Advertisement

Genetic Dissection of the Assembly of Microtubules and Their Role in Mitosis

  • Fernando Cabral

Abstract

Mitosis is a phenomenon which has intrigued biologists ever since Flemming first observed dividing cells under the microscope in 1879. Since then, a good deal has been learned about the events in mitosis and the structures which are involved. For example, we know that in mammalian cells, mitosis generally begins with a change in the morphology of the cell to a more rounded configuration. At the same time, spindle microtubules start to form at the spindle poles and the chromosomes begin to condense. As the nuclear membrane disappears, the chromosomes become attached to the spindle poles through their kinetochore to pole microtubules. Then, in rapid succession, chromosomes align on the metaphase plate, sister chromatids on each chromosome migrate to opposite poles of the spindle, and the spindle itself begins to elongate. Next, a cleavage furrow, created by contractile actin-myosin filaments, forms between the spindle poles and constricts the cytoplasm capturing the interpolar microtubules in a midbody and creating two daughter cells. As the cells exit mitosis and re-enter the G1 portion of the cell cycle, the nuclear membrane reforms, the chromosomes decondense, and cytoplasmic microtubules reform.

Keywords

Aspergillus Nidulans Spindle Pole Spindle Assembly Microtubule Assembly Permissive Temperature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aubin, J. E., Tolson, N., and Ling, V., 1980, The redistribution of fluoresceinated concanavalin A in Chinese hamster ovary cells and in their colecmid-resistant mutants, Exp. Cell Res. 126: 75.PubMedCrossRefGoogle Scholar
  2. Bech-Hansen, N. T., Till, J. E., and Ling, V., 1976, Pleiotropic phenotype of colchicine-resistant CHO cells: Cross-resistance and collateral sensitivity, J. Cell. Physiol. 88: 23.PubMedCrossRefGoogle Scholar
  3. Ben-Ze’ev, A., Farmer, S. R., and Penman, S., 1979, Mechanisms of regulating tubulin synthesis in cultured mammalian cells, Cell 17: 319.PubMedCrossRefGoogle Scholar
  4. Bibring, T., and Baxandall, J., 1977, Tubulin synthesis in sea urchin embryos: Almost all tubulin of the first cleavage mitotic apparatus derives from the unfertilized egg, Den. Biol. 55: 191.CrossRefGoogle Scholar
  5. Brinkley, B. R., and Cartwright, J., 1975, Cold-labile and cold stable microtubules in the mitotic spindle of mammalian cells, Ann. N.Y. Acad. Sci. 253: 428.PubMedCrossRefGoogle Scholar
  6. Brinkley, B. R., and Stubblefield, E., 1970, Ultrastructure and interaction of the kinetochore and centriole in mitosis and meiosis, in: Advances in Cell Biology, Vol. 1 ( D. M. Prescott and L. E. McConkey, eds.), pp. 119–185, Appleton-Century Crofts, New York.Google Scholar
  7. Brinkley, B. R., Fistel, S. H., Marcum, J. M., and Pardue, R. L., 1980, Microtubules in cultured cells: Indirect immunofluorescent staining with tubulin antibody, Int. Rev. Cytol. 63: 59.PubMedCrossRefGoogle Scholar
  8. Cabral, F., 1983, The isolation of CHO mutants requiring the continuous presence of taxol for cell division, J. Cell Biol. 97: 22.PubMedCrossRefGoogle Scholar
  9. Cabral, F., Sobel, M., and Gottesman, M. M., 1980, CHO mutants resistant to colchicine, colcemid, or griseofulvin have an altered ß-tubulin, Cell 20: 29.PubMedCrossRefGoogle Scholar
  10. Cabral, F., Abraham, I., and Gottesman, M. M., 1981, Isolation of a taxol-resistant Chinese hamster ovary cell mutant that has an alteration in a-tubulin, Proc. Natl. Acad. Sci. USA 78: 4388.PubMedCrossRefPubMedCentralGoogle Scholar
  11. Cabral, F., Abraham, I., and Gottesman, M. M., 1982, Revertants of a CHO mutant with an altered 13-tubulin: Evidence that the altered tubulin confers both colcemid resistance and temperature sensitivity on the cell, Mol. Cell Biol. 2: 720.PubMedPubMedCentralGoogle Scholar
  12. Cabral, F., Wible, L., Brenner, S., and Brinkley, B. R., 1983, A taxol requiring mutant of CHO cells with impaired mitotic spindle assembly, J. Cell Biol. 97: 30.PubMedCrossRefGoogle Scholar
  13. Cleveland, D. W., Lopata, M. A., Sherline, P., and Kirschner, M. W., 1981, Unpolymerized tubulin modulates the level of tubulin mRNAs, Cell 25: 537.PubMedCrossRefGoogle Scholar
  14. Conrad, G. W., and Rappaport, R., 1981, Mechanisms of cytokinesis in animal cells, in: MitosislCytokinesis ( A. Zimmerman and A. Forer, eds.), pp. 365–396, Academic Press, New York.CrossRefGoogle Scholar
  15. Crossin, K. L., and Carney, D. H., 1981, Evidence that microtubule depolymerization early in the cell cycle is sufficient to initiate DNA synthesis, Cell 23: 61.PubMedCrossRefGoogle Scholar
  16. Dustin, P., 1978, Microtubules, Springer-Verlag, Berlin.CrossRefGoogle Scholar
  17. Flavin, M., and Slaughter, C., 1974, Microtubule assembly and function in Chlamydomonas: Inhibition of growth and flagellar regeneration by antitubulins and other drugs and isolation of resistant mutants, J. Bacteriol. 118: 59.PubMedPubMedCentralGoogle Scholar
  18. Fulton, C., and Simpson, P. A., 1979, Tubulin pools, synthesis, and utilization, in: Microtubules ( K. Roberts and J. S. Hyams, eds.), pp. 117–174, Academic Press, New York.Google Scholar
  19. Fuller, G. M., Brinkley, B. R., and Boughter, J. M., 1975, Immunofluorescence of mitotic spin-dles by using monospecific antibody against bovine brain tubulin, Science 187: 948.PubMedCrossRefGoogle Scholar
  20. Garland, D. L., 1978, Kinetics and mechanism of colchicine binding to tubulin: Evidence for ligand-induced conformational change, Biochemistry 17: 4266.PubMedCrossRefGoogle Scholar
  21. Gupta, R. S., 1981, Resistance to the microtubule inhibitor podophyllotoxin: Selection and partial characterization of mutants in CHO cells, Somat. Cell Genet. 7: 59.PubMedCrossRefGoogle Scholar
  22. Gupta, R. S., Ho, T. K. W., Moffat, M. R. K., and Gupta, R., 1982, Podophyllotoxin-resistant mutants of Chinese hamster ovary cells, J. Biol. Chem. 257: 1071.Google Scholar
  23. Hartwell, L. H., 1978, Cell division from a genetic perspective, J. Cell Biol. 77: 627.PubMedCrossRefGoogle Scholar
  24. Hatzfeld, J., and Buttin, G., 1975, Temperature-sensitive cell cycle mutants: A Chinese hamster cell line with a reversible block in cytokinesis, Cell 5: 123.PubMedCrossRefGoogle Scholar
  25. Hiramoto, Y., 1971, Analysis of cleavage stimulus by means of micromanipulation of sea urchin eggs, Exp. Cell Res. 68: 291.PubMedCrossRefGoogle Scholar
  26. Huang, B., Piperno, G., Ramanis, Z., and Luck, D. J. L., 1981, Radial spokes of Chlamydomonas flagella: Genetic analysis of assembly and function, J. Cell Biol. 88: 80.PubMedCrossRefGoogle Scholar
  27. Huang, B., Ramanis, Z., and Luck, D. J. L., 1982, Suppressor mutations in Chlamydomonas reveal a regulatory mechanisms for flagellar function, Cell 28: 115.PubMedCrossRefGoogle Scholar
  28. Inoue, S., 1981, Cell division and the mitotic spindle, J. Cell Biol. 91: 131s.PubMedCrossRefGoogle Scholar
  29. Izant, J. G., Weatherbee, J. A., and McIntosh, J. R., 1982, A microtubule-associated protein in the mitotic spindle and the interphase nucleus, Nature (London) 295: 248.CrossRefGoogle Scholar
  30. Kemphues, K. J., Raff, R. A., Kaufman, T. C., and Raff, E. C., 1979, Mutation in a structural gene for a I3-tubulin specific to testes in Drosophila melanogaster, Proc. Natl.. Acad. Sci. USA 76: 3991.PubMedCrossRefPubMedCentralGoogle Scholar
  31. Kemphues, K. J., Raff, E. C., Raff, R. A., and Kaufman, T. C., 1980, Mutation in a testis-specific r3-tubulin in Drosophila: Analysis of its effects on meiosis and map location of the gene, Cell 21: 445.PubMedCrossRefGoogle Scholar
  32. Ling, V., 1981, Mutations as an investigative tool in mammalian cells, in: Mitosis/Cytokinesis ( A. M. Zimmerman, and A. Forer, eds.), pp. 197–209, Academic Press, New York.CrossRefGoogle Scholar
  33. Ling, V., and Thompson, L. H., 1974, Reduced permeability in CHO cells as a mechanism of resistance to colchicine, J. Cell Physiol. 83: 103.PubMedCrossRefGoogle Scholar
  34. Ling, V., Aubin, J. E., Chase, A., and Sarangi, F., 1979, Mutants of Chinese hamster ovary (CHO) cells with altered colcemid-binding affinity, Cell 18: 423.PubMedCrossRefGoogle Scholar
  35. Luduena, R. F., 1979, Biochemistry of tubulin, in: Microtubules ( K. Roberts and J. S. Hyams, eds.), pp. 65–116, Academic Press, New York.Google Scholar
  36. Lydersen, B. K., and Pettijohn, D. E., 1980, Human-specific nuclear protein that associates with the polar region of the mitotic apparatus: Distribution in a human/hamster hybrid cell, Cell 22: 489.PubMedCrossRefGoogle Scholar
  37. Manfredi, J. J., Parness, J., and Horwitz, S. B., 1981, Taxol binds to cellular microtubules, J. Cell Biol. 94: 688.CrossRefGoogle Scholar
  38. Margolis, R. L., and Wilson, L., 1977, Addition of colchicine-tubulin complex to microtubule ends: The mechanism of substoichiometric colchicine poisoning, Proc. Natl. Acad. Sci. USA 74: 3466.PubMedCrossRefPubMedCentralGoogle Scholar
  39. McCarty, G. A., Valencia, D. W., Fritzler, M. J., and Barada, F. A., 1981, A unique antinuclear antibody staining only the mitotic-spindle apparatus, N. Eng. J. Med. 305: 703.CrossRefGoogle Scholar
  40. McIntosh, J. R., 1979, Cell division, in: Microtubules, ( K. Roberts and J. S. Hyams, eds.), pp. 381–441, Academic Press, New York.Google Scholar
  41. Morris, N. R., 1980, Chromosome structure and the molecular biology of mitosis in eukaryotic micro-organisms, in: The Eukaryotic Microbial Cell ( G. W. Gooday, D. Loyd, and A. P. J. Trinci, eds.), pp. 41–76, Cambridge University Press, New York.Google Scholar
  42. Morris, N. R., Lai, M. H., and Oakley, C. E., 1979, Identification of a gene for et-tubulin in Aspergillus nidulans, Cell 16: 437.PubMedCrossRefGoogle Scholar
  43. Oakley, B. R., 1981, Mitotic mutants, in: Mitosis/Cytokinesis ( A. M. Zimmerman and A. Forer, eds.), pp. 181–196, Academic Press, New York.CrossRefGoogle Scholar
  44. Oakley, B. R., and Morris, N. R., 1980, Nuclear movement is 3-tubulin dependent in Aspergillus nidulans, Cell 19:255.Google Scholar
  45. Oakley, B. R., and Morris, N. R., 1981, A (3-tubulin mutation in Aspergillus nidulans that blocks microtubule function without blocking assembly, Cell 24: 837.PubMedCrossRefGoogle Scholar
  46. Peterson, S. P., and Berns, M. W., 1980, The centriolar complex, Int. Rev. Cytol. 64: 81.PubMedCrossRefGoogle Scholar
  47. Pickett-Heaps, J. D., Tippit, D. H., and Porter, K. R., 1982, Rethinking mitosis, Cell 29: 729.PubMedCrossRefGoogle Scholar
  48. Pipeleers, D. G., Pipeleers-Marichal, M. A., Sherline, P., and Kipnis, D. M., 1977, A sensitive method for measuring polymerized and depolymerized forms of tubulin in tissues, J. Cell Biol. 74: 341.PubMedCrossRefGoogle Scholar
  49. Puck, T. T., Ciecuira, S. J., and Robinson, A., 1958, Genetics of somatic mammalian cells III. long-term cultivation of euploid cells from human and animal subjects, J. Exp. Med. 108: 945.PubMedCrossRefPubMedCentralGoogle Scholar
  50. Rappaport, R., 1971, Cytokinesis in animal cells, Int. Rev. Cytol. 31: 169.PubMedCrossRefGoogle Scholar
  51. Roobol, A., Gull, K., and Pogson, C. I., 1977, Evidence that griseofulvin binds to a microtubule associated protein, FEBS Lett. 75: 149.PubMedCrossRefGoogle Scholar
  52. Roos, U. P., 1973, Light and electron microscopy of PtK2 cells in mitosis. II. kinetochore structure and function, Chromosoma 41: 195.PubMedCrossRefGoogle Scholar
  53. Sato, C. H., 1976, A conditional cell division mutant of Chlamydomonas reinhardi i having an increased level of colchicine resistance, Exp. Cell Res. 101: 251.PubMedCrossRefGoogle Scholar
  54. Schiff, P. B., and Horwitz, S. B., 1980, Taxol stabilizes microtubules in mouse fibroblastic cells, Proc. Natl. Acad. Sci. USA 77:1561.Google Scholar
  55. Schiff, P. B., Fant, J., and Horwitz, S. B., 1979, Promotion of microtubule assembly in vitro by taxol, Nature (London) 277: 665.Google Scholar
  56. Schrader, F., 1953, Mitosis. The Movements of Chromosomes in Cell Division, Columbia University Press, New York.Google Scholar
  57. Sheir-Neiss, G., Lai, M. H., and Morris, N. R., 1978, Identification of a gene for 3-tubulin in Aspergillus nidulans, Cell 15: 639.PubMedCrossRefGoogle Scholar
  58. Shelanski, M. L., and Taylor, E. W., 1967, Isolation of a protein subunit from microtubules, J. Cell Biol. 34: 549.PubMedCrossRefPubMedCentralGoogle Scholar
  59. Shiomi, T., and Sato, K., 1976, A temperature-sensitive mutant defective in mitosis and cytokinesis, Exp. Cell Res. 100: 297.PubMedCrossRefGoogle Scholar
  60. Siminovitch, L., 1976, On the nature of hereditable variation in cultured somatic cells, Cell 7:1.Google Scholar
  61. Smith, B. J., and Wigglesworth, N. M., 1972, A cell line which is temperature-sensitive for cytokinesis, J. Cell. Physiol. 80: 253.PubMedCrossRefGoogle Scholar
  62. Stanners, C. P., 1978, Characterization of temperature-sensitive mutants of animal cells, J. Cell. Physiol. 95: 407.PubMedCrossRefGoogle Scholar
  63. Sternlicht, H., and Ringel, I., 1979, Colchicine inhibition of microtubule assembly via copolymer formation, J . Biol. Chem. 254: 10540.PubMedGoogle Scholar
  64. Sternlicht, H., Ringel, I., and Szasz, J., 1980, The co-polymerization of tubulin and tubulincolchicine complex in the absence and presence of associated proteins, J. Biol. Chem. 255: 9138.PubMedGoogle Scholar
  65. Thompson, L. H., and Lindl, P. A., 1976, A CHO-cell mutant with a defect in cytokinesis, Somat. Cell Genet. 2: 387.CrossRefGoogle Scholar
  66. Wang, R. J., 1974, Temperature-sensitive mammalian cell line blocked in mitosis, Nature (London) 248: 76.Google Scholar
  67. Wang, R. J., 1976, A novel temperature-sensitive mammalian cell line exhibiting defective prophase progression, Cell 8: 257.PubMedCrossRefGoogle Scholar
  68. Wang, R. J., and Yin, L., 1976, Further studies on a mutant mammalian cell line defective in mitosis, Exp. Cell Res. 101: 331.PubMedCrossRefGoogle Scholar
  69. Warr, J. R., and Gibbons, D., 1974, Further studies on colchicine-resistant mutants of Chlamydomonas reinhardi, Exp. Cell Res. 85: 117.PubMedCrossRefGoogle Scholar
  70. Warr, J. R., Flanagan, D. J., and Anderson, M., 1982, Mutants of Chinese hamster ovary cells with altered sensitivity to taxol and benzimidazole carbamates, Cell Biol. Int. Rep. 6: 455.PubMedCrossRefGoogle Scholar
  71. Weber, K., and Osborn, M., 1979, Intracellular display of microtubular structures revealed in indirect immunofluorescence microscopy, in: Microtubules ( K. Roberts and J. S. Hyams, eds.), pp. 279–313, Academic Press, New York.Google Scholar
  72. Weber, K., Bibring, Th., and Osborn, M., 1975, Specific visualization of tubulin-containing structures in tissue culture cells by immunofluorescence. Cytoplasmic microtubules, vinblastine-induced paracrystals, and mitotic figures, Exp. Cell Res. 95: 111.PubMedCrossRefGoogle Scholar
  73. Welsh, M. J., Dedman, J. R., Brinkley, B. R., and Means, A. R., 1978, Calcium-dependent regulator protein: Localization in the mitotic apparatus of eukaryotic cells, Proc. Natl. Acad. Sci. USA 75: 1867.PubMedCrossRefPubMedCentralGoogle Scholar
  74. Wilson, E. B., 1925, The Cell in Development and Heredity, MacMillan, New York.Google Scholar
  75. Witman, G. B., Plummer, J., and Sander, G., 1978, Chlamydomonas flagellar mutants lacking radial spokes and central tubules. Structure, composition, and function of specific axonemal com-ponents, J. Cell Biol. 76: 729.PubMedCrossRefGoogle Scholar
  76. Zieve, G., and Solomon, F., 1982, Proteins specifically associated with the microtubules of the mammalian mitotic spindle, Cell 28: 233.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Fernando Cabral
    • 1
  1. 1.Departments of Medicine and of Biochemistry and Molecular BiologyUniversity of Texas Medical School at HoustonHoustonUSA

Personalised recommendations