Dimethylnitrosamine Demethylase and the Mutagenicity of Dimethylnitrosamine

Effects of Rodent Liver Fractions and Dimethylsulfoxide
  • Michael J. Prival
  • Valerie D. Mitchell
Part of the Topics in Chemical Mutagenesis book series (TCM, volume 1)


Although the Ames Salmonella plate incorporation assay(1) is the most widely used method for screening chemicals for potential carcinogenicity, it is well known that many carcinogens are not detected in this test. Some of these “false negative” compounds, such as highly chlorinated organic carcinogens, are also difficult to detect in other mutagenicity assays. Dimethylnitrosamine (DMN), however, is negative in the standard Salmonella plate incorporation assay,(2,3) although it is positive in a variety of other types of mutagenicity tests. DMN is carcinogenic in at least 12 different animal species.(4)


Mouse Liver Mutagenic Activity Microsomal Fraction Mutagenicity Assay Liver Fraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. N. Ames, J. McCann, and E. Yamasaki, Methods for detecting carcinogens and mutagens with the Salmonella, mammalian-microsome mutagenicity test, Mutat. Res. 31, 347–367 (1975).PubMedGoogle Scholar
  2. 2.
    T. Yahagi, M. Nagao, Y. Seino, T. Matsushima, T. Sugimura, and M. Okada, Mutagenicities of N-nitrosamines on Salmonella, Mutat. Res. 48, 121–130 (1977).PubMedCrossRefGoogle Scholar
  3. 3.
    H. Bartsch, A. Camus, and C. Malaveille, Comparative mutagenicity of N-nitrosamines in a semi-solid and in a liquid incubation system in the presence of rat or human tissue fractions, Mutai. Res. 37, 149–162 (1976).CrossRefGoogle Scholar
  4. 4.
    IA RC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans, Vol. 17, pp. 125–175, International Agency for Research on Cancer, Lyon, France (1978).Google Scholar
  5. 5.
    H. Druckrey, R. Preussmann, S. Ivankovic, and D. Schmähl, Organotrope carcinogene Wirkungen bei 65 verscheidenen N-Nitroso-Verbindungen an BD-Ratten, Z. Krehsforsch. 69, 103–201 (1967).CrossRefGoogle Scholar
  6. 6.
    A. E. Pegg, Metabolism of N-nitrosodimethylamine, in: Molecular and Cellular Aspects of Carcinogen Screening Tests (R. M ontesano, H. Bartsch, and L. Tomatis), IA RC Scientific Publications No. 27, pp. 3–22, International Agency for Research on Cancer, Lyon, France (1980).Google Scholar
  7. 7.
    M. J. Privai and V. D. Mitchell, Influence on microsomal and cytosolic fractions from rat, mouse, and hamster liver on the mutagenicity of dimethylnitrosamine in the Salmonella plate incorporation assay, Cancer Res. 41, 4361–4367 (1981).Google Scholar
  8. 8.
    H. J. Vogel and D. M. Bonner, Acetylornithinase of Escherichia coli: Partial purification and some properties, J. Biol. Chem. 218, 97–106 (1956).PubMedGoogle Scholar
  9. 9.
    B. G. Lake, J. C. Phillips, C. E. Heading, and S. D. Gangolli, Studies on the in vitro metabolism of dimethylnitrosamine by rat liver, Toxicology S, 297–309 (1976).Google Scholar
  10. 10.
    J. C. Arcos, D. L. Davies, C. E. L. Brown, and M. F. Argus, Repressible and inducible enzymic forms of dimethylnitrosamine demethylase, Z. Krebsforsch. 89, 181–199 (1977).CrossRefGoogle Scholar
  11. 11.
    B. H. J. Hofstee, Graphical analysis of single enzyme systems, Enzrmologia 7, 273–278 (1956).Google Scholar
  12. 12.
    W. W. Cleland, Statistical analysis of enzyme kinetic data, Methods Enzymol. 63 (Part A), 103–138 (1979).PubMedCrossRefGoogle Scholar
  13. 13.
    B. G. Lake, C. E. Heading, J. C. Phillips, S. D. Gangolli, and A. G. Lloyd, Some studies on the metabolism in vitro of dimethylnitrosamine by rat liver, Biochem. Soc. Trans. 2, 610–612 (1974).Google Scholar
  14. 14.
    N. Venkatesan, J. C. Arcos, and M. F. Argus, Amino acid induction and carbohydrate repression of dimethylnitrosamine demethylase in rat liver, Cancer Res. 30, 2563–2567 (1970).PubMedGoogle Scholar
  15. 15.
    N. Venkatesan, M. F. Argus, and J. C. Arcos, Mechanism of 3-methylcholanthrene-induced inhibition of dimethylnitrosamine demethylase in rat liver, Cancer Res. 30, 2556–2562 (1970).PubMedGoogle Scholar
  16. 16.
    I. G. Sipes, M. L. Slocumb, and G. Holtzman, Stimulation of microsomal dimethylnitrosamineN-demethylase by pretreatment of mice with acetone, Chem.-Biol. Interact. 21, 155–166 (1978).PubMedCrossRefGoogle Scholar
  17. 17.
    J. J. Hutton, J. Meier, and C. Hackney, Comparison of the in vitro mutagenicity and metabolism and of dimethylnitrosamine and benzo[a]pyrene in tissues from inbred mice treated with phenobarbital, 3-methylcholanthrene or polychlorinated biphenyls, Mutai. Res. 66, 75–94 (1979).CrossRefGoogle Scholar
  18. 18.
    I. Y. Chau, D. Dagani, and M. C. Archer, Kinetic studies on the hepatic microsomal metabolism of dimethylnitrosamine, diethylnitrosamine, and methylethylnitrosamine in the rat, J. Natl. Cancer Inst. 61, 517–521 (1978).PubMedGoogle Scholar
  19. 19.
    P. Czygan, H. Greim, A. J. Garro, F. Hutterer, F. Schaffner, H. Popper, O. Rosenthal, and D. Y. Cooper, Microsomal metabolism of dimethylnitrosamine and the cytochrome P-450 dependency of its activation to a mutagen, Cancer Res. 33, 2983–2986 (1973).PubMedGoogle Scholar
  20. 20.
    J. J. Hutton, C. Hackney, and J. Meier, Mutagenicity and metabolism of dimethylnitrosamine and benzo[a]pyrene in tissue homogenates from inbred Syrian hamsters treated with phenobarbital, 3-methylchloanthrene or polychorinated biphenyls, Mutat. Res. 64, 363–377 (1979).PubMedGoogle Scholar
  21. 21.
    M. J. Privai, V. D. King, and A. T. Sheldon, Jr., The mutagenicity of dialkyl nitrosamines in the Salmonella plate assay, Environ. Mutagenesis 1, 95–104 (1979).CrossRefGoogle Scholar
  22. 22.
    C. N. Frantz and H. V. Mailing, Factors affecting metabolism and mutagenicity of dimethylnitrosamine and diethylnitrosamine, Cancer Res. 35, 2307–2314 (1975).PubMedGoogle Scholar
  23. 23.
    H. M. Godoy, M. I. Diaz Gomez, and J. A. Castro, Mechanism of dimethylnitrosamine metabolism and activation in rats, J. Natl. Cancer Inst. 61, 1285–1289 (1978).PubMedGoogle Scholar
  24. 24.
    D. Y. Lai, S. C. Myers, Y. T. Woo. E. J. Greene, M. A. Friedman. M. F. Argus, and J. C. Arcos, Role of dimethylnitrosamine demethylase in the metabolic activation of dimethylnitrosamine, Chem.-Biol. Interact. 28, 107–126 (1979).PubMedCrossRefGoogle Scholar
  25. 25.
    L. I. Hecker, R. K. Elespuru, and J. G. Farrelly, The mutagenicity of nitrosopyrrolidine is related to its metabolism, Mutat. Res. 62, 213–220 (1979).Google Scholar
  26. 26.
    L. I. Hecker, J. G. Farrelly, J. H. Smith, J. E. Saavedra, and P. A. Lyon, Metabolism of the liver carcinogen N-nitrosopyrrolidine by rat liver microsomes. Cancer Res. 39, 2679–2686 (1979).PubMedGoogle Scholar
  27. 27.
    H. Bartsch, C. Malaveille, and R. Montesano, The predictive value of tissue-mediated mutagenicity assays to assess the carcinogenic risk of chemicals, in: Screening Tests in Chemical Carcinogenesis (R. Montesano, H. Bartsch, and L. Tomatis), IA RC Scientific Publications No. 12, pp. 467–486, International Agency for Research on Cancer, Lyon, France (1976).Google Scholar
  28. 28.
    M. J. Privai and V. D. M itchell, Analysis of a method for testing azo dyes for mutagenic activity in Salmonella ttphimurium in the presence of flavin mononucleotide and hamster liver S-9, Mutat. Res. 92, 103–116 (1982).Google Scholar
  29. 29.
    D. Weinstein, M. Katz, and S. Kazmer, Use of rat/ hamster S-9 mixture in the Ames mutagenicity assay. Environ. Mutagenesis 3, 1–9 (1981).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Michael J. Prival
    • 1
  • Valerie D. Mitchell
    • 1
  1. 1.Genetic Toxicology BranchFood and Drug AdministrationUSA

Personalised recommendations