J., Ahkong, Q. F., Botham, G. M., Vos, J., and Lucy, J. A., 1978, Membrane proteins in human erythrocytes during cell fusion induced by oleoylglycerol, Biochem. J. 176:159–167.PubMedGoogle Scholar
  75. Scheid, A., and Choppin, P. W., 1974, Identification of biological activities of paramyxovirus glycoproteins. Activation of cell fusion, hemolysis, and infectivity by proteolytic cleavage of an inactive precursor protein of Sendai virus, Virology 57:475–490.PubMedCrossRefGoogle Scholar
  76. Schenkman, S., de Araujo, P. S., Sesso, A., Quina, F. H., and Chaimovich, H., 1981, A kinetic and structural study of two-step aggregation and fusion of neutral phospholipid vesicles promoted by serum albumin at low pH, Chem. Phys. Lipids 28:165–180.PubMedCrossRefGoogle Scholar
  77. Schneiderman, S., Farber, J. L., and Baserga, R., 1979, A simple method for decreasing the toxicity of polyethylene glycol in mammalian cell hybridization, Somat. Cell Genet. 5:263–269.PubMedCrossRefGoogle Scholar
  78. Schudt, C., and Pette, D., 1975, Influence of the ionophore A23187 on myogenic cell fusion, FEBS Lett. 59:36–38.PubMedCrossRefGoogle Scholar
  79. Schudt, C., van der Bosch, J., and Pette, D., 1973, Inhibition of muscle cell fusion in vitro by Mg2+ and K+ ions, FEBS Lett. 32:296–298.PubMedCrossRefGoogle Scholar
  80. Schudt, C., Dahl, G., and Gratzl, M., 1976, Calcium-induced fusion of plasma membranes isolated from myoblasts grown in culture, Cytobiologie 13:211–223.Google Scholar
  81. Shainberg, A., Yagil, G., and Yaffe, D., 1969, Control of myogenesis in vitro by Ca2+ concentration in nutritional medium, Exp. Cell Res. 58:163–167.PubMedCrossRefGoogle Scholar
  82. Thayer, A. M., and Kohler, S. J., 1981, Phosphorous-31 nuclear magnetic resonance spectra characteristic of hexagonal and isotropic phospholipid phases generated from phosphatidylethanolamine in the bilayer phase, Biochemistry 20:6831–6834.PubMedCrossRefGoogle Scholar
  83. Tilcock, C. P. S., and Fisher, D., 1979, Interaction of phospholipid membranes with poly(ethylene glycol)s, Biochim. Biophys. Acta 577:53–61.Google Scholar
  84. Tilcock, C. P. S., and Fisher, D., 1982, The interaction of phospholipid membranes with poly(ethylene glycol) vesicle aggregation and lipid exchange, Biochim. Biophys. Acta 688:645–652.PubMedCrossRefGoogle Scholar
  85. Toister, Z., and Loyter, A., 1971, Ca2+-induced fusion of avian erythrocytes, Biochim. Biophys. Acta 241:719–724.PubMedCrossRefGoogle Scholar
  86. van der Bosch, J., and McConnell, H. M., 1975, Fusion of dipalmitoylphosphatidylcholine vesicle membranes induced by concanvalin A, Proc. Natl. Acad. Sci. USA 72:4409–4413.PubMedCrossRefGoogle Scholar
  87. van der Bosch, J., Schudt, C., and Pette, D., 1972, Quantitative investigation on Ca++ and pH dependence of muscle cell fusion in vitro, Biochem. Biophys. Res. Commun. 48:326–332.PubMedCrossRefGoogle Scholar
  88. van Venetie, R., and Verkleij, A. J., 1981, Analysis of the hexagonal II phase and its relations to lipidic particles and the lamellar phase. A freeze fracture study, Biochim. Biophys. Acta 645:262–269.PubMedCrossRefGoogle Scholar
  89. Verkleij, A. J., and de Kruijff, B., 1981, “Lipidic particles” are intermembrane attachment sites. (A reply), Nature 290:427–428.CrossRefGoogle Scholar
  90. Verkleij, A. J., Mombers, C., Gerritsen, W. J., Leunissen-Bijvelt, L., and Cullis, P. R., 1979, Fusion of phospholipid vesicles in association with the appearance of lipidic particles as visualized by freeze fracturing, Biochim. Biophys. Acta 555:358–361.PubMedCrossRefGoogle Scholar
  91. Verkleij, A. J., van Echteld, C. J. A., Gerritsen, W. J., Cullis, P. R., and de Kruijff, B., 1980, The lipidic particle as an intermediate structure in membrane fusion processes and bilayer to hexagonal HII transitions, Biochim. Biophys. Acta 600:620–624.PubMedCrossRefGoogle Scholar
  92. Wakelam, M. J. O., 1983, Inositol phospholipid metabolism and myoblast fusion, Biochem. J. 214:77–82.PubMedGoogle Scholar
  93. Wakelam, M. J. O., and Pette, D., 1982, The breakdown of phosphatidylinositol in myoblasts stimulated to fuse by the addition of Ca2+, Biochem. J. 202:723–729.PubMedGoogle Scholar
  94. Wakelam, M. J. O., and Pette, D., 1984, Myoblast fusion-inositol phospholipid breakdown—Relevant or coincidence? in: Cell Fusion, CIBA Symposium No. 103 (J. Evered and J. Whelan, eds.), Pitman, London, pp. 100–118.Google Scholar
  95. Woodin, A. M., and Wieneke, A. A., 1963, The accumulation of calcium by the polymorphonuclear leucocyte treated with staphylococcal leucidin and its significance in the extrusion of protein, Biochem. J. 87:487–495.PubMedGoogle Scholar
  96. Woodin, A. M., and Wieneke, A. A., 1964, The participation of calcium, adenosine triphosphate and adenosine triphosphatase in the extrusion of the granule proteins from the polymorphonuclear leucocyte, Biochem. J. 90:498–509.PubMedGoogle Scholar
  97. Zakai, N., Kulka, R. G., and Loyter, A., 1976, Fusion of human erythrocyte ghosts promoted by the combined action of calcium and phosphate ions, Nature 263:696–699.PubMedCrossRefGoogle Scholar
  98. Zalin, R. J., 1977, Prostaglandins and myoblast fusion, Dev. Biol. 59:241–248.PubMedCrossRefGoogle Scholar
  99. Zimmermann, U., 1982, Electric field-mediated fusion and related electrical phenomena, Biochim. Biophys. Acta 694:227–277.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Jack A. Lucy
    • 1
  1. 1.Department of Biochemistry and Chemistry, Royal Free Hospital School of MedicineUniversity of LondonLondonEngland

Personalised recommendations