Selective Covalent Modification of Membrane Components

  • Hans Sigrist
  • Peter Zahler


Essential to an understanding of membrane-related biological phenomena at the molecular level is not only identification of the components involved but rather knowledge of their respective structural and functional characteristics. Such knowledge is attained by disintegrating biological membranes into particulate entities whose chemical properties can then be more specifically investigated. Successful reconstitution of isolated components in model systems leads to an improved understanding of transmembrane processes. Membrane architecture and the mechanism of transbilayer events are, however, most conclusively explored within a functionally active membrane. The latter approach therefore requires selective identification of defined membrane components in situ. As a consequence, the search for means to locate and specifically characterize defined membrane constituents has intentionally been pursued. This objective is most efficiently achieved by the use of chemical modification. In spite of inherent limitations, the approach offers obvious advantages in that (1) the extent and topology of label binding can be controlled chemically, and (2) label allocation is feasible at both the membrane and molecular level.


Human Erythrocyte Membrane Component Purple Membrane Selective Modification Photoaffinity Label 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abbott, R. E., and Schachter, D., 1976, Impermeant maleimides, J. Biol. Chem. 251:7176–7183.PubMedGoogle Scholar
  2. Abu-Salah, K. M., and Findlay, J. B. L., 1977, Labeling of egg phosphatidylcholine vesicles and myeline membrane with a photoreactive lipophilic reagent, Biochem. J. 161:223–228.PubMedGoogle Scholar
  3. Allegrini, P. R., Sigrist, H., Schaller, J., and Zahler, P., 1983, Site-directed fluorogenic modification of bacteriorhodopsin by 7-chloro-4-nitrobenz-2oxa-1,3-diazole, Eur. J. Biochem. 132:603–608.PubMedCrossRefGoogle Scholar
  4. Andersen, H. C., 1978, Probes of membrane structure, Annu. Rev. Biochem. 47:359–383.PubMedCrossRefGoogle Scholar
  5. Andersen, J. P., and Møller, J. V., 1977, Reaction of sarcoplasmic reticulum Ca2+-ATPase in different functional states with 5,5′-dithiobis(2-nitrobenzoate), Biochim. Biophys. Acta 485:188–202.PubMedCrossRefGoogle Scholar
  6. Anderson, G. W., Zimmermann, J. E., and Callahan, F. M., 1964, The use of esters of N-hydroxysuccinimide in peptide synthesis, J. Am. Chem. Soc. 86:1839–1842.CrossRefGoogle Scholar
  7. Barzilay, M., Ship, S., and Cabantchik, Z. I., 1979, Anion transport in red blood cells. I. Chemical properties of anion recognition sites as revealed by structure-activity relationships of aromatic sulfonic acids, Membr. Biochem. 2:227–254.PubMedCrossRefGoogle Scholar
  8. Bayley, H., 1982, Photoactivated hydrophobic reagents for integral membrane proteins, in: Membranes and Transport, Vol. 1 (A. N. Martonosi, ed.), Plenum Press, New York, pp. 185–194.CrossRefGoogle Scholar
  9. Bayley, H., and Knowles, J. R., 1978a, Photogenerated reagents for membrane labeling. 1. Phenylnitrene formed within the lipid bilayer, Biochemistry 17:2414–2419.PubMedCrossRefGoogle Scholar
  10. Bayley, H., and Knowles, J. R., 1978b, Photogenerated reagents for membrane labeling. 2. Phenylcarbene and adamantylidene formed within the lipid bilayer, Biochemistry 17:2420–2423.PubMedCrossRefGoogle Scholar
  11. Bayley, H., and Knowles, J. R., 1980, Photogenerated reagents for membranes: Selective labeling of intrinsic membrane proteins in the human erythrocyte membrane, Biochemistry 19:3883–3892.PubMedCrossRefGoogle Scholar
  12. Bayley, H., Huang, K. S., Radhakrishnan, R., Ross, A. H., Takagaki, J., and Khorana, H. G., 1981, Site of attachment of retinal in bacteriorhodopsin, Proc. Natl. Acad. Sci. USA 78:2225–2229.PubMedCrossRefGoogle Scholar
  13. Bercovici, T., and Gitler, C., 1978, 5-[125I]Iodonaphtyl azide, a reagent to determine the penetration of proteins into the lipid bilayer of biological membranes, Biochemistry 17:1484–1489.PubMedCrossRefGoogle Scholar
  14. Bijlenga, R. K. L., Briottet, C., and Jaton, J. C., 1982, Structural differences between heavy chains of secreted and membrane-bound IGM of a human lymphoblastoid cell line, Mol. Immunol. 19:45–49.PubMedCrossRefGoogle Scholar
  15. Birkett, D. J., Price, N. C., Radda, G. K., and Salmon, A. G., 1970, The reactivity oi SH groups with a fluorogenic reagent, FEBS Lett. 6:346–348.PubMedCrossRefGoogle Scholar
  16. Bishop, D. G., Op den Kamp, J. A. F., and Van Deenen, L. L. M., 1977, The distribution of lipids in the protoplast membranes of Bacillus subtilis, Eur. J. Biochem. 80:381–391.PubMedCrossRefGoogle Scholar
  17. Bishop, D. G., Bevers, E. M., van Meer, G., Op den Kamp, J. A. F., and Van Deenen, L. L. M., 1979, A monolayer study of the reaction of trinitrobenzene sulfonic acid with amino phospholipids, Biochim. Biophys. Acta 551:122–128.PubMedCrossRefGoogle Scholar
  18. Bisson, R., and Montecucco, C., 1981, Photolabelling of membrane proteins with photoactive phospholipids, Biochem. J. 193:757–763.PubMedGoogle Scholar
  19. Bisson, R., Montecucco, C., Gutweniger, H., and Azzi, A., 1979, Cytochrome c oxidase subunits in contact with phospholipids, J. Biol. Chem. 254:9962–9965.PubMedGoogle Scholar
  20. Boulay, F., Lauquin, G. J. M., Tsugita, A., and Vignais, P. V., 1983, Photolabeling approach to the study of the topography of the atractyloside binding site in mitochondrial adenosine 5′-diphosphate/adenosine 5′-triphosphate carrier protein, Biochemistry 22:277–484.CrossRefGoogle Scholar
  21. Bretscher, M. S., 1972, Phosphatidyl-ethanolamine: Differential labelling in intact cells and cell ghosts of human erythrocytes by a membrane-impermeable reagent, J. Mol. Biol. 71:523–528.PubMedCrossRefGoogle Scholar
  22. Bruice, T. C., Gregory, J. J., and Walters, S. L., 1968, Reactions of tetranitromethane. I. Kinetics and mechanism of nitration of phenols by tetranitromethane, J. Am. Chem. Soc. 90:1612–1619.CrossRefGoogle Scholar
  23. Brunner, J., 1981, Labelling the hydrophobic core of membranes, TIBS 6:44–46.Google Scholar
  24. Brunner, J., and Richards, F. M., 1980, Analysis of membranes photolabeled with lipid analogues, J. Biol. Chem. 255:3319–3329.PubMedGoogle Scholar
  25. Brunner, J., and Semenza, G., 1981, Selective labeling of the hydrophobic core of membranes with 3-(trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine, a carbene-generating reagent, Biochemistry 20: 7174–7182.PubMedCrossRefGoogle Scholar
  26. Bunnett, J. F., 1963, Nucleophilic reactivity, Annu. Rev. Phys. Chem. 14:271–290.CrossRefGoogle Scholar
  27. Cabantchik, Z. I., and Rothstein, A., 1974, Membrane proteins related to anion permeability of human red cells. I. Localization of disulfonic stilbene binding sites in proteins involved in permeation, J. Membr. Biol. 15:207–266.PubMedCrossRefGoogle Scholar
  28. Cabantchik, Z. I., Knauf, P. A., and Rothstein, A., 1978, The anion transport system of the red blood cell: The role of membrane protein evaluated by the use of “probes,” Biochim. Biophys. Acta 515:239–302.PubMedCrossRefGoogle Scholar
  29. Campos-Cavieres, M., Moore, T. A., and Perham, R. N., 1979, Effects of modification of the tyrosine residues of bacteriorhodopsin with tetranitromethane, Biochem. J. 179:233–238.PubMedGoogle Scholar
  30. Capaldi, R. A., Briggs, M. M., and Smith, R. J., 1979, Cleavable bifunctional reagents for studying near neighbour relationships among mitochondrial inner membrane complexes, Meth. Enzymol. 56:630–642.PubMedCrossRefGoogle Scholar
  31. Carey, P. R., and Schneider, H., 1978, Resonance Raman labels: A submolecular probe for interactions in biochemical and biological systems, Acc. Chem. Res. 11:122–128.CrossRefGoogle Scholar
  32. Carraway, K., 1975, Covalent labeling of membranes, Biochim. Biophys. Acta 415:379–410.PubMedCrossRefGoogle Scholar
  33. Cerletti, N., and Schatz, G., 1979, Cytochrome c oxidase from bakers’ yeast: Photolabeling of subunits exposed to the lipid bilayer, J. Biol. Chem. 254:7746–7751.PubMedGoogle Scholar
  34. Chakrabarti, P., and Khorana, H. G., 1975, A new approach to the study of phospholipid-protein interactions in biological membranes. Synthesis of fatty acids and phospholipids containing photosensitive groups, Biochemistry 14:5021–5033.PubMedCrossRefGoogle Scholar
  35. Chapman, D., Gomez-Fernandez, J. C., and Goñi, F. M., 1982, The interaction of intrinsic proteins and lipids in biomembranes, TIBS 7:67–70.Google Scholar
  36. Chowdhry, V., and Westheimer, F. H., 1979, Photoaffinity labeling of biological systems, Annu. Rev. Biochem. 48:293–325.PubMedCrossRefGoogle Scholar
  37. Cuatrecasas, P., and Parikh, I., 1972, Adsorbents for affinity chromatography. Use of N-hydroxysuccinimide esters of agarose, Biochemistry 11:2291–2299.PubMedCrossRefGoogle Scholar
  38. Czarnecki, J. J., Abbott, M. S., and Selman, B. R., 1982, Photoaffinity labeling with 2-azidoadenosine diphosphate of a tight nucleotide binding site on chloroplast coupling factor 1, Proc. Natl. Acad. Sci. USA 79:7744–7748.PubMedCrossRefGoogle Scholar
  39. Das, M., and Fox, C. F., 1979, Chemical cross-linking in biology, Annu. Rev. Biophys. Bioeng. 8:165–193.PubMedCrossRefGoogle Scholar
  40. Dellweg, H. G., and Sumper, M., 1978, Selective formation of bacterio-opsin trimers by chemical cross-linking of purple membrane, FEBS Lett. 90:123–126.PubMedCrossRefGoogle Scholar
  41. Deters, D. W., Racker, E., Nelson, N., and Nelson, H., 1975, Partial resolution of the enzymes catalyzing photophosphorylation. XV. Approaches to the active site of coupling factor 1, J. Biol. Chem. 250:1041–1047.PubMedGoogle Scholar
  42. Drobnica, L., Kristian, P., and Augustin, J., 1977, The Chemistry of the-NCS group, in: The Chemistry of Cyanates and Their Thioderivatives, Part 2 (S. Patai, ed.), Wiley, New York, pp. 1002–1222.Google Scholar
  43. Edwards, R. M., Kempson, S. A., Carlson, G. L., and Dousa, T. P., 1979, Diazotized [125I]diiodosulfanilic acid as a label for cell surface membranes, Biochim. Biophys. Acta 553:54–65.PubMedCrossRefGoogle Scholar
  44. Engelman, D. M., Henderson, R., McLachan, A. D., and Wallace, B. A., 1980, Path of the Polypeptide in bacteriorhodopsin, Proc. Natl. Acad. Sci. USA 77:2023–2027.PubMedCrossRefGoogle Scholar
  45. Esch, F. S., Böhlen, P., Otsuka, A. S., Yoshida, M., and Allison, W. S., 1981, Inactivation of the bovine mitochondrial F1-ATPase with dicyclohexyl[14C]carbodiimide leads to the modification of a specific glutamic acid residue in the β-subunit, J. Biol. Chem. 256:9084–9089.PubMedGoogle Scholar
  46. Fager, R. S., Kutina, C. B., and Abrahamson, E. W., 1973, The use of NBD chloride (7-chloro-4-nitrobenzo-2-oxa-1,3-diazole) in detecting amino acids and as N-terminal reagent, Anal. Biochem. 53:290–294.PubMedCrossRefGoogle Scholar
  47. Fannin, E. F., Evans, J. O., Gibbs, E. M., and Diedrich, D. F., 1981, Phloretinyl-3′-benzylazide: A high affinity probe for the sugar transporter in human erythrocytes. 1. Hexose transport inhibition and photolabeling of mutarotase, Biochim. Biophys. Acta 649:189–201.PubMedCrossRefGoogle Scholar
  48. Farley, R. A., Goldman, D. W., and Bayley, H., 1980, Identification of regions of the catalytic subunit of (Na — K)-ATPase embedded within the cell membrane, J. Biol. Chem. 38:234–236.Google Scholar
  49. Ferguson, S. J., Lloyd, W. J., Lyons, M. H., and Radda, G. K., 1975, The mitochondrial ATPase. Evidence for a single essential tyrosine residue, Eur. J. Biochem. 54:117–126.PubMedCrossRefGoogle Scholar
  50. Fonda, M. L., and Anderson, B. M., 1969, D-Amino acid oxidase. IV. Inactivation by maleimides, J. Biol. Chem. 244:666–674.PubMedGoogle Scholar
  51. Freedman, R. B., 1979, Cross-linking reagents and membrane organization, TIBS 4:193–197.Google Scholar
  52. Freedman, R. B., and Radda, G. K., 1968, The reaction of 2,4,6,-trinitrobenzenesulfonic acid with amino acids, peptides and proteins, Biochem. J. 108:383–391.PubMedGoogle Scholar
  53. Frei, E., and Zahler, P., 1979, Phospholipase A2 from sheep erythrocyte membranes: Ca2+ dependence and localization, Biochim. Biophys. Acta 550:450–463.PubMedCrossRefGoogle Scholar
  54. Frielle, T., Brunner, J., and Curthoys, N. P., 1982, Isolation of the hydrophobic membrane binding domain of rat renal γ-glutamyl transpeptidase selectively labeled with 3-trifluoromethyl-3-(m[125I]-iodophenyl)diazirine, J. Biol. Chem. 257:14979–14982.PubMedGoogle Scholar
  55. Furthmayr, H., Galardy, R. E., Tomita, M., and Marchesi, V. T., 1978, The intramembranous segment of human erythrocyte glycophorin A, Arch. Biochem. Biophys. 185:21–29.PubMedCrossRefGoogle Scholar
  56. Gahmberg, C. G., 1981, Membrane glycoproteins and glycolipids: Structure, localization and function of the carbohydrate, in: Membrane Structure, Vol. 1 (J. B. Finean and R. H. Michell, eds.), Elsevier/North-Holland Biomedical Press, Amsterdam, pp. 127–160.CrossRefGoogle Scholar
  57. Gahmberg, C. G., and Andersson, L. C., 1977, Selective radioactive labeling of cell surface sialoglyco-proteins by periodate-tritiated borohydride, J. Biol. Chem. 252:5888–5894.PubMedGoogle Scholar
  58. Gahmberg, C. G., and Hakomori, S., 1973, External labeling of cell surface galactose and galactosamine in glycolipid and glycoprotein of human erythrocytes, J. Biol. Chem. 248:4311–4317.PubMedGoogle Scholar
  59. Gerber, G. E., and Khorana, H. G., 1982, Primary structure of bacteriorhodopsin: Sequencing methods for membrane proteins, Meth. Enzymol. 88:56–74.CrossRefGoogle Scholar
  60. Gitler, C., and Bercovici, T., 1980, Use of lipophilic photoactivatable reagents to identify the lipid embedded domains of membrane proteins, Ann. N.Y. Acad. Sci. 346:199–211.PubMedCrossRefGoogle Scholar
  61. Glazer, A. N., 1976, The chemical modification of proteins by group-specific and site-specific reagents, in: The Proteins, Vol. 1 (N. Neurath and R. L. Hill, eds.), Academic Press, London, pp. 1–103.Google Scholar
  62. Gordesky, S. E., Marinetti, G. V., and Love, R., 1975, The reaction of chemical probes with the erythrocyte membrane, J. Membr. Biol. 20:111–132.PubMedCrossRefGoogle Scholar
  63. Gupta, C. M., Radhakrishnan, R., Gerber, G. E., Olsen, W. L., Quay, S. C., and Khorana, H. G., 1979, Intermolecular crosslinking of fatty acyl chains in phospholipids: Use of photoactivable carbene precursors, Proc. Natl. Acad. Sci. USA 76:2595–2599.PubMedCrossRefGoogle Scholar
  64. Habeeb, A. F. S. A., 1972, Reaction of protein sulfhydryl groups with Ellman’s reagent, Meth. Enzymol. 25:457–464.CrossRefGoogle Scholar
  65. Haest, C. W. M., Kamp, D., and Deutike, B., 1979, Topology of membrane SH-groups in the human erythrocyte. Demonstration of a nonreactive population in intrinsic proteins, Biochim. Biophys. Acta 557:363–371.PubMedCrossRefGoogle Scholar
  66. Hand, E. S., and Jenks, W. P., 1962, Mechanism of the reaction of imido esters with amines, J. Am. Chem. Soc. 84:3505–3514.CrossRefGoogle Scholar
  67. Henderson, R., Jubb, J. S., and Whytock, S., 1978, Specific labelling of the protein and lipid on the extracellular surface of purple membrane, J. Mol. Biol. 123:259–274.PubMedCrossRefGoogle Scholar
  68. Hoare, D. G., and Koshland, D. E., 1967, A method for quantitative modification and estimation of carboxylic acid groups in proteins, J. Biol. Chem. 242:2447–2453.PubMedGoogle Scholar
  69. Hoppe, J., and Sebald, W., 1981, An essential carboxyl group for H+ conduction in the proteolipid subunit of the ATP synthase, in: Chemiosmotic Proton Circuits in Biological Membranes (V. P. Skulachev and P. C. Hinkle, eds.), Addison-Wesley Publishing Company, London, pp. 449–458.Google Scholar
  70. Hoyer, P. B., Owens, J. R., and Haley, B. E., 1980, The use of photoaffinity probes to elucidate molecular mechanisms of nucleotide-regulated phenomena, Ann. N.Y. Acad. Sci. 346:280–301.PubMedCrossRefGoogle Scholar
  71. Hu, V. W., and Wisnieski, B. J., 1979, Photoreactive labeling of M 13 coat protein in model membranes by use of a glycolipid probe, Proc. Natl. Acad. Sci. USA 76:5460–5464.PubMedCrossRefGoogle Scholar
  72. Huang, K. S., Radhakrishnan, R., Bayley, H., and Khorana, H. G., 1982, Orientation of retinal in bacteriorhodopsin as studied by cross-linking using a photosensitive analog of retinal, J. Biol. Chem. 257:13616–13623.PubMedGoogle Scholar
  73. Hubbard, A. L., and Cohn, Z. A., 1976, Specific labels of cell surfaces, in: Biochemical Analysis of Membranes (A. H. Maddy, ed.), Wiley, New York, pp. 427–501.Google Scholar
  74. Iddon, V. B., Meth-Cohn, O., Criven, E. F. V., Suschitzky, H., and Gallagher, P. T., 1979, Entwicklungen in der Arylnitren-Chemie: Synthesen und Mechanismen, Angew. Chem. 91:965–982.CrossRefGoogle Scholar
  75. Ji, T. H., 1977, A novel approach to the identification of surface receptors. The use of photosensitive hetero-bifunctional cross-linking reagent, J. Biol. Chem. 252:1566–1570.PubMedGoogle Scholar
  76. Ji, T. H., 1979, The application of chemical crosslinking for studies on cell membranes and the identification of surface reporters, Biochim. Biophys. Acta 559:39–69.PubMedCrossRefGoogle Scholar
  77. Ji, T. H., and Ji, I., 1982, Macromolecular photoaffinity labeling with radioactive photoactivable hetero-bifunctional reagents, Anal. Biochem. 121:286–289.PubMedCrossRefGoogle Scholar
  78. Johnstone, A. P., and Crumpton, M. J., 1979, Comparison of diiodosulphophenylisothiocyanate with other reagents as surface labels for lymphocytes, FEBS Lett. 108:119–123.PubMedCrossRefGoogle Scholar
  79. Jørgensen, P. L., Karlish, S. J. D., and Gitler, C., 1982, Evidence for the organization of the transmembrane segments of (Na, K)-ATPase based on labeling lipid-embedded and surface domains of the α-subunit, J. Biol. Chem. 257:7435–7442.PubMedGoogle Scholar
  80. Kampmann, L., Lepke, S., Fasold, H., Fritzsch, G., and Passow, H., 1982, The kinetics of intramolecular cross-linking of the band 3 protein in the red blood cell membrane by 4,4′-diisothiocyano dihydrostilbene-2,2′-disulfonic acid (H2DIDS), J. Membr. Biol. 70:199–216.PubMedCrossRefGoogle Scholar
  81. Katre, N. V., and Stroud, R. M., 1981, A probable linking sequence between two transmembrane components of bacteriorhodopsin, FEBS Lett. 136:170–174.CrossRefGoogle Scholar
  82. Katre, N. V., Wolber, P. K., Stoeckenius, W., and Stroud, R. M., 1981, Attachment site(s) of retinal in bacteriorhodopsin, Proc. Natl. Acad. Sci. USA 78:4068–4072.PubMedCrossRefGoogle Scholar
  83. Kempf, Ch., Brock, C., Sigrist, H., Tanner, M. J. A., and Zahler, P., 1981, Interaction of phenylisothiocyanate with human erythrocyte band 3 protein. II. Topology of phenylisothiocyanate binding sites and influence of p-sulfophenylisothiocyanate on phenylisothiocyanate modification, Biochim. Biophys. Acta 641:88–98.PubMedCrossRefGoogle Scholar
  84. Kirmse, E., (ed.), 1971, Carbene Chemistry, 2nd ed., Academic Press, New York.Google Scholar
  85. Klip, A., and Gitler, C., 1974, Photoactive covalent labeling of membrane components from within the lipid core, Biochem. Biophys. Res. Commun. 60:1155–1162.PubMedCrossRefGoogle Scholar
  86. Knauf, P. A., 1979, Erythrocyte anion exchange and the band 3 protein: Transport kinetics and molecular structure, Curr. Top. Membr. Trans. 12:251–263.Google Scholar
  87. Knauf, P. A., and Rothstein, A., 1980, Use of Nap-taurine as a photoaffinity probe for the human erythrocyte anion exchange system, Ann. N.Y. Acad. Sci. 346:212–231.PubMedCrossRefGoogle Scholar
  88. Lanyi, J. K., and Oesterhelt, D., 1982, Identification of the retinal-binding protein in halorhodopsin, J. Biol. Chem. 257:2674–2677.PubMedGoogle Scholar
  89. Leblanc, P., Capone, J., and Gerber, G. E., 1982, Synthesis and biosynthetic utilization of radioactive photoreactive fatty acids, J. Biol. Chem. 257:14586–14589.PubMedGoogle Scholar
  90. Lemke, H. D., and Oesterhelt, D., 1981a, The role of tyrosine residues in the function of bacteriorhodopsin. Specific nitration of tyrosine 26, Eur. J. Biochem. 115:595–604.PubMedCrossRefGoogle Scholar
  91. Lemke, H. D., and Oesterhelt, D., 1981b, Lysine 216 is a binding site of the retinyl moiety in bacteriorhodopsin, FEBS Lett. 128:255–260.PubMedCrossRefGoogle Scholar
  92. Lemke, H. D., Bergmeyer, J., Sträub, J., and Oesterhelt, D., 1982, Reversible inhibition of the proton pump bacteriorhodopsin by modification of tyrosine 64, J. Biol. Chem. 257:9384–9388.PubMedGoogle Scholar
  93. Lodish, H. F., and Rothman, J. E., 1979, The assembly of cell membranes, Sci. Am. 240:38–53.CrossRefGoogle Scholar
  94. Ludwig, B., Downer, N. W., and Capaldi, R. A., 1979, Labeling of cytochrome c oxidase with [35S]diazobenzenesulfonate. Orientation of this electron transfer complex in the inner mitochondrial membrane, Biochemistry 18:1401–1407.PubMedCrossRefGoogle Scholar
  95. MacLennan, D. H., and Campbell, K. P., 1979, Structure, function and biosynthesis of sarcoplasmic reticulum proteins, TIBS 4:148–151.Google Scholar
  96. Marfey, S. P., and Tsai, K. H., 1975, Cross-linking of phospholipids in human erythrocyte membrane, Biochem. Biophys. Res. Commun. 65:31–38.PubMedCrossRefGoogle Scholar
  97. Marinetti, G. V., and Love, R., 1976, Differential reaction of cell membrane phospholipids and proteins with chemical probes, Chem. Phys. Lipids 16:239–254.PubMedCrossRefGoogle Scholar
  98. Mawby, W. J., and Findlay, J. B. C., 1982, Characterization and partial sequence of di-iodosulphophenyl isothiocyanate-binding peptide from human erythrocyte anion-transport protein, Biochem. J. 205:465–475.PubMedGoogle Scholar
  99. Means, G. E., and Feeney, R. E., 1971, Chemical Modification of Proteins, Holden-Day, San Francisco.Google Scholar
  100. Mitchinson, C., Wilderspin, A. F., Trinnaman, B. J., and Green, N. M., 1982, Identification of a labelled peptide after stoichiometric reaction of fluorescein isothiocyanate with the Ca2+-dependent adenosine triphosphatase of sarcoplasmic reticulum, FEBS Lett. 146:87–92.PubMedCrossRefGoogle Scholar
  101. Miyakawa, T., Takemoto, L. J., and Fox, C. F., 1978, Membrane permeability of bifunctional, amino site-specific, cross-linking reagents, J. Supramol. Struct. 8:303–310.PubMedCrossRefGoogle Scholar
  102. Moreland, R. B., Smith, P. K., Fujimoto, E. K., and Dockter, M. E., 1982, Synthesis and characterization of N-(4-azidophenylthio)-phthalimide: A cleavable, photoactivable crosslinking reagent that reacts with sulfhydryl groups, Anal. Biochem. 121:321–326.PubMedCrossRefGoogle Scholar
  103. Mullen, E., Johnson, A. H., and Akhtar, M., 1981, The identification of lysine 216 as the retinal binding residue in bacteriorhodopsin, FEBS Lett. 130:187–193.PubMedCrossRefGoogle Scholar
  104. Ngo, T. T., Yam, C. F., Lenhoff, H. M., and Ivy, J., 1981, p-Azidophenylglyoxal. A heterobifunctional photoactivable cross-linking reagent selective for arginyl residues, J. Biol. Chem. 256:11313–11318.PubMedGoogle Scholar
  105. Nicolson, G. L., and Singer, S. J., 1974, The distribution and asymmetry of mammalian cell surface saccharides utilizing ferritin-conjugated plant agglutinins as specific saccharide stains, J. Cell. Biol. 60:236–248.PubMedCrossRefGoogle Scholar
  106. Nielsen, P. E., and Buchardt, O., 1982, Aryl azides as photoaffinity labels. A photochemical study of some 4-substituted aryl azides, Photochem. Photobiol. 35:317–323.CrossRefGoogle Scholar
  107. Op den Kamp, J. A. F., 1979, Lipid asymmetry in membranes, Annu. Rev. Biochem. 48:47–71.PubMedCrossRefGoogle Scholar
  108. Ovchinnikov, Yu. A., 1982, Rhodopsin and bacteriorhodopsin: Structure—function relationships, FEBS Lett. 148:179–191.PubMedCrossRefGoogle Scholar
  109. Ovchinnikov, Yu. A., Abdulaev, N. G., Feigina, M. Yu., Kiselev, A. V., and Lobanov, N. A., 1979, The structural basis of the functioning of bacteriorhodopsin: An overview, FEBS Lett. 100:219–224.PubMedCrossRefGoogle Scholar
  110. Owen, M. J., Knott, J. C. A., and Crumpton, M. J., 1980, Labeling of lymphocyte surface antigens by the lipophilic, photoactivatable reagent hexanoyldiiodo-N-(4-azido-2-nitrophenyl)tyramine, Biochemistry 19:3092–3099.PubMedCrossRefGoogle Scholar
  111. Passow, H., Fasold, H., Jennings, M. L., and Lepke, S., 1982, The study of the anion transport protein (band 3 protein) in the red cell membrane by means of tritiated 4,4′-diisothiocyano-dihydrostilbene-2,2′-disulfonic acid (H2DIDS), in: Chloride Transport in Biological Membranes (A. Zadunaisky, ed.), Academic Press, New York, pp. 1–31.Google Scholar
  112. Peach, M. E., 1974, Thiols as nucleophiles, in: The Chemistry of the Thiol Group, Part 2 (S. Patai, ed.), John Wiley and Sons, New York, pp. 721–784.Google Scholar
  113. Peters, K., and Richards, F. M., 1977, Chemical cross-linking: Reagents and problems in studies of membrane structure, Annu. Rev. Biochem. 46:523–551.PubMedCrossRefGoogle Scholar
  114. Phillips, A. T., 1977, Differential labeling: A general technique for selective modification of binding sites, Meth. Enzymol. 46:59–69.PubMedCrossRefGoogle Scholar
  115. Pick, U., and Racker, E., 1979, Inhibition of the (Ca2+) ATPase from sarcoplasmic reticulum by dicyclohexylcarbodiimide: Evidence for location of the Ca2+ binding site in a hydrophobic region, Biochemistry 18:108–113.PubMedCrossRefGoogle Scholar
  116. Previero, A., Devancourt, J., Coletti-Previero, M. A., and Laursen, R. A., 1973, Solid phase sequential analysis: Specific linking of acidic peptides by their carboxyl ends to insoluble resins, FEBS Lett. 33:135–138.CrossRefGoogle Scholar
  117. Prochaska, L. J., Bisson, R., and Capaldi, R. A., 1980, Structure of the cytochrome c oxidase complex: Labeling by hydrophilic and hydrophobic protein modifying reagents, Biochemistry 19:3174–3179.PubMedCrossRefGoogle Scholar
  118. Prochaska, L. J., Bisson, R., Capaldi, R. A., Steffens, G. C. M., and Buse, G., 1981, Inhibition of cytochrome c oxidase function by dicyclohexylcarbodiimide, Biochim. Biophys. Acta 637:360–373.PubMedCrossRefGoogle Scholar
  119. Quaroni, A., and Semenza, G., 1976, Partial amino acid sequences around the essential caroboxylate in the active sites of the intestinal sucrase isomaltase complex, J. Biol. Chem. 251:3250–3253.PubMedGoogle Scholar
  120. Quay, S. C., Radhakrishnan, R., and Khorana, H. G., 1981, Incorporation of photosensitive fatty acids into phospholipids of Escherichia coli and irradiation-dependent cross-linking of phospholipids to membrane proteins, J. Biol. Chem. 256:4444–4449.PubMedGoogle Scholar
  121. Radhakrishnan, R., Robson, R. J., Takagaki, Y., and Khorana, H. G., 1981, Synthesis of modified fatty acids and glycerophospholipid analogs, Meth. Enzymol. 72:408–433.PubMedCrossRefGoogle Scholar
  122. Raftery, M. A., Witzemann, V., and Blanchoud, S. G., 1980, The use of photochemical probes for studies of structure and function of purified acetylcholine receptor preparations, Ann. N.Y. Acad. Sci. 346:458–474.PubMedCrossRefGoogle Scholar
  123. Ramjeesingh, M., Gaarn, A., and Rothstein, A., 1980, The location of a disulfonic stilbene binding site in band 3, the anion transport protein of the red blood cell membrane, Biochim. Biophys. Acta 599:127–139.PubMedCrossRefGoogle Scholar
  124. Ramjeesingh, M., Gaarn, A., and Rothstein, A., 1981, The amino acid conjugate formed by the interaction of the anion transport inhibitor 4,4′-diisothiocyano-2,2′-stilbenedisulfonic acid (DIDS) with band 3 protein from human red blood cell membranes, Biochim. Biophys. Acta 641:173–182.PubMedCrossRefGoogle Scholar
  125. Renthal, R., Dawson, N., Tuley, J., and Horowitz, P., 1983, Constraints on the flexibility of bacterio-rhodopsin’s carboxyl-terminal tail at the purple membrane surface, Biochemistry 22:5–12.PubMedCrossRefGoogle Scholar
  126. Riordan, J. F., 1979, Arginyl residues and anion binding sites in proteins, Mol. Cell. Biochem. 26:71–92.PubMedCrossRefGoogle Scholar
  127. Ross, A. H., Radhakrishnan, R., Robson, R. J., and Khorana, H. G., 1982, The transmembrane domain of glycophorin A as studied by crosslinking using photoactivatable phospholipids, J. Biol. Chem. 257:4152–4161.PubMedGoogle Scholar
  128. Rothstein, A., 1982, Functional structure of band 3, the anion transport protein of the red blood cell, as determined by proteolytic and chemical cleavages, in: Membranes and Transport, Vol. 2 (A. Martonosi, ed.), Plenum Press, New York, pp. 435–440.Google Scholar
  129. Sabban, E., Marchesi, V., Adesnik, M., and Sabatini, D. D., 1981, Erythrocyte membrane protein band 3: Its biosynthesis and incorporation into membranes, J. Cell. Biol. 91:637–646.PubMedCrossRefGoogle Scholar
  130. Schäfer, R., Hinnen, R., and Franklin, R. M., 1974, Structure and synthesis of a lipid-containing bacteriophage. Properties of the structural proteins and distribution of the phospholipid, Eur. J. Biochem. 50:15–27.PubMedCrossRefGoogle Scholar
  131. Schellenberg, K., 1963, The synthesis of secondary and tertiary amines by borohydride reduction, J. Org. Chem. 28:3259–3261.CrossRefGoogle Scholar
  132. Schweizer, E., Angst, W., and Lutz, H. U., 1982, Glycoprotein topology on intact human red blood cells reevaluated by cross-linking following amino group supplementation, Biochemistry 21:6807–6818.PubMedCrossRefGoogle Scholar
  133. Seelig, J., and Seelig, A., 1980, Lipid conformation in model membranes and biological membranes, Q. Rev. Biophys. 13:19–61.PubMedCrossRefGoogle Scholar
  134. Shaw, A. B., and Marinetti, G. V., 1980, Cross-linking of erythrocyte membrane proteins and phospholipids by chemical probes, Membr. Biochem. 3:1–19.PubMedCrossRefGoogle Scholar
  135. Ship, S., Shami, Y., Breuer, W., and Rothstein, A., 1977, Synthesis of tritiated 4,4′-diisothiocyano-2,2′-stilbene disulfonic acid (H2DIDS) and its covalent reaction with sites related to anion transport in red blood cells, J. Membr. Biol. 33:311–324.PubMedCrossRefGoogle Scholar
  136. Sigman, D. S., and Mooser, G., 1975, Chemical studies of enzyme active sites, Annu. Rev. Biochem. 44:889–931.CrossRefGoogle Scholar
  137. Sigrist, H., and Zahler, P., 1982a, Hydrophobic labeling and cross-linking of membrane proteins, in: Membranes and Transport, Vol. 1 (A. N. Martonosi, ed.), Plenum Press, New York, pp. 173–184.CrossRefGoogle Scholar
  138. Sigrist, H., and Zahler, P., 1982b, Heterobifunctional crosslinking of bacteriorhodopsin by hydrophobic azidoarylisothiocyanates, Meth. Enzymol. 88:207–212.CrossRefGoogle Scholar
  139. Sigrist, H., Kempf, Ch., and Zahler, P., 1980, Interaction of phenylisothiocyanate with human erythrocyte band 3: I. Covalent modification and inhibition of phosphate transport, Biochim. Biophys. Acta 597:137–144.PubMedCrossRefGoogle Scholar
  140. Sigrist, H., Allegrini, P. R., Strasser, R. J., and Zahler, P., 1981, Chemical modification of bacteriorhodopsin by phenylisothiocyanate: Effect on the photocycle, in: The Blue Light Syndrome (H. Senger, ed.), Springer Verlag, Berlin, pp. 30–37.Google Scholar
  141. Sigrist, H., Allegrini, P. R., Kempf, Ch., Schnippering, Ch., and Zahler, P., 1982, 5-Isothiocyanato-1-naphthalene azide and p-azidophenylisothiocyanate: Synthesis and application in hydrophobic heterobifunctional photoactive cross-linking of membrane proteins, Eur. J. Biochem. 125:197–201.PubMedCrossRefGoogle Scholar
  142. Sigrist, H., Allegrini, P. R., Stauffer, K., Schaller, J., Abdulaev, N. G., Rickli, E. E., and Zahler, P., 1984, Group-directed modification of bacteriorhodopsin by arylisothiocyanates. J. Mol. Biol. 173:93–108.PubMedCrossRefGoogle Scholar
  143. Sigrist-Nelson, K., and Azzi, A., 1979, The proteolipid subunit of the chloroplast adenosine triphosphatase complex: Mobility, accessibility and interaction studied by a spin label technique, J. Biol. Chem. 254:4470–4474.PubMedGoogle Scholar
  144. Sigrist-Nelson, K., and Azzi, A., 1980, The proteolipid subunit of the chloroplast adenosine triphosphatase complex, J. Biol. Chem. 255:10638–10643.PubMedGoogle Scholar
  145. Spiess, M., Brunner, J., and Semenza, G., 1982, Hydrophobic labeling isolation and partial characterization of the NH2-terminal membraneous segment of sucrase—isomaltase complex, J. Biol. Chem. 257:2370–2377.PubMedGoogle Scholar
  146. Staros, J. V., and Richards, F. M., 1974, Photochemical labeling of the surface proteins of human erythrocytes, Biochemistry 13:2720–2727.PubMedCrossRefGoogle Scholar
  147. Staros, J. V., Morgan, D. G., and Appling, D. R., 1981, A membrane-impermeant, cleavable cross-linker. Dimers of human erythrocyte band 3 subunits cross-linked at the extracytoplasmic membrane face, J. Biol. Chem. 256:5890–5893.PubMedGoogle Scholar
  148. Stauffer, K., Sigrist, H., and Zahler, P., 1982, Azo dye labeling of bacteriorhodopsin, Experientia 38:733.Google Scholar
  149. Steck, T. L., and Dawson, G., 1974, Topographical distribution of complex carbohydrates in the erythrocyte membrane, J. Biol. Chem. 249:2135–2142.PubMedGoogle Scholar
  150. Steck, T. L., Ramos, B., and Strapazon, E., 1976, Proteolytic dissection of band 3, the predominant transmembrane Polypeptide of the human erythrocyte membrane, Biochemistry 15:1154–1161.CrossRefGoogle Scholar
  151. Stoffel, W., Salm, K. P., and Müller, M., 1982, Syntheses of phosphatidylcholines, sphingomyelines and cholesterol substituted with azido fatty acids, Hoppe-Seyler’s Z. Physiol. Chem. 363:1–18.PubMedCrossRefGoogle Scholar
  152. Stuchbury, T., Shipton, M., Norris, R., Malthouse, J. P. G., Brocklehurst, K., Herbert, J. A. L., and Suschitzky, H., 1975, A reporter group delivery system with both absolute and selective specificity for thiol groups and an improved fluorescent probe containing the 7-nitrobenzo-2-oxa-1,3-diazole moiety, Biochem. J. 151:417–432.PubMedGoogle Scholar
  153. Tarrab-Hazdai, R., Bercovici, T., Goldfarb, V., and Gitler, C., 1980, Identification of the acetylcholine receptor subunit in the lipid bilayer of Torpedo electric organ excitable membranes, J. Biol. Chem. 255:1204–1209.PubMedGoogle Scholar
  154. Vallee, B. L., and Riordan, J. F., 1969, Chemical approaches to the properties of active sites of enzymes, Annu. Rev. Biochem. 38:733–794.PubMedCrossRefGoogle Scholar
  155. Van Deenen, L. L. M., 1981, Topology and dynamics of phospholipids in membranes, FEBS Lett. 123:3–15.PubMedCrossRefGoogle Scholar
  156. Van den Bosch, H., 1980, Intracellular phospholipases A, Biochim. Biophys. Acta 604:191–246.PubMedGoogle Scholar
  157. Vanin, E. F., and Ji, T. H., 1981, Synthesis and application of cleavable photoactivable heterobifunctional reagents, Biochemistry 20:6754–6760.PubMedCrossRefGoogle Scholar
  158. Verkleij, A. J., Zwaal, R. F. A., Roelofsen, B., Comfurius, P., Kastelijn, D., and Van Deenen, L. L. M., 1973, The asymmetric distribution of phospholipids in the human red cell membrane, Biochim. Biophys. Acta 323:178–193.PubMedCrossRefGoogle Scholar
  159. Wang, K., and Richards, F. M., 1975, Reaction of dimethyl-3,3′-dithiobispropionimidate with intact human erythrocytes. Cross-linking of membrane proteins and hemoglobin, J. Biol. Chem. 250:6622–6626.PubMedGoogle Scholar
  160. Wells, E., and Findlay, J. B. C., 1979, Labelling of the intramembraneous region of the major sialoglycoprotein of human erythrocytes with a photosensitive hydrophobic probe, Biochem. J. 179:265–272.PubMedGoogle Scholar
  161. Wells, E., and Findlay, J. B. C., 1980, The isolation of human-erythrocyte band-3 Polypeptide labelled with a photosensitive hydrophobic probe, Biochem. J. 187:719–725.PubMedGoogle Scholar
  162. Wieth, J. O., Bjerrum, P. J., and Borders, C. L., 1982, Irreversible inactivation of red cell chloride exchange with phenylglyoxal, an arginine-specific reagent, J. Gen. Physiol. 79:283–312.PubMedCrossRefGoogle Scholar
  163. Wisnieski, B. J., and Bramhall, J. S., 1981, Photolabeling of cholera toxin subunits during membrane penetration, Nature 289:319–321.PubMedCrossRefGoogle Scholar
  164. Wisnieski, B. J., Shiflett, M. A., Mekalanos, J., and Bramhall, J. S., 1979, Analysis of transmembrane dynamics of cholera toxin using photoreactive probes, J. Supramol. Struct. 10:191–197.PubMedCrossRefGoogle Scholar
  165. Wold, F., 1972, Bifunctional reagents, Meth. Enzymol. 25:623–651.CrossRefGoogle Scholar
  166. Yip, C. C., Moule, M. L., and Yeung, C. W. T., 1982, Subunit structure of insulin receptor of rat adipocytes as demonstrated by photoaffinity labeling, Biochemistry 21:2940–2945.PubMedCrossRefGoogle Scholar
  167. Yoshida, M., Allison, W. S., Esch, F. S., and Futai, M., 1982, The specificity of carboxyl group modification during the inactivation of the Escherichia coli F1-ATPase with dicyclohexyl[14C]carbodiimide, J. Biol. Chem. 257:10033–10037.PubMedGoogle Scholar
  168. Zahler, P., and Wolf, M., 1982, Side-specific transfer of membrane-bound phospholipase A2 to other membranes by fusion, in: Protides of the Biological Fluids, Vol. 29 (H. Peeters, ed.), Pergamon Press, Oxford, pp. 267–270.Google Scholar
  169. Zaki, L., 1983, Anion transport in red blood cells and arginine specific reagents. (1) Effect of chloride and sulfate ions on phenylglyoxal sensitive sites in the red blood cell membrane, Biochem. Biophys. Res. Commun. 110:616–624.PubMedCrossRefGoogle Scholar
  170. Zisapel, N., and Littauer, U. Z., 1978, A cationic hydroxysuccinimide ester. A reagent for labeling exterior membrane proteins, Biochim. Biophys. Acta 512:156–162.PubMedCrossRefGoogle Scholar
  171. Zwaal, R. F. A., and Roelofsen, B., 1976, Applications of pure phospholipases in membrane studies, in: Biochemical Analysis of Membranes (A. H. Maddy, ed.), Chapman and Hall, London, pp. 352–377.Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Hans Sigrist
    • 1
  • Peter Zahler
    • 1
  1. 1.Institute of BiochemistryUniversity of BerneBerneSwitzerland

Personalised recommendations