Advertisement

Mutagenic Activity of Nitrosamines in Mammalian Cells

Study with the CHO/HGPRT and Human Leukocyte SCE Assays
  • Ti Ho
  • Juan R. San Sebastian
  • Abraham W. Hsie
Part of the Topics in Chemical Mutagenesis book series (TCM, volume 1)

Abstract

The potential impact of environmental chemicals on the induction of cancer in humans has become a worldwide problem. It has been estimated that more than 80% of human cancers are caused by exposure to chemical agents.(1,2) One class of chemicals that could pose a significant human health hazard is the N-nitroso compounds. These compounds are widespread in our environment,(3) occurring in food preservatives,(4) milk,(5) tobacco smoke,(6,7) meat-curing mixtures,(8) and various other foodstuffs,(9) industrial products and by-products,(10–12) and some plants.(5,13) The finding that feeding secondary amines and nitrite caused tumors in laboratory animals through nitrosamine synthesis in the stomach(14) has led to a considerable concern for nitrosamines as a major class of environmental carcinogens. Although the mode of action of nitrosamines is largely unclear, it is thought that nitrosamines act through biotransformed active metabolites. These metabolites may alkylate cellular macromolecules, particularly DNA, thereby possibly altering the genome of the target cells, which could eventually result in transformation into a neoplastic state.(15) The arcinogenicity of nitroso compounds as related to their chemistry, mutagenicity, and other biological activities has been extensively studied(4,19–29) and reviewed.(3,16–18)

Keywords

Chinese Hamster Ovary Cell Mutation Frequency Chinese Hamster Ovary Sister Chromatid Mutagenic Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Boyland, The correlation of experimental carcinogenesis and cancer in man, Prog. Expt. Tumor Res. 11, 222–234 (1969).Google Scholar
  2. 2.
    P. Bogovski, The importance of the analysis of N-nitroso compound in international cancer research, in: N-Nitroso Compounds Analysis and Formation (R. Preussman, E. A. Walker, and W. Davis), IARC Scientific Publications No. 3, pp. 1–5, International Agency for Research on Cancer, Lyon, France (1972).Google Scholar
  3. 3.
    W. Lijinsky and S. S. Epstein, Nitrosamines as environmental carcinogens, Nature (London) 255, 21–23 (1978).Google Scholar
  4. 4.
    H. Druckrey, R. Preussmann, S. Ivankovic. and D. Schmiihl, Organotrope carcinogene kungen bei 65 versabiedenon N-nitroso verbindungen and BD ratten, Z. Krebsforsch. 69, 103–120 (1967).PubMedCrossRefGoogle Scholar
  5. 5.
    L. Hedler and P. Marquardt, Occurrence of diethylnitrosamine in some samples of food, Food Cosmet. Toxicol. 6, 341–348 (1968).PubMedCrossRefGoogle Scholar
  6. 6.
    H. Druckrey and R. Preussman, Zur Entstehung carcinogener Nitrosamine und beispiel des Tabakrauches, Naturwissenschaften 49, 498–499 (1962).CrossRefGoogle Scholar
  7. 7.
    G. B. Neurath, Nitrosamine formation from precursors in tobacco smoke, in: N-Nitroso Compounds Analysis and Formation (P. Bogovski, R. Preussman, E. A. Walker, and W. Davis), IARC Scientific Publications No. 3, pp. 134–136, International Agency for Research on Cancer, Lyon, France (1972).Google Scholar
  8. 8.
    N. P. Sen, W. F. Mile, B. Donaldson, T. Panalaks, and J. R. lyengar, Formation of nitrosa-mines in a meat curing mixture, Nature (London) 245, 104–105 (1973).CrossRefGoogle Scholar
  9. 9.
    A. Wolff and A. E. Wasserman, Nitrates, nitrites and nitrosamine, food stuff and tobacco contains nitrosamines, Science 177, 15–19 (1972).PubMedCrossRefGoogle Scholar
  10. 10.
    L. Fishbein, in Studies in Environmental Sciences 4: Potential Industrial Carcinogens and Mutagens, pp. 331–351, Elsevier Scientific Publishing Co., Amsterdam (1979).Google Scholar
  11. 11.
    P. N. Magee, Possible hazard from nitrosamines in industry, Ann. Occup. Hrg. 15, 19–22 (1972).CrossRefGoogle Scholar
  12. 12.
    S. Z. Cohn, G. Zweig, M. Law, D. Wright, and W. R. Bontoyan, Analytical determination of N-nitroso compounds in pesticides by the United States Environmental Protection Agency—A preliminary study, in: Environmental Aspects of N-Nitroso Compounds (E. A. Walker, M. Gastegnaro, L. Griciute, R. E. Lyle, and W. David), IARC Scientific Publications No. 19, pp. 333–356, International Agency for Research on Cancer, Lyon, France (1978).Google Scholar
  13. 13.
    M. Nagao, T. Sugimura, and T. Matsushima, Environmental mutagens and carcinogens, Ann. Rev. Genet. 12, 117–159 (1978).PubMedCrossRefGoogle Scholar
  14. 14.
    G. Eisenbrand, O. Ungerer, and R. Preussmann, Rapid formation of carcinogenic Nnitrosamine by interaction of nitrite with fungicides derived from dithiocarbamic acid in vitro under simulated gastric conditions and in vivo in the rat’s stomach, Food Cosmet. Toxicol. 12. 229–232 (1974).PubMedCrossRefGoogle Scholar
  15. 15.
    P. N. Magee and E. Farber, Toxic liver injury and carcinogenesis: Methylation of rat liver nucleic acid by dimethylnitrosamine in vitro, Mechem. J. 83, 1 14–124 (1962).Google Scholar
  16. 16.
    P. N. Magee and J. M. Barnes, Carcinogenic nitroso compounds, Adv. Cancer Res. 10, 163–246 (1967).PubMedCrossRefGoogle Scholar
  17. 17.
    R. Montesano and H. Bartsch, Mutagenic and carcinogenic N-nitroso-compound: Possible environmental hazards. Mutas. Res. 32, 179–228 (1978).Google Scholar
  18. 18.
    J.-P. Anselme, The organic chemistry of N-nitrosamines: A brief review, in: N-nitrosamines (J.-P. Anselme, ed.). ACS Symposium Series IOI, pp. 1–12, American Chemical Society. Washington, D. C. (1979).Google Scholar
  19. 19.
    H. Garcia and W. Lijinsky, Tumorigenicity of five cyclic nitrosamines in M RC rat, Z. Krebsforsch. 77, 257–261 (1972).CrossRefGoogle Scholar
  20. 20.
    H. Garcia and W.Lijinsky, Studies of the tumorigenic effect in feeding of nitrosa mino acids and of low doses of amines and nitrite to rats, Z. Krebsforsch. 79, 141–144 (1972).Google Scholar
  21. 21.
    W. Lijinsky and H. W. Taylor, Carcinogenicity of methylated nitrosopiperidine, Int. J. Cancer 16, 318–322 (1975a).PubMedCrossRefGoogle Scholar
  22. 22.
    W. Lijinsky and H. W. Taylor, Carcinogenicity of methylated dinitropiperazine in rats. Cancer Res. 35. 1270–1273 (1975b).Google Scholar
  23. 23.
    W. Lijinsky and H. W. Taylor, Tumorigenesis by oxygenated nitrosopiperidines in rats, J. Natl. Cancer Inst. 55, 705–707 (1975c).PubMedGoogle Scholar
  24. 24.
    W. Lijinsky and H. W. Taylor, Carcinogenicity of N-nitroso 3,4-dichloro and N-nitroso3,4-dibromopiperidine in rats, Cancer Res. 35. 3209–3211 (1975d).Google Scholar
  25. 25.
    W. Lijinsky and R. K. Elespuru, Mutagenicity and carcinogenicity of N-nitroso derivatives of carbamate insecticides, in: Environmental N-Nitroso Compounds Analysis and Formation (E. A. Walker, P. Bogovski, L. Griciate, and W. David), IARC Scientific Publications No. 14, pp. 425–428, International Agency for Research on Cancer, Lyon. France (1976).Google Scholar
  26. 26.
    W. Lijinsky and H. W. Taylor, Carcinogenicity tests of N-nitroso derivatives of two drugs, phenmetrazine and methylphenidate, Cancer Lett. 1, 359–363 (1976).Google Scholar
  27. 27.
    W. Lijinsky and H. W. Taylor, Carcinogenesis tests of nitroso-N-methylpiperazine, 2,3,5,6-tetramethyl dinitrosopiperazine, nitrosoisonipecotic acid and nitrosomethyoxymethylamine in rat, Z. Krehsforsch. 89, 31–36 (1977).CrossRefGoogle Scholar
  28. 28.
    A. L. Love, W. Lijinsky, L. F. Kufer. and H. Garcia, Chronic oral administration of (nitrosopiperazine at high doses to M RC rats, Z. Krebsforsch. 89, 69–73 (1977).CrossRefGoogle Scholar
  29. 29.
    A. W. Andrew, L. H. Thibault, and W. Lijinsky, The relationship between mutagenicity and carcinogenicity of some nitrosamines, Mutas. Res. 51, 319–326 (1978).CrossRefGoogle Scholar
  30. 30.
    W. Lijinsky and A. W. Andrews, The mutagenicity of nitrosamines in Salmonella trphinturiunt, Mutat. Res. 68, I - 8 (1979).Google Scholar
  31. 31.
    E. Zeiger, M. S. Legator, and W. Lijinsky, Mutagenicity of N-nitrosopiperazine for Salmonella trphimurium in the host mediated assay, Cancer Res. 32, 1598–1599 (1972).PubMedGoogle Scholar
  32. 32.
    E. Zeiger and A. Sheldon, The mutagenicity of nitropiperidines for Salmonella rphimurium Mutas Res. 57 85–89 (1978).Google Scholar
  33. 33.
    T. K. Rao, A. A. Hardigree, J. A. Young, W. Lijinsky, and J. L. Epler, Mutagenicity of N-nitrosopiperidines with Salmonella trphimurium! microsomal activation system, Mutat. Res. 5, 131–145 (1977).Google Scholar
  34. 34.
    T. K. Rao, J. A. Young, W. Lijinsky, and J. L. Epler, Mutagenicity of N-nitrosopiperazine derivatives in Salmonella trphimurium, Mutat. Res. 57, 127–134 (1978).PubMedCrossRefGoogle Scholar
  35. 35.
    T. K. Rao, D. W. Ramey, W. Lijinsky, and J. L. Epler, Mutagenicity of cyclic nitrosamines in Salmonella trphimurium, Mutat. Res. 67, 21–26 (1979).Google Scholar
  36. 36.
    K. Rao, J. A. Young, D. W. Ramey, W. Lijinsky, and J. L. Epler, Mutagenicity of alphatic nitrosamines in Salmonella trphimurium, Mutat. Res. 66, 1–7 (1979).PubMedCrossRefGoogle Scholar
  37. 37.
    F. W. Larimer, D. W. Ramey, W. Lijinsky, and J. L. Epler, Mutagenicity of methylated N-nitrosopiperidines in Saccharomyces cerevisiae, Mutat. Res. 57, 155–161 (1978).PubMedCrossRefGoogle Scholar
  38. 38.
    F. W. Larimer, A. A. Hardigree, W. Lijinsky, and J. L. Epler, Mutagenicity of Nnitrosopiperazine derivatives in Saccharomyces cerevisiae, Mutat. Res. 77, 143–148 (1980).PubMedCrossRefGoogle Scholar
  39. 39.
    C. E. Nix, B. Brewen, R. Wilkerson, W. Lijinsky, and J. L. Epler, Effects of N-nitrosopiperidine substitutions on mutagenicity in Drosophila melanogaster, Mutat. Res. 67, 27–38 (1979).PubMedCrossRefGoogle Scholar
  40. 40.
    C. E. Nix, B. Brewen, W. Lijinsky, and J. L. Epler, Effects of methylation and ring size on mutagenicity of cyclic nitrosamines in Drosophila melanogaster, Mutat. Res. 73, 93–100 (1980).PubMedCrossRefGoogle Scholar
  41. 41.
    A. W. Hsie, D. A. Casiano, D. B. Couch, D. F. Krahn, J. P. O’Neill, and B. L. Whitfield, The use of Chinese hamster ovary cells to quantify specific locus mutation and to determine mutagenicity of chemicals, Mutat. Res. 86, 193–214 (1981).PubMedGoogle Scholar
  42. 42.
    J. L. Epler, F. W. Larimer, T. M. Rao, C. E. Nix, and T. Ho, Energy-related pollutants in the environment: Use of short-term test for the mutagenicity in the isolation and identification of biohazards, Environ. Health Persp. 27, 11–20 (1978).CrossRefGoogle Scholar
  43. 43.
    A. W. Hsie, P. A. Brimer, T. J. Mitchell, and D. G. Gosslee, The dose-response relationship for ethyl methanesulfonate-induced mutations at the hypoxanthine-guanine phosphoribosyl transferase locus in Chinese hamster ovary cells, Somal. Cell Genet. 1, 247–261 (1975).CrossRefGoogle Scholar
  44. 44.
    A. W. Hsie, J. P. O’Neill, D. B. Couch. J. R. San Sebastian, P. A. Brimer, R. Machanoff, J. C. Riddle, A. P. Li, J. C. Fuscoe, N. L. Forbes. and M. H. Hsie, Quantitative analyses of radiation and chemical-induced cellular lethality and mutagenesis in Chinese hamster ovary cells, Radiai. Res. 76, 471–492 (1978).CrossRefGoogle Scholar
  45. 45.
    A. W. Hsie, J. P. O’Neill, J. R. San Sebastian, and P. A. Brimer, The CHO, HGPRT mutation assay: Progress with quantitative mutagenesis and mutagen screening, in: Banbury Report 2: Mammalian Cell Mutagenesis (A. W. Hsie, J. P. O’Neill, and V. K. McElheny), pp. 407–420. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York (1979).Google Scholar
  46. 46.
    A. W. Hsie, Structure-mutagenicity analysis with the CHO HGPRT system, Food Comet. Toxicol. 19. 617–621 (1981).CrossRefGoogle Scholar
  47. 47.
    A. W. Hsie, R. L. Schenley, K. R. Tindall, R. Machanoff, P. A. Brimer, S. W. Perdue, J. R. San Sebastian, and E.-L. Tan, in: Banbury Report 13: Indicators of Genoioxic Exposure (B. A. Bridges. B. E. Butterworth, and I. B. Weinstein), pp. 487–501, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  48. 48.
    A. W. Hsie, and R. L. Schenley, Utilization of Chinese hamster cells in vitro and in vivo in genetic toxicology: A multiphasic approach, Environ. Mutagen. (in press).Google Scholar
  49. 49.
    J. R. San Sebastian, J. P. O’Neill, and A. W. Hsie, Induction of chromosome aberrations, sister chromatid exchanges, and specific gene mutations in Chinese hamster ovary cells by 5-bromodeoxyuridine, CCytogenet. Cell Genet. 28, 47–54 (1980).CrossRefGoogle Scholar
  50. 50.
    J. P. O’Neill, P. A. Brimer, R. Machanoff, G. P. Hirsch, and A. W. Hsie, A quantitative assay of mutation induction of the hypoxanthine-guanine phosphoribosyl transferase locus in Chinese hamster ovary cells (CHO- HG PRT system): Development and definition of the system, Mutat. Res. 45, 91–101 (1977).PubMedCrossRefGoogle Scholar
  51. 51.
    J. P. O’Neill, D. B. Couch, R. Machanoff, J. R. San Sebastian, P. A. Brimer, and A. W. Hsie, A quantitative assay of mutation induction at the hypoxanthine-guanine phosphoribosyl transferase in Chinese hamster ovary cells (CHO, HGPRT system): Utilization with a variety of mutagenic agents, Mutai. Res. 45, 103–109 (1977).CrossRefGoogle Scholar
  52. 52.
    J. P. O’Neill, R. Machanoff, J. R. San Sebastian, and A. W. Hsie. Cytotoxicity and mutagenicity of dimethylnitrosamine in mammalian cells (CHO !HGPRT system): Enhancement by calcium phosphate, Environ. Mutag. 4, 7–18 (1982).CrossRefGoogle Scholar
  53. 53.
    D. B. Couch, N. L. Forbes, and A. W. Hsie, Comparative mutagenicity of alkylsulfate and alkanesulfonate derivatives in Chinese hamster ovary cells, Mutat. Res. 57, 217–224 (1978).PubMedCrossRefGoogle Scholar
  54. 54.
    D. B. Couch and A. W. Hsie, Mutagenicity and carcinogenicity of congeners of two classes of nitroso compounds in Chinese hamster ovary cells, Mutat. Res. 57, 209–216 (1978).PubMedCrossRefGoogle Scholar
  55. 55.
    J. P. O’Neill, J. C. Fuscoe. and A. W. Hsie, Mutagenicity of heterocyclic nitrogen mustards (ICR compounds) in cultured mammalian cells, Cancer Res. 38. 506–509 (1978).PubMedGoogle Scholar
  56. 56.
    J. C. Fuscoe, J. P. O’Neill, R. M. Peck, and A. W. Hsie. Mutagenicity and cytotoxicity of nineteen heterocyclic nitrogen mustards. Cancer Res. 39, 4875–4881 (1979).PubMedGoogle Scholar
  57. 57.
    N. P. Johnson, J. D. Hoeschele, J. D. Rahn, J. P. O’Neill, and A. W. Hsie. Mutagenicity. cytotoxicity and DNA binding of platinum(II)-chloroammines in Chinese hamster ovary cells, Cancer Res. 40, 1463–1468 (1980).PubMedGoogle Scholar
  58. 58.
    A. W. Hsie, Quantitative mutagenesis and mutagen screening with Chinese hamster ovary cells, in: The Predictive Value of Short-Term Screening Tests in Carcinogenicity Evaluation ( G. M. Williams, R. Kroes, H. W. Waaijers, and K. W. van de Poll, eds.), pp. 89–102, Elsevier North-Holland Biomedical Press. Amsterdam (1980).Google Scholar
  59. 59.
    H.-W. Thielman, C. H. Schroder, J. P. O’Neill, and A. W. Hsie. Relationship between DNA alkylation and specific locus mutation induction by N-methyl-and N-ethyl-N-nitrosourea in cultured Chinese hamster ovary cells (CHO.’ HGPRT system), Chem.-Biol. Interact. 26. 233–243 (1979).CrossRefGoogle Scholar
  60. 60.
    A. W. Hsie, R. Machanoff, D. B. Couch, and J. M. Holland, Mutagenicity of dimethylnitrosamine and ethyl methanesulfonate as determined by the host-mediated CHO, HGPRT assay. Mutat. Res. 51, 77–84 (1978).PubMedCrossRefGoogle Scholar
  61. 61.
    B. N. Ames, J. McCann, and E. Yamasaki, Methods for detecting carcinogens and mutagens with the Salmonellae mammalian microsome mutagenicity test, Mutat. Res. 31, 347–364 (1975).PubMedGoogle Scholar
  62. 62.
    E.-I.. Tan and A. W. Hsie, Effect of phosphate and alumina Cy gels on the mutagenicity and cytotoxicity of dimethylnitrosamine as studied in the CHO, system, Mutat. Res. 84, 147–156 (1981).PubMedCrossRefGoogle Scholar
  63. 63.
    J. H. Taylor, Sister chromatid exchanges in tritium labeled chromosomes, Genetics 43, 515–529 (1958).PubMedGoogle Scholar
  64. 64.
    S. A. Latt, Localization of sister chromatid exchanges in human chromosomes, Science 185, 74–76 (1974).PubMedCrossRefGoogle Scholar
  65. 65.
    S. A. Latt, Sister chromatid exchanges, indices of human chromosome damage and repair, detection by fluorescence and induction by mitomycin C, Proc. Natl. Acad. Sci. USA 71,3162–3166(1974).Google Scholar
  66. 66.
    P. Perry and H. J. Evans, Cytological detection of mutagen-carcinogen exposure by sister chromatid exchanges, Nature 258, 121–125 (1975).PubMedCrossRefGoogle Scholar
  67. 67.
    P. Perry and S. Wolff, New giemesa method for the differential staining of sister chromatids, Nature 251, 156–158 (1974).PubMedCrossRefGoogle Scholar
  68. 68.
    H. Kato and H. Shimada, Sister chromatid exchange induced by mitomycin C, A new method of detecting DNA damaged at the chromosomal level, Mutat. Res. 28, 459–641 (1975).PubMedCrossRefGoogle Scholar
  69. 69.
    H. Kato, Induction of sister chromatid exchanges by UV light and its inhibition by caffeine, Erpr. Cell Res. 82, 383–390 (1973).CrossRefGoogle Scholar
  70. 70.
    S. A. Latt, J. Allen, S. E. Bloom, A. Carrano, E. Falke, D. Krahn, E. Schneider, R. Shreck, R. Tice, B. Whitefield, and S. Wolff, Sister-chromatid exchanges: A report of the Gene-Tox Program, Mutat. Res. 87, 17–62 (1981).PubMedGoogle Scholar
  71. 71.
    A. V. Carrano, L. H. Thompson, P. A. Lindle, and J. L. M inkier, Sister-chromatid exchange as an indicator of mutagenesis, Nature 271, 551–553 (1978).PubMedCrossRefGoogle Scholar
  72. 72.
    A. V. Carrano, L. H. Thompson, D. G. Stetka, J. L. Minkler, J. A. Mazrimas, and S. Fong, DNA crosslinking, sister-chromatid exchange and specific-locus mutations, Mutat. Res. 63, 175–188 (1979).PubMedCrossRefGoogle Scholar
  73. 73.
    S. A. Latt, R. P. Schreck, K. S. Loveday, C. P. Dougherty, and C. F. Shuler, Sister chromatid exchange, Adv. Human Genet. 10, 267–331 (1980).Google Scholar
  74. 74.
    S. Wolff, Sister chromatid exchanges, Ann. Rev. Genet. 11, 183–201 (1977).PubMedCrossRefGoogle Scholar
  75. 75.
    M. A. Bender and D. M. Prescott, DNA synthesis and mitosis in culture of human peripheral leukocytes, Erptl. Cell Res. 27, 221–229 (1962).CrossRefGoogle Scholar
  76. 76.
    P. S. Moorhead, P. C. Nowell, W. J. Mellman, D. M. Battips, and D. A. Hungerford, Exptl. Cell Res. 20, 613–616 (1960).PubMedCrossRefGoogle Scholar
  77. 77.
    K. Gato, S. Malda, Y. Kano, and T. Sugiyama, Factors involved in differential Giemsa-staining of sister chromatids, Chronioso, na (Berlin) 66, 351–359 (1978).Google Scholar
  78. 78.
    R. Tice, M. A. Bender, J. L. Ivett, and R. Drew, Cytogenetic effects of inhaled ozone, 14uiat. Res. 58, 293–304 (1978).Google Scholar
  79. 79.
    R. Tice, E. L. Schneider, and J. M. Mary, The utilization of bromodeoxyuridine incorporation into DNA for analysis of cellular kinetics, Ex - pt. Cell Res. 102. 232–236 (1976).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Ti Ho
    • 1
  • Juan R. San Sebastian
    • 1
  • Abraham W. Hsie
    • 1
  1. 1.Biology DivisionOak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations