Electron Microscopy of Biological Membranes

  • Kurt Mühlethaler
  • Frances Jay


The study of the molecular organization of cellular membranes has been considerably hampered by their extreme thinness. For about 100 years it was postulated that the outermost zone of the cell is covered by a special organized layer called the cell membrane (Nägeli and Cramer, 1855; Overton, 1899; Gorter and Grendel, 1925; Danielli and Davson, 1935). With the introduction of the electron microscope in 1933, it was hoped that the presence and structure of this delicate cell component could be visualized. In the first electron micrographs of cultured cells, a definite boundary at the periphery of the cytoplasm could be seen, but new information regarding its structure was not obtained (Porter et al., 1945). A new substructure was observed by Robertson in 1958 using fixation with the potassium permanganate method as introduced by Luft (1956). The cell membrane appeared as a triple-layered structure, consisting of two dense strata, each about 2.5 nm thick, bordering a light central zone of about equal thickness. These dimensions were in good agreement with the model put forward by Danielli and Davson (1935). Since various authors observed similar tripartite membranes in a number of cells, the unit membrane concept became generally accepted. It was concluded that all biological membranes consisted of the same kind of fundamental structure pattern, i.e., a lipid bilayer arranged with the polar heads of the molecules pointing outwards and covered by a protein layer.


Biological Membrane Colloidal Gold Lateral Diffusion Fracture Face Photosynthetic Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Armbruster, B. L., Carlemalm, E., Chiovetti, R., Garavito, R. M., Hobot, J. A., Kellenberger, E., and Villiger, W., 1982, Specimen preparation for electron microscopy using low temperature embedding resins, J. Microscopy 126:77–85.Google Scholar
  2. Bächi, Th., Whiting, K., Tanner, M. J. A., Metaxas, M. N., and Aristee, D. J., 1977, Freeze-fracture electron microscopy of human erythrocytes lacking the major membrane sialoglycoprotein, Biochim. Biophys. Acta 464:635–639.PubMedGoogle Scholar
  3. Bachmann, L., and Schmitt, W. W., 1971, Improved cryofixation applicable to freeze-etching, Proc. Natl. Acad. Sci. USA 68:2149–2152.PubMedGoogle Scholar
  4. Baumeister, W., and Kübier, O., 1978, Topographic study of the cell surface of Micrococcus radiodurans, Proc. Natl. Acad. Sci. USA 75:5525–5528.PubMedGoogle Scholar
  5. Berzborn, R., Kopp, F., and Mühlethaler, K., 1974, Mobility of chloroplast coupling factor 1 (CF1) at the thylakoid surface as revealed by freeze-etching after antibody labelling, Z. Naturforsch. 29c:694–699.Google Scholar
  6. Bielig, H.-J., Kratky, O., Rohns, G., and Wawra, H., 1966, Small-angle scattering of apoferritin in solution, Biochim. Biophys. Acta 112:110–118.PubMedGoogle Scholar
  7. Branton, D., 1966, Fracture faces of frozen membranes, Proc. Natl. Acad. Sci. USA 55:1048–1056.PubMedGoogle Scholar
  8. Branton, D., 1971, Freeze-etching studies of membrane structure, Philos. Trans. R. Soc. London Ser. 261:133–138.Google Scholar
  9. Brenner, S., and Horne, R. W., 1959, A negative staining method for high resolution electron microscopy of viruses, Biochim. Biophys. Acta 34:103–110.PubMedGoogle Scholar
  10. Bretscher, M. S., 1973, Membrane structure: Some general principles, Science 181:622–629.PubMedGoogle Scholar
  11. Büechi, M., and Bächi, Th., 1979, Immunofluorescence and electron microscopy of the cytoplasmic surface of the human erythrocyte membrane and its interaction with Sendai virus, J. Cell Biol. 83:338–347.PubMedGoogle Scholar
  12. Carlemalm, E., and Kellenberger, E., 1982, The reproducible observation of unstained embedded cellular material in thin sections: Visualisation of an integral membrane protein by a new mode of imaging for STEM, EMBO J. 1:63–68.PubMedGoogle Scholar
  13. Carlemalm, E., Garavito, R. M., and Villiger, W., 1982, Resin development for electron microscopy and an analysis of embedding at low temperature, J. Mierosc. 126:123–143.Google Scholar
  14. Cherry, R. J., 1979, Rotational and lateral diffusion of membrane proteins, Biochim. Biophys. Acta 559:289–327.PubMedGoogle Scholar
  15. Danielli, J. F., and Davson, H., 1935, A contribution to the theory of permeability of thin films, J. Cell. Comp. Physiol. 5:495–508.Google Scholar
  16. Deamer, D. W., and Branton, D., 1967, Fracture planes in an ice-bilayer model membrane system, Science 158:655–657.PubMedGoogle Scholar
  17. de Petris, S., 1978, Immunoelectron microscopy and immunofluorescence in membrane biology, in: Methods in Membrane Biology, Vol. 9 (E. D. Korn, ed.), Plenum Press, New York, pp. 1–201.Google Scholar
  18. de Rosier, D. J., and Klug, A., 1968, Reconstruction of three dimensional structures from electron micrographs, Nature 217:130–134.Google Scholar
  19. Dietrich, I., Fox, F., Knapek, E., Lefranc, G., Nachtrieb, K., Weyl, R., and Zerbst, H., 1977, Improvements in the electron microscopy by application of superconductivity, Ultramicroscopy 2:241–249.PubMedGoogle Scholar
  20. Dietrich, I., Formanek, H., Fox, F., Knapek, E., and Weyl, R., 1979, Reduction of radiation damage in an electron microscope with a superconducting lens system, Nature (Lond.) 277:380–381.Google Scholar
  21. Dubochet, J., Knapek, E., and Dietrich, I., 1981, Reduction of beam damage by cryoprotection at 4°K, Ultramicroscopy 6:77–80.Google Scholar
  22. Dubochet, J., McDowall, A., Freeman, R., and Lepault, J., 1982, Cryoprotection on organic specimens, in: Proc. 10th Int. Congr. on EM, Vol. 1, Hamburg, pp. 19–23.Google Scholar
  23. Dupouy, G., Perrier, F., and Durriru, L., 1960, Microscopie electronique. L’observation de la matière vivante au moyen d’un microscope électronique fonctionnant sous très haute tension, C. R. Acad. Sci. 251:2836–2841.Google Scholar
  24. Edidin, M., 1982, Lateral diffusion of membrane proteins, in: Membranes and Transport, Vol. 1 (A. N. Martonosi, ed.), Plenum Press, New York, pp. 141–144.Google Scholar
  25. Edwards, H. H., Mueller, Th. J., and Morrison, M., 1979, Distribution of transmembrane Polypeptides in freeze fracture, Science 203:1343–1345.PubMedGoogle Scholar
  26. Erickson, H. P., Voter, W. A., and Leonard, K., 1978, Image reconstruction in electron microscopy: Enhancement of periodic structure by optical filtering, Meth. Enzymol. 49:36–43.Google Scholar
  27. Escaig, J., and Nicolas, G., 1976, Cryo-fractures de matériel biologique réalisées à très basses températures en ultra-vide, C. R. Acad. Sci. 283D: 1245–1248.Google Scholar
  28. Faulk, W. P., and Taylor, G. M., 1971, An immunocolloid method for the electron microscope, Immunochemistry 8:1081–1083.PubMedGoogle Scholar
  29. Fernández-Morán, H., 1962, Cell-membrane ultrastructure, low-temperature electron microscopy and X-ray diffraction studies of lipoprotein components in lamellar systems, Circulation 26:1039–1065.PubMedGoogle Scholar
  30. Fisher, K. A., 1975, “Half” membrane enrichment: Verification by electron microscopy, Science 190:983–985.PubMedGoogle Scholar
  31. Fisher, K. A., 1976, Analysis of membrane halves: Cholesterol, Proc. Natl. Acad. Sci. USA 73:173–177.PubMedGoogle Scholar
  32. Fisher, K. A., 1978, Split membrane lipids and Polypeptides, in: Proc. 9th Int. Congr. on Electron Microscopy, Vol. 3, Toronto, pp. 521–532.Google Scholar
  33. Fisher, K. A., 1982, Monolayer freeze-fracture autoradiography: Quantitative analysis of the transmembrane distribution of radioiodinated Concanavalin A, J. Cell Biol. 93:155–163.PubMedGoogle Scholar
  34. Frey, T. G., Chan, S. H. P., and Schatz, G., 1978, Structure and orientation of cytochrome C oxidase in crystalline membranes. Studies by electron microscopy and by labelling with subunit-specific antibodies, J. Biol. Chem. 253:4389–4395.PubMedGoogle Scholar
  35. Frye, C. D., and Edidin, M., 1970, The rapid intermixing of cell surface antigens after formation of mouse-human heterokaryons, J. Cell Sci. 7:319–335.PubMedGoogle Scholar
  36. Garber, M., and Steponkus, P. L., 1974, Identification of chloroplast coupling factor by freeze-etching and negative staining techniques, J. Cell Biol. 63:24–34.PubMedGoogle Scholar
  37. Geoghegan, W. D., and Ackermann, G. A., 1977, Adsorption of horseradish peroxidase, ovomucoid and anti-immunoglobulin to colloidal gold for the indirect detection of Concanavalin A, wheat germ agglutinin and goat antihuman Immunoglobulin G on cell surfaces at the electron microscopic level: A new method, theory and application, J. Histochem. Cytochem. 25:1187–1200.PubMedGoogle Scholar
  38. Gigg, R., and Payne, S., 1969, The reaction of glutaraldehyde with tissue lipids, Chem. Phys. Lip. 3:292–295.Google Scholar
  39. Gorter, E., and Grendel, F., 1925, On bimolecular layers of lipids on the chromocytes of the blood, J. Exp. Med. 41:439–443.PubMedGoogle Scholar
  40. Gross, H., Bas, E., and Moor, H., 1978a, Freeze-fracturing in ultrahigh vacuum at — 196°C, J. Cell Biol. 76:712–728.PubMedGoogle Scholar
  41. Gross, H., Kübler, O., Bas, E., and Moor, H., 1978b, Decoration of specific sites on freeze-fractured membranes, J. Cell Biol. 79:646–656.PubMedGoogle Scholar
  42. Gulik-Krzywicki, T., and Costello, M. J., 1978, The use of low temperature X-ray diffraction to evaluate freezing methods used in freeze-fracture electron microscopy, J. Microsc. 112:102–113.Google Scholar
  43. Hake, T., 1965, Studies on the reactions of OsO4 and KMnO4 with amino acids, peptides and proteins, Lab. Invest. 14:470–474.Google Scholar
  44. Hall, C. E., Nisonoff, A., and Slyter, H. S., 1959, Electron microscopic observations of rabbit antibodies, J. Biophys. Biochem. Cytol. 6:407–411.PubMedGoogle Scholar
  45. Hämmerling, U., Aoki, T., Wood, H. A., Old, L. J., Boyse, E. A., and de Harven, E., 1969, New visual markers of antibody for electron microscopy, Nature 223:1158–1159.PubMedGoogle Scholar
  46. Hax, W. M. A., and Lichtenegger, S., 1982, A cryo-transfer system for EM 400 electron microscopes, Electron Opt. Bull. 117:1–5.Google Scholar
  47. Henderson, R., Capaldi, R. A., and Leigh, J. S., 1977, Arrangement of cytochrome oxidase molecules in two-dimensional vesicle crystals, J. Mol. Biol. 112:631–648.PubMedGoogle Scholar
  48. Höchli, M., 1974, Entwicklung einer neuen Druckgefrier-Technik und ihre Anwendung in der Elektronenmikroskopie, Diss. ETH No. 5304.Google Scholar
  49. Höchli, M., and Hackenbrock, C. R., 1976, Fluidity in mitochondrial membranes: Thermotropic lateral translational motion of intramembrane particles, Proc. Natl. Acad. Sci. USA 73:1636–1640.PubMedGoogle Scholar
  50. Horisberger, M., and Rosset, J., 1977, Colloidal gold, a useful marker for transmission and scanning electron microscopy, J. Histochem. Cytochem. 25:295–305.PubMedGoogle Scholar
  51. Horisberger, M., Rosset, J., and Bauer, H., 1975, Colloidal gold granules as markers for cell surface receptors in the scanning electron microscope, Experientia 31:1147–1148.PubMedGoogle Scholar
  52. Horisberger, M., Rosset, J., and Vonlanthen, M., 1978, Location of lectin receptors on rat hepatocytes by transmission and scanning electron microscopy, Experientia 34:274–276.PubMedGoogle Scholar
  53. Jay, F., Lambillotte, M., and Mühlethaler, K., 1983, Localisation of Rhodopseudomonas viridis reaction centre and light harvesting proteins using ferritin-antibody labelling, Eur. J. Cell Biol., 30:1–8.PubMedGoogle Scholar
  54. Karnovsky, M. J., Unanue, E. R., and Leventhal, M., 1972, Ligand-induced movement of lymphocyte membrane macromolecules. II. Mapping of surface moieties, J. Exp. Med. 136:905–930.Google Scholar
  55. Klug, A., 1979, Image analysis and reconstruction in the electron microscopy of biological macromolecules, Chem. Scripta 14:245–256.Google Scholar
  56. Klug, A., and Berger, J. E., 1964, An optical method for the analysis of periodicities in electron micrographs and some observations on the mechanics of negative staining, J. Mol. Biol. 10:565–569.PubMedGoogle Scholar
  57. Klug, A., and de Rosier, D. J., 1966, Optical filtering of electron micrographs, reconstruction of one sided images, Nature 212:29–32.PubMedGoogle Scholar
  58. Knapek, F., and Dubochet, J., 1980, Beam damage to organic material is considerably reduced in cryoelectron microscopy, J. Mol. Biol. 141:147–161.PubMedGoogle Scholar
  59. Kotowycz, G., and Suzuki, O., 1973, A carbon-13 nuclear magnetic resonance study of binding of manganese (II) to purine and pyrimidine nucleosides and nucleotides, Biochemistry 12:3434–3439.PubMedGoogle Scholar
  60. Kübier, O., and Baumeister, W., 1978, The structure of a periodic cell wall component (HPI-layer) of Micrococcus radiodurans, Cytobiology 17:1–9.Google Scholar
  61. Kübier, O., Gross, H., and Moor, H., 1978, Complementary structures of membrane fracture faces obtained by ultrahigh vacuum freeze-fracturing at −196°C and digital image processing, Ultramicroscopy 3:161–168.Google Scholar
  62. Kühlbrandt, W., and Unwin, P. N. T., 1980, Structural analysis of stained and unstained two-dimensional ribosomal crystals, in: Electron Microscopy at Molecular Dimensions (W. Baumeister and W. Vogell, eds.), Springer, Heidelberg, pp. 108–116.Google Scholar
  63. Kühlbrandt, W., Wehrli, E., Thaler, Th., and Mühlethaler, K., 1982, Structures of two regular arrays of photosynthetic complexes, in: Proc. 10th Int. Congr. on EM, Vol. 3, Hamburg, pp. 45–46.Google Scholar
  64. Kühlbrandt, W., Thaler, Th., and Wehrli, E., 1983, The structure of membrane crystals of the light-harvesting chlorophyll a/b-protein complex, J. Cell Biol., 96:1414–1424.PubMedGoogle Scholar
  65. Latta, H., and Hartmann, J. F., 1950, Use of a glass edge in thin sectioning for electron microscopy, Proc. Soc. Exp. Biol. Med. 74:436–439.PubMedGoogle Scholar
  66. Lehninger, A. L., Wadkins, C. L., Cooper, C., Devlin, T. M., and Gamble, J. L., 1958, Oxidative phosphorylation, Science 128:450–456.PubMedGoogle Scholar
  67. Lenard, J., and Singer, S. J., 1968, Alteration of the conformation of proteins in red blood cell membranes and in solution by fixatives used in electron microscopy, J. Cell Biol. 37:117–121.PubMedGoogle Scholar
  68. Leonard, K., Wingfield, P., Arad, T., and Weiss, H., 1980, Membrane crystals of ubiquinone: Cytochrome C reductase from Neurospora mitochondria, in: Electron Microscopy at Molecular Dimensions (W. Baumeister and W. Vogell, eds.), Springer, Heidelberg, pp. 101–107.Google Scholar
  69. Lepault, J., and Dubochet, J., 1982, Electron microscopy of frozen-hydrated specimens, in: Proc. 10th Int. Congr. on EM, Vol. 3, Hamburg, pp. 111–112.Google Scholar
  70. Li, J., and Hollingshead, C., 1982, Formation of crystalline arrays of chlorophyll a/b-light harvesting protein by membrane reconstitution, Biophys. J. 37:363–370.PubMedGoogle Scholar
  71. Luft, J. H., 1956, Permanganate—a new fixative for electron microscopy, J. Biophys. Biochem. Cytol. 2:799–801.PubMedGoogle Scholar
  72. Luftig, R. B., Wehrli, E., and McMillan, P. N., 1977, The unit membrane image: A reevaluation, Life Sci. 21:285–300.PubMedGoogle Scholar
  73. Markham, R., Frey, S., and Hills, G. J., 1963, Methods for the enhancement of image detail and accentuation of structure in electron microscopy, Virology 20:88–102.Google Scholar
  74. Marshall, P. R., and Rutherford, D., 1971, Physical investigations on colloidal iron-dextran complexes, J. Coll. Interface Sci. 37:390–402.Google Scholar
  75. Maurer, A., and Mühlethaler, K., 1981, Isolation and characterization of paracrystalline arrays of the plasma membrane of baker’s yeast Saccharomyces cerevisiae, Eur. J. Cell Biol. 24:216–225.PubMedGoogle Scholar
  76. Maurer, A., and Mühlethaler, K., 1982, Isolation and localization of plasma membrane-bound invertase in yeast (Saccharomyces cerevisiae), Eur. J. Cell Biol. 26:219–227.PubMedGoogle Scholar
  77. Mazia, D., Schatten, G., and Sale, W., 1975, Adhesion of cells to surfaces coated with polylysine, J. Cell Biol. 66:198–200.PubMedGoogle Scholar
  78. Miller, K. R., 1982, Three-dimensional structure of a photosynthetic membrane, Nature 300:53–55.Google Scholar
  79. Moor, H., and Mühlethaler, K., 1963, Fine structure in frozen-etched yeast cells, J. Cell Biol. 17:609–628.PubMedGoogle Scholar
  80. Moor, H., Mühlethaler, K., Waldner, H., and Frey-Wyssling, A., 1961, A new freezing-ultramicrotome, J. Biophys. Biochem. Cytol. 10:1–13.PubMedGoogle Scholar
  81. Mühlethaler, K., 1971a, Studies on freeze-etching of cell membranes, Int. Rev. Cytol. 31:1–19.PubMedGoogle Scholar
  82. Mühlethaler, K., 1971b, The ultrastructure of plastids, in: Structure and Function of Chloroplasts (M. Gibbs, ed.), Springer, Heidelberg, pp. 7–34.Google Scholar
  83. Mühlethaler, K., Moor, H., and Szarkowski, J. M., 1965, The ultrastructure of the chloroplast lamellae, Planta 67:305–323.Google Scholar
  84. Müller, H. R., 1957, Die Gefriertrocknung als Fixierungsmethode für licht-und elekronenmikroskopische Untersuchungen an Pflanzenzellen, J. Ultrastruct. Res. 1:109–137.PubMedGoogle Scholar
  85. Müller, M., Meister, N., and Moor, H., 1980, Freezing in a propane jet and its application in freeze-fracturing, Mikroskopie (Wien) 36:129–140.Google Scholar
  86. Mullet, J. E., and Arntzen, Ch. J., 1980, Simulation of grana stacking in a model membrane system. Mediation by a purified light-harvesting pigment-protein complex from chlorplasts, Biochim. Biophys. Acta 589:100–117.PubMedGoogle Scholar
  87. Nägeli, C., and Cramer, C., 1855, Pflanzenphysiologische Untersuchungen, Heft 1, F. Schulthess, Zürich.Google Scholar
  88. Nakane, P. K., and Kawaoi, A., 1974, Peroxidase-labelled antibody. A new method of conjugation, J. Histochem. Cytochem. 22:1084–1091.PubMedGoogle Scholar
  89. Nermut, M. V., 1982, The “cell monolayer technique” in membrane research, Eur. J. Cell Biol. 28:160–172.PubMedGoogle Scholar
  90. Newman, S. B., Borysko, E., and Swerdlow, M., 1949, Ultramicroscopy by a new method, J. Res. Natl. Bur. Stand. 43:183–199.Google Scholar
  91. Oleszko, S., and Moudrianakis, E. N., 1974, The visualization of photosynthetic coupling factor in embedded spinach chloroplasts, J. Cell Biol. 63:936–948.PubMedGoogle Scholar
  92. Overton, E., 1899, Ueber die allgemeinen osmotischen Eigenschaften der Zelle, ihre vermutlichen Ursachen und ihre Bedeutung für die Physiologie, Viertelj. Schr. Naturf. Ges. Zürich 44:88–135.Google Scholar
  93. Park, R. B., and Pfeifhofer, A., 1974, Chemical composition of fractured membrane halves, in: Membrane Proteins in Transport and Phosphorylation (G. F. Azzone, M. E. Klingenberg, E. Quagliariello, and N. Siliprandi, eds.), North-Holland, Amsterdam, pp. 97–102.Google Scholar
  94. Pike, C. S., and Berry, J. A., 1980, Membrane phospholipid phase separations in plants adapted to or acclimated to different thermal regimes, Plant Physiol. 66:238–241.PubMedGoogle Scholar
  95. Pinto da Silva, P., Douglas, S. D., and Branton, D., 1971, Localization of A antigen sites on human erythrocyte ghosts, Nature 232:194–195.PubMedGoogle Scholar
  96. Porter, K., Claude, A., and Fullam E., 1945, A study of culture cells by electron microscope, J. Exp. Med. 81:233–246.PubMedGoogle Scholar
  97. Pucheu, N. L., Kerber, N. L., and Garcia, A. F., 1976, Isolation and purification of reaction centre from Rhodopseudomonos viridis NHTC 133 by means of LDAO, Arch. Mikrobiol. 109:301–305.Google Scholar
  98. Racker, E., Tyler, D. D., Estabrook, R. W., Conover, T. E., Parsons, D. F., and Chance, B., 1965, Correlations between electron-transport activity, ATP-ase and morphology of submitochondrial particles, in: Oxidases and Related Systems, Vol. 2 (T. E. King, H. S. Mason, and M. Morrison, eds.), John Wiley, New York, pp. 1077–1094.Google Scholar
  99. Richards, F. M., and Knowles, J. R., 1968, Glutaraldehyde as a protein cross-linking reagent, J. Mol. Biol. 37:231–233.PubMedGoogle Scholar
  100. Riehle, M., 1968, Ueber die Vitrifizierung verdünnter wässériger Lösungen. Thesis ETH, No. 4271.Google Scholar
  101. Robertson, J. D., 1958, A molecular theory of cell membrane structure, in: Proc. 4th Int. Congr. EM, Berlin, pp. 159-171.Google Scholar
  102. Roth, J., 1982, The protein A-gold (pAg) technique—a qualitative and quantitative approach for antigen localisation on thin sections, in: Techniques in Immunocytochemistry, Vol. 1 (G. R. Bullock and P. Petrusz, eds.), Academic Press, London, pp. 107–134.Google Scholar
  103. Roth, J., 1983, The colloidal gold marker system for light and electron microscopic cytochemistry (theory and application), in: Techniques in Immunocytochemistry, Vol. 2 (G. R. Bullock and P. Petrusz, eds.), Academic Press, London, pp. 217–284.Google Scholar
  104. Roth, J., and Wagner, M., 1977a, Peroxidase and gold complexes of lectins for double labelling of surface-binding sites by electron microscopy, J. Histochem. Cytochem. 25:1181–1184.PubMedGoogle Scholar
  105. Roth, J., and Wagner, M., 1977b, Redistribution and internalisation of anti-AHel (anti-HP)-and Concanavalin-A-binding sites, Exp. Pathol. 14:311–320.Google Scholar
  106. Roth, J., Bendayn, M., and Orci, L., 1978, Ultrastructural localization of intracellular antigens by the use of protein A-gold complex, J. Histochem. Cytochem. 26:1074–1081.PubMedGoogle Scholar
  107. Schneider, H., Lemasters, J. J., Höchli, M., and Hackenbrock, Chr. R., 1980, Liposome-mitochondrial inner membrane fusion (lateral diffusion of integral electron transfer components), J. Biol. Chem. 255:3748–3756.PubMedGoogle Scholar
  108. Segrest, J. P., Gulik-Krywicki, T., and Sardet, C. H., 1974, Association of the membrane-penetrating Polypeptide segment of the human erythrocyte MN-glycoprotein with phospholipid bilayers, Proc. Natl. Acad. Sci. USA 71:3294–3298.PubMedGoogle Scholar
  109. Singer, S. J., 1959, Preparation of an electron-dense antibody conjugate, Nature 183:1523–1524.PubMedGoogle Scholar
  110. Singer, S. J., 1978, Immunoferritin electron microscopy and the structure of membranes, in: Proc. 9th Int. Congr. EM, Vol. 3, Toronto, pp. 533–539.Google Scholar
  111. Sleytr, U. B., 1970, Die Gefrierätzung korrespondierender Bruchhälften: Ein neuer Weg zur Aufklärung von Membranstrukturen, Protoplasma 70:101–117.PubMedGoogle Scholar
  112. Sleytr, U. B., and Umrath, W., 1970, Freeze-etching: Technical developments and general interpretation problems, in: Proc. 6th Eur. Congr. EM, Vol. 2, Jerusalem, pp. 50–55.Google Scholar
  113. Sommer, J. R., 1977, To cationize glass, J. Cell Biol. 75:245a.Google Scholar
  114. Sowers, A. E., and Hackenbrock, Ch. R., 1981, Rate of lateral diffusion of intramembrane particles: Measurement by electrophoretic displacement and rerandomization, Proc. Natl. Acad. Sci. USA 78:6246–6250.PubMedGoogle Scholar
  115. Staehelin, L. A., and Bertaud, W. S., 1971, Temperature and contamination dependent freeze-etch images of frozen water and glycerol solutions, J. Ultrastruct. Res. 37:146–168.PubMedGoogle Scholar
  116. Steck, T. L., 1974, The organization of proteins in the human red blood cell membrane, J. Cell Biol. 62:1–19.PubMedGoogle Scholar
  117. Steere, R. L., 1957, Electron microscopy of structural detail in frozen biological specimens, J. Biophys. Biochem. Cytol. 3:45–60.PubMedGoogle Scholar
  118. Steere, R. L., 1973, Preparation of high resolution freeze-etch, freeze-fracture, frozen surface and freezedried replicas in a single freeze-etch module, and the use of stereo electron microscopy to obtain maximum information from them, in: Freeze-Etching Techniques and Application (E. L. Benedetti and P. Favard, eds.), Soc. française de Micr. Electr., Paris, pp. 223–255.Google Scholar
  119. Steere, R. L., and Moseley, M., 1970, Modified freeze-etch equipment permits simultaneous preparation of 2–10 double replicas, in: Proc. 7th Int. Congr. EM, Vol. 1, Grenoble, pp. 451–452.Google Scholar
  120. Talmon, Y., 1982, Frozen hydrated specimens, in: Proc. 10th Int. Congr. EM, Vol. 1, Hamburg, pp. 25–32.Google Scholar
  121. Unwin, P. N. T., and Henderson, R., 1975, Molecular structure determination by electron microscopy of unstained crystalline specimens, J. Mol. Biol. 94:425–440.PubMedGoogle Scholar
  122. Verkleij, A. J., and Ververgaert, P. H. J. Th., 1978, Freeze-fracture morphology of biological membranes, Biochim. Biophys. Acta 55:303–327.Google Scholar
  123. Verkleij, A. J., Lugtenberg, E. J. J., and Ververgaert, P. H. J. Th., 1976, Freeze-etch morphology of outer membrane mutants of Escherichia coli K12, Biochim. Biophys. Acta 426:581–586.PubMedGoogle Scholar
  124. Wagner, M., and Wagner, B., 1976, Electron microscopic detection of blood group antigen A on human erythrocytes by means of ferritin-and gold-labelled protectin of Helix pomatia, Z. Immunol. Forsch. 151:117–125.Google Scholar
  125. Wagner, M., and Wagner, B., 1977, Electron microscopic detection of the cryptantigen AHP hum (Friedenreich antigen) on human erythrocytes by means of gold-labelled agglutinin from Helix pomatia, Z. Immunol. Forsch. 153:450–456.Google Scholar
  126. Walter, C. A., Chang. J.-J., McDowall, A. W., and Dubochet, J., 1982, Freezing of biological material for electron microscopy, in: Proceed. 10th Int. Congr. EM, Vol. 3, Hamburg, pp. 115–116.Google Scholar
  127. Walzthöny, D., Moor, H., and Gross, H., 1981, Ice crystals specifically decorate hydrophilic sites on freeze-fractured model membranes, Ultramicroscopy 6:259–266.PubMedGoogle Scholar
  128. Wehrli, E., and Kübler, O., 1980, The two-dimensional lattice of the photosynthetic membrane of Rhodopseudomonas viridis, in: Electron Microscopy at Molecular Dimensions (W. Baumeister and W. Vogell, eds.), Springer, Heidelberg, pp. 48–56.Google Scholar
  129. Wehrli, E., Mühlethaler, K., and Moor, H., 1970, Membrane structure as seen with a double replica method for freeze-fracturing, Exp. Cell Res. 59:336–339.PubMedGoogle Scholar
  130. Weite, W., and Kreutz, W., 1982, Formation, structure and composition of a planar hexagonal lattice composed of specific protein-lipid complexes in the thylakoid membranes of Rhodopseudomonas viridis, Biochim. Biophys. Acta 692:479–488.Google Scholar
  131. Winkelmann, H., 1981, Problems of physical fixation by freezing, Acta Histochem. 23 (Suppl.):11–19.Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Kurt Mühlethaler
    • 1
  • Frances Jay
    • 1
  1. 1.Institute for Cell Biology, Federal Institute of TechnologyETH-HönggerbergZürichSwitzerland

Personalised recommendations