Induction of Bacteriophage Lambda by N-Nitroso Compounds

  • Rosalie K. Elespuru
Part of the Topics in Chemical Mutagenesis book series (TCM, volume 1)


Induction of bacteriophage lambda is one of the consequences of the “SOS response” in E. coli resulting from damage to the host DNA.(1,2) This complex process appears to be mediated by the rec A protein,(3,4) resulting in the cleavage of the lambda repressors(5) and ensuing expression of phage genes. The repressor-cleavage activity of the rec A protein is dependent on the presence of single-stranded DNA,(6) presumably generated as a result of DNA damage. DNA damage, then, leads to the appearance of an “activated” rec A protein,(7) which cleaves the repressor of the genes of the lytic cycle (see Reference 8 for review). Agents that damage DNA can thus be monitored by looking for the appearance of bacteriophage. Other SOS functions that have been monitored after DNA damage include mutagenesis, filamentation, and DNA repair activity.(2,9)


Spot Test Bacteriophage Lambda Nitroso Compound Hamster Liver Prophage Induction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

































methyl methanesulfonate


ethyl methanesulfonate


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Radman, SOS repair hypothesis: Phenomenology of an inducible DNA repair which is accompanied by mutagenesis, in: Molecular Mechanisms for Repair of DNA (P. Hanawalt and R. B. Setlow,), Part A, pp. 355–367, Plenum Press, New York (1975).Google Scholar
  2. 2.
    E. M. Witkin, Ultraviolet mutagenesis and inducible DNA repair in Escherichia coli, Bact. Rev. 40, 869–907 (1976).Google Scholar
  3. 3.
    K. Brooks and A. J. Clark, Behavior of A bacteriophage in a recombination deficient strain of Escherichia coli, J. Virol. 1, 283–293 (1967).Google Scholar
  4. 4.
    K. McEntee, Protein Xis the product of the recA gene of Escherichia coli, Proc. Natl. Acad. Sci. USA 74, 5275–5279 (1977).CrossRefGoogle Scholar
  5. 5.
    J. W. Roberts, C. W. Roberts, and N. L. Craig, Escherichia coli recA gene product inactivates phage A repressor, Proc. Natl. Acad. Sci. USA 75, 4714–4718 (1978).PubMedCrossRefGoogle Scholar
  6. 6.
    N. L. Craig and J. W. Roberts, E. coli rec A protein-directed cleavage of phage A repressor requires polynucleotide, Nature 283, 26–30 (1980).PubMedCrossRefGoogle Scholar
  7. 7.
    A. Bailone, A. Levine. and R. Devoret, Inactivation of prophage A repressor in vivo, J. Mol. Biol. 31, 553–572 (1979).Google Scholar
  8. 8.
    R. Devoret, Inducible error-prone repair and induction of prophage lambda in Escherichia soli, Prog. Nucleic Acid Res. Mol. Biol. 26, 251–263 (1981).CrossRefGoogle Scholar
  9. 9.
    C. J. Kenyon and G. C. Walker, DNA-damaging agents stimulate gene expression at specific loci in Escherichia soli, Proc. Nat. Acad. Sci. USA 77, 2819–2823 (1980).CrossRefGoogle Scholar
  10. 10.
    Y. L. Ho and S. K. Ho, The induction of a mutant prophage in Escherichia coli: A rapid screening test for carcinogens, Virology 99, 257–264 (1979).PubMedCrossRefGoogle Scholar
  11. 11.
    C. L. Smith and M. Oishi, The molecular mechanism of virus induction. I. A procedure for the biochemical assay of prophage induction, Mol. Gen. Genet. 148, 131–138 (1976).PubMedCrossRefGoogle Scholar
  12. 12.
    A. Levine, P. L. Moreau, S. G. Sedgwick, B. Sedgwick, R. Devoret, S. Adhya, M. Gottesman, and A. Das, Expression of a bacterial gene turned on by a potent carcinogen, Mutat. Res. 50, 29–35 (1978).PubMedCrossRefGoogle Scholar
  13. 13.
    P. L. Moreau, A. Bailone, and R. Devoret, Prophage A induction in Escherichia coli K12 ent A uvrB: A highly sensitive test for potential carcinogens, Proc. Natl. Acad. Sci. USA 73, 3700–3704 (1976).PubMedCrossRefGoogle Scholar
  14. 14.
    Z. Toman, C. Dambly, and M. Radman, Induction of a stable, heritable epigenetic change by mutagenic carcinogens: A new test system, in: Molecular and Cellular Aspects of Carcinogen Screening Tests (R. Montesano, H. Bartsch, and L. Tomatis,), IARC Scientific Publications No. 27, pp. 243–255, International Agency for Research on Cancer, Lyon France (1980).Google Scholar
  15. 15.
    R. K. Elespuru and M. B. Yarmolinsky, A colorimetric assay of lysogenic induction designed for screening potential carcinogenic and carcinostatic agents, Environ. Mutagenesis 1, 65–78 (1979).CrossRefGoogle Scholar
  16. 16.
    R. K. Elespuru, A biochemical phage induction assay for carcinogens, in: Short-Term Tests for Chemical Carcinogens (H. Stich and R. H. C. San,), Topics in Environmental Physiology and Medicine, pp. 1–1 1, Springer-Verlag, New York (1981).Google Scholar
  17. 17.
    J. McCann, E. Choi, E. Yamasaki, and B. N. Ames, Detection of carcinogens as mutagens in the Salmonella, microsome test: Assay of 300 chemicals, Proc. Natl. Acad. Sci. USA 72,5135–5139 (1975).Google Scholar
  18. 18.
    H. Bartsch, C. Malaveille, and R. Montesano, In vitro metabolism and microsome mediated mutagenicity of dialkylnitrosamines in rat, hamster and mouse tissues, Cancer Res. 35, 644–651 (1975).PubMedGoogle Scholar
  19. 19.
    M. J. Privai, V. D. King, and A. T. Sheldon, Jr., The mutagenicity of dialkyl nitrosoamines in the Salmonella plate assay, Environ. Mutagenesis 1, 95–104 (1979).Google Scholar
  20. 20.
    M. J. Prival and V. D. Mitchell, Influence of microsomal and cytosolic fractions from rat, mouse, and hamster liver on the mutagenicity of dimethylnitrosamine in the Salmonella plate incorporation assay, Cancer Res. 41, 4361–4367 (1981).PubMedGoogle Scholar
  21. 21.
    T. Yahagi, M. Nagao, Y. Seino, T. Matsushima, T. Sugimura, and M. Okada, Mutagenicities of N-nitrosamines on Salmonella, Mutat. Res. 48, 121–130 (1977).CrossRefGoogle Scholar
  22. 22.
    H. Bartsch, A. Camus, and C. Malaveille, Comparative mutagenicity of N-nitrosamines in a semi-solid and in a liquid incubation system in the presence of rat or human tissue fractions, Mutat. Res. 37, 149–162 (1976).PubMedCrossRefGoogle Scholar
  23. 23.
    W. Lijinsky and R. K. Elespuru, Mutagenicity and carcinogenicity of N-nitroso derivatives of carbamate insecticides, in: Environmental N-Nitroso Compounds, Analysis and Formation (E. A. Walker, P. Bogovski, and L. Griciute,), IARC Scientific Publications No. 14, pp. 425–428, International Agency for Research on Cancer, Lyon, France (1976).Google Scholar
  24. 24.
    T. A. Rince and S. Neale, A comparison of the mutagenic action of the methyl and ethyl derivatives of nitrosamides and nitrosamidines on Escherichia coli, Mutat. Res. 24, 383–387 (1974).Google Scholar
  25. 25.
    R. K. Elespuru and W. Lijinsky, Mutagenicity of cyclic nitrosamines in Escherichia coli following activation with rat liver microsomes, Cancer Res. 36, 4099–4101 (1976).PubMedGoogle Scholar
  26. 26.
    R. F. Gomez, M. Johnston, and A. J. Sinskey, Activation of nitrosomorpholine and nitrosopyrrolidine to bacterial mutagens, Mutat. Res. 24, 5–7 (1974).PubMedCrossRefGoogle Scholar
  27. 27.
    E. Zeiger and A. T. Sheldon, The mutagenicity of heterocyclic N-nitrosamines for Salmonella typhimurium, Mutat. Res. 57, 1–10 (1978).Google Scholar
  28. 28.
    W. Lijinsky and D. Schm?hl, Carcinogenesis by nitroso derivatives of methylcarbamate insecticides and other nitrosamides in rats and mice, in: Environmental Aspects of N-Nitroso Compounds (E. A. Walker, M. Castegnaro, R. E. Lyle, and L. Griciute,). IARC Scientific Publications No. 19, 495–501, International Agency for Research on Cancer, Lyon, France (1978).Google Scholar
  29. 29.
    R. K. Elespuru, Mutagenicity of nitrosocarbaryl and other methylating nitrosamides as related to uptake in Haemophilus influenzae, Environ. Mutagenesis I, 249–257 (1979).Google Scholar
  30. 30.
    W. Lijinsky and A. W. Andrews, The mutagenicity of nitrosamides in Salmonella typhimurium, Mutat. Res. 68, 1–8 (1979).Google Scholar
  31. 31.
    W. Lijinsky and C. Winter, Skin tumors induced by painting nitrosoalkylureas on mouse skin, Cancer Res. Clin. Oncology 102, 13–20 (1981).CrossRefGoogle Scholar
  32. 32.
    H. Druckrey, R. Preussmann, S. Ivankovic, and D. Schmahl, Organotrope carcinogene Wirkungen bei 65 verschiedenen N-nitroso-verbindungen an Bd-Ratten, Z. Krehsjorsch. 69, 103–201 (1967).CrossRefGoogle Scholar
  33. 33.
    W. Lijinsky and M. D. Reuber, Comparative carcinogenesis by some aliphatic nitrosamines in Fischer rats, Cancer Lett. 14, 297–302 (1981).PubMedCrossRefGoogle Scholar
  34. 34.
    J. G. Farrelly, A new assay for the microsomal metabolism of nitrosamines, Cancer Res. 40, 3241–3244 (1980).PubMedGoogle Scholar
  35. 35.
    T. K. Rao, J. A. Young, W. Lijinsky, and J. L. Epler, Mutagenicity of aliphatic nitrosamines in Salmonella typhimurium, Mutat. Res. 66, 1–7 (1979).Google Scholar
  36. 36.
    A. W. Andrews and W. Lijinsky, The mutagenicity of 45 nitrosamines in Salmonella trphimurium, Teratogenesis, Mutagenesis and Carcinogenesis 1, 295–303 (1980).CrossRefGoogle Scholar
  37. 37.
    S. Y. Lee and J. B. Guttenplan, A correlation between mutagenic and carcinogenic potencies in a diverse group of N-nitrosamines: Determination of mutagenic activities of weakly mutagenic N-nitrosamines, Carcinogenesis 2, 1339–1344 (1981).Google Scholar
  38. 38.
    T. K. Rao, B. E. Allen, W. Winton, W. Lijinsky, and J. L. Epler, N-nitrosamine induced mutagenesis in Escherichia coli K-12 (343.113): 1. Mutagenic properties of certain aliphatic nitrosamines, Mutat. Res. 89. 209–215 (1981).PubMedCrossRefGoogle Scholar
  39. 39.
    W. Lijinsky and H. W. Taylor, Carcinogenicity of methylated nitrosopiperidines, Int. J. Cancer 16, 318–322 (1975).PubMedCrossRefGoogle Scholar
  40. 40.
    T. K. Rao, A. A. Hardigree, J. A. Young, W. Lijinsky, and J. L. Epler, Mutagenicity of N-nitrosopiperidines with Salmonella , microsomal activation system, Mutai. Res. 56, 131–145 (1978).CrossRefGoogle Scholar
  41. 41.
    C. E. Nix, B. Brewen, R. Wilkerson, W. Lijinsky, and J. L. Epler, Effects of N-nitrosopiperidine substitutions on mutagenicity in Drosophila melanogaster, Mutat. Res. 67, 27–38 (1979).Google Scholar
  42. 42.
    F. W. Larimer, D. Ramey, W. Lijinsky, and J. L. Epler, Mutagenicity of methylated Nnitrosopiperidines in Saccharonirces cerevisiae, Mutai. Res. 57, 155–161 (1978).Google Scholar
  43. 43.
    W. Lijinsky and M. Reuber, Comparison of carcinogenesis by two isomers of nitroso-2, 6-dimethylmorpholine, Carcinogenesis 1, 501–503 (1980).PubMedCrossRefGoogle Scholar
  44. 44.
    M. S. Rao, D. G. Scarpelli, and W. Lijinsky, Carcinogenesis in Syrian hamsters by N-nitroso-2,6-dimethylmorpholine, its cis and trans isomers, and the effect of deuterium labeling, Carcinogenesis 2, 731–735 (1981).PubMedCrossRefGoogle Scholar
  45. 45.
    S. Kondo, H. Ichikawa, K. Iwo, and T. Kato, Base-change mutagenesis and prophage induction in strains of Escherichia coli with different DNA repair capacities, Genetics 66, 187–217 (1970).PubMedGoogle Scholar
  46. 46.
    Y. Ishii and S. Kondo, Comparative analysis of deletion and base change mutabilities of Escherichia coli B strains differing in DNA repair capacity (wild-type uvrA, polA, recA) by various mutagens, Mutai. Res. 27, 27–44 (1975).CrossRefGoogle Scholar
  47. 47.
    T. A. Hince and S. Neale, Physiological modification of alkylating-agent induced mutagenesis. L Effect of growth rate and repair capacity on nitrosomethylurea-induced mutation of Escherichia coil, Mutat. Res. 46, 1–10 (1977).Google Scholar
  48. 48.
    P. F. Sehendel, M. Defais, P. Jeggo. L. Samson, and J. Cairns, Pathways of mutagenesis and repair in Escherichia coli exposed to low levels of simple alkylating agents, J. Bacteriol. 135. 466–475 (1978).Google Scholar
  49. 49.
    P. D. Lawley, Some chemical aspects of dose-response relationships in alkylation mutagenesis, Mutat. Res. 23, 283 (1974).PubMedCrossRefGoogle Scholar
  50. 50.
    J. W. Drake and R. H. Baltz, The biochemistry of mutagenesis, Ann. Rey. Biochem. 45, I 1–37 (1976).Google Scholar
  51. 51.
    M. Radman, G. Villani, S. Boiteux, M. Defais, P. Callet-Fauquet. and P. Spadari. On the mechanism and control of mutagenesis due to carcinogenic mutagens, in: Origins of Human Cancer(J. P. Watson and H. Hiatt,), pp. 903–922, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York (1977).Google Scholar
  52. 52.
    A. Loveless, Possible relevance of Os alkylation of deoxyguanosine to the mutagenicity and carcinogenicity of nitrosamines and nitrosamides, Nature (London) 223, 206–207 (1969).CrossRefGoogle Scholar
  53. 53.
    B. A. Bridges, R. P. Mottershead, M. H. L. Green, and W. J. H. Gray, Mutagenicity of dichlorvos and methyl methanesulphonate for Escherichia coli WP2 and some derivatives deficient in DNA repair, Mutat. Res. 19, 295–303 (1973).PubMedCrossRefGoogle Scholar
  54. 54.
    C. Coulondre and J. H. Miller, Genetic studies of the lac repressor. IV. Mutagenic specificity in the ail gene of Escherichia coli, J. Mol. Biol. 117, 577–606 (1977).Google Scholar
  55. 55.
    P. F. Schendel and P. E. Robbins, Repair of 06-methylguanine in adapted Escherichia coli, Proc. Nat. Acad. Sci. USA 75, 6017–6020 (1978).CrossRefGoogle Scholar
  56. 56.
    P. Jeggo, M. Defais, L. Samson, and P. Schendel, An adaptive response of E. coli to low levels of alkylating agents: Comparison with previously characterized DNA repair pathways, Mol. Gen. Genet. 157, 1–9 (1977).PubMedCrossRefGoogle Scholar
  57. 57.
    P. Jeggo, Isolation and characterization of Escherichia coli K l2 mutants unable to induce the adaptive response to simple alkylating agents, J. Bacteriol. 139, 783–791 (1979).PubMedGoogle Scholar
  58. 58.
    J. Cairns, P. Robbins, B. Sedgwick, and P. Talmud, Inducible repair of alkylated DNA, Prog. Nucleic Acid Res. Mol. Biol. 26. 237–243 (1981).PubMedCrossRefGoogle Scholar
  59. 59.
    P. Karran, T. Hjelmgren, and T. Lindahl, Induction of a DNA glycosylase for N-methylated purines is part of the adaptive response to alkylating agents. Nature 296. 770–773 (1982).PubMedCrossRefGoogle Scholar
  60. 60.
    I. G. Evensen and F. Seebert, Adaptation to alkylation resistance invokes the induction of a DNA glycosylase, Nature 296, 773–775 (1982).CrossRefGoogle Scholar
  61. 61.
    P. Moreau and R. Devoret, Potential carcinogens tested by induction and mutagenesis of prophage A in Escherichia coli KI2, in: Origins of Human Cancer (H. H. Hiatt, J. D. Watson, and J. A. Winsten,), Vol. B, pp. 1451–1472, Cold Spring Harbor Laboratory. Cold Spring Harbor. New York (1978).Google Scholar
  62. 62.
    B. Singer, The chemical effects of nucleic acid alkylation and their relation to mutagenesis and carcinogenesis, Prog. Nucleic Acid Res. Mol. Biol. 15, 219–284 (1975).PubMedCrossRefGoogle Scholar
  63. 63.
    A. E. Pegg, Formation and metabolism of alkylated nucleosides: Possible role in carcinogenesis by nitroso compounds and alkylating agents, in: Advances in Cancer Research, Vol. 25 (G. Klein and S. Weinhouse,), pp. 195–269, Academic Press, London (1977).Google Scholar
  64. 64.
    B. Strauss, D. Scudiero, and E. Henderson, The nature of the alkylation lesion in mammalian cells, in: Molecular Mechanisms for Repair of DNA (P. C. Hanawalt and R. B. Setlow,), Part A, pp. 13–24, Plenum Press, New York (1974).Google Scholar
  65. 65.
    P. Jeggo, Isolation and characterization of Escherichia coli K12 mutants unable to induce the adaptive response to simple alkylating agents, J. Bacteriol. 139, 783–791 (1979).PubMedGoogle Scholar
  66. 66.
    P. Jeggo, M. Defais, L. Samson, and P. Schendel, The adaptive response of E. coli to low levels of alkylating agent: The role of polA in killing adaptation, Mol. Gen. Genet. 162, 299–305.Google Scholar
  67. 67.
    M. Blanco and L. Pomes, Prophage induction in Escherichia coli K12 cells deficient in DNA polymerase I, Mol. Gen. Genet. 154, 287–292 (1977).PubMedCrossRefGoogle Scholar
  68. 68.
    A. O. Olson and K. M. Baird, Single-strand breaks in Escherichia coli DNA caused by treatment with nitrosoguanidine, Biochim. Biophys. Acta 79, 513–514 (1969).Google Scholar
  69. 69.
    R. F. Kimball, M. Liu. and J. K. Setlow, Effects of posttreatment on single-strand breaks in DNA of Haemophilus influenae exposed to nitrosoguanidine and methyl methanesulphonate, Mutat. Res. 13, 289–295 (1971).PubMedCrossRefGoogle Scholar
  70. 70.
    B. W. Stewart and E. Farber, Strand breakage in rat liver DNA and its repair following administration of cyclic nitrosamines, Cancer Res. 33, 3209–3215 (1973).PubMedGoogle Scholar
  71. 71.
    H. S. Rosenkranz. S. Rosenkranz, and R. M. Schmidt, Effects of nitrosomethylurea and nitrosomethylurethan on the physical chemical properties of DNA, Biochim. Biophrs. Acta 195, 262–265 (1969).Google Scholar
  72. 72.
    R. F. Kimball, J. K. Setlow, and M. Liu, The mutagenic and lethal effects of monofunctional methylating agents in strains of Haemophilus influenzae defective in repair processes, Mutat. Res. 12, 21–28 (1971).PubMedCrossRefGoogle Scholar
  73. 73.
    J. J. Donch and J. Greenberg, The effect of lex on UV sensitivity, filament formation and A induction in Ion mutants of Escherichia coli, Mol. Gen. Genet. 128, 277 (1974).Google Scholar
  74. 74.
    W. Warren and P. D. Lawley, The removal of alkylation products from the DNA of Escherichia coli cells treated with the carcinogens N-ethyl-N-nitrosourea and N-methyl-N-nitrosourea: Influence of growth conditions and DNA repair defects, Carcinogenesis 1, 67–78 (1980).PubMedCrossRefGoogle Scholar
  75. 75.
    R. C. Garner, C. Pickering, and C. N. Martin, Mutagenicity of methyl-, ethyl-, propyl-and butylnitrosourea towards Escherichia coli WP2 strains with varying DNA repair capabilities, Chem. Biol. Interact. 26, 197–205 (1979).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Rosalie K. Elespuru
    • 1
  1. 1.Biological Carcinogenesis ProgramNCI-Frederick Cancer Research FacilityFrederickUSA

Personalised recommendations