Advertisement

MAP2 (Microtubule-Associated Protein 2)

  • Richard B. Vallee

Abstract

Microtubules are known to play a role in a wide variety of cellular processes. The major component of these structures is tubulin, a globular protein that makes up the microtubule wall. With the introduction of procedures for purifying microtubules (Weisenberg, 1972) it soon became clear that they contained a number of proteins in addition to tubulin (Borisy et al., 1975; Sloboda et al., 1975; Weingarten et al., 1975). These proteins have been referred to by the acronym MAPs, or microtubule-associated proteins (Sloboda et al., 1975). At least some of these proteins represent fine filamentous projections regularly arranged on the microtubule surface (Murphy and Borisy, 1975; Dentler et al., 1975). This suggests that the MAPs are involved in mediating the interaction of microtubules with other components of the cell, while tubulin itself makes up the structural backbone of the microtubule. In this view, understanding the MAPs may ultimately provide answers to two key questions regarding how cells work. What precisely do microtubules do in cells, and how do they do it?

Keywords

Microtubule Assembly Microtubule Binding Tubulin Dimer Microtubule Protein Tubulin Subunit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aamodt, E., and Williams, R. C. Jr., 1983, MAPs mediate association of microtubules and neurofilaments in vitro, Biophys. J. 41: 86a.Google Scholar
  2. Amos, L. A., 1977, Arrangement of high molecular weight associated proteins on purified mammalian brain microtubules, J. Cell Biol. 72: 642–654.PubMedCrossRefGoogle Scholar
  3. Berkowitz, S. A., Katagiri, J., Binder, H.-K., and Williams, R. C. Jr., 1977, Separation and characterization of microtubule proteins from calf brain, Biochemistry 16: 5610–5617.PubMedCrossRefGoogle Scholar
  4. Bloom, G. S., and Vallee, R. B., 1983, Association of MAP2 with microtubules and intermediate filaments in cultured brain cells, J. Cell Biol. 96: 1523–1531.PubMedCrossRefGoogle Scholar
  5. Borisy, G. G., Marcum, J. M., Olmsted, J. B., Murphy, D. B., and Johnson, K. A., 1975, Purification of tubulin and associated high molecular weight proteins from porcine brain and characterization of microtubule assembly in vitro, Ann. N.Y. Acad. Sci. 253: 107–132.PubMedCrossRefGoogle Scholar
  6. Bulinski, J. C., and Borisy, G. G., 1979, Self-assembly of microtubules in extracts of cultured HeLa cells and the identification of HeLa microtubule-associated proteins, Proc. Natl. Acad. Sci. USA 76: 293–297.PubMedCrossRefPubMedCentralGoogle Scholar
  7. Bulinski, J. C., and Borisy, G. G., 1980, Microtubule-associated proteins from cultured HeLa cells, J. Biol. Chem. 255: 11570–11576.PubMedGoogle Scholar
  8. Burke, B. E., and DeLorenzo, R. J., 1981, Cat+- and calmodulin-stimulated endogenous phosphorylation of neurotubulin, Proc. Natl. Acad. Sci. USA 78: 991–995.PubMedCrossRefPubMedCentralGoogle Scholar
  9. Chalfie, M., and Thomson, J. N., 1979, Organization of neuronal microtubules in the nematode Caenorhabditis elegans, J. Cell Biol. 82: 278–289.PubMedCrossRefGoogle Scholar
  10. Cleveland, D. W., Hwo, S.-Y., and Kirschner, M. W., 1977a, Purification of tau, a microtubuleassociated protein that induces assembly of microtubules from purified tubulin, J. Mol. Biol. 116: 207–225.PubMedCrossRefGoogle Scholar
  11. Cleveland, D. W., Hwo, S.-Y., and Kirschner, M. W., 1977b, Physical and chemical properties of purified tau factor and the role in microtubule assembly, J. Mol. Biol. 116:227–247.Google Scholar
  12. Cohen, C., Caspar, D. L. D., Johnson, J. P., Nauss, K., Margossian, S. S., and Parry, D. A. D., 1972, Tropomyosin-troponin assembly, CSHSQB 37: 287–297.Google Scholar
  13. Dentier, W. L., Granett, S., and Rosenbaum, J. L., 1975, Ultrastructural localization of the high molecular weight proteins associated with in vitro assembled brain microtubules, J. Cell Biol. 65: 237–241.CrossRefGoogle Scholar
  14. Duerr, A., Pallas, D., and Solomon, F., 1981, Molecular analysis of cytoplasmic microtubules in situ: Identification of both widespread and specific proteins, Cell 24: 203–211.PubMedCrossRefGoogle Scholar
  15. Eipper, B. A., 1974, Properties of rat brain tubulin, J. Biol. Chem. 249: 1407–1416.PubMedGoogle Scholar
  16. Ellisman, M. H., and Porter, K. R., 1980, Microtrabecular structure of the axoplasmic matrix: Visualization of cross-linking structures and their distribution, J. Cell Biol. 87: 464–479.PubMedCrossRefGoogle Scholar
  17. Fellous, A., Francon, J., Lennon, A. M., and Nunez, J., 1977, Microtubule assembly in vitro, Eur. J. Biochem. 78: 167–174.PubMedCrossRefGoogle Scholar
  18. Gould, R. R., and Borisy, G. G., 1977, The pericentriolar material in Chinese hamster ovary cells nucleates microtubule formation, J. Cell Biol. 73: 601–615.PubMedCrossRefPubMedCentralGoogle Scholar
  19. Griffith, L. M., and Pollard, T. D., 1978, Evidence for actin filament-microtubule interaction mediated by microtubule-associated proteins, J. Cell Biol. 78: 958–965.PubMedCrossRefGoogle Scholar
  20. Griffith, L. M., and Pollard, T. D., 1982, The interaction of actin filaments with microtubules and microtubule-associated proteins, J. Biol. Chem. 257: 9143–9151.PubMedGoogle Scholar
  21. Herzog, W., and Weber, K., 1978, Fractionation of brain microtubule-associated proteins, Eur. J. Biochem. 92: 1–8.PubMedCrossRefGoogle Scholar
  22. Hirokawa, N., 1982, Cross-linker system between neurofilaments, microtubules, and membranous organelles in frog axons revealed by the quick-freeze, deep-etching method, J. Cell Biol. 94: 129–142.PubMedCrossRefPubMedCentralGoogle Scholar
  23. Hodges, R. S., Sodek, J., Smillie, L. B., and Jurasek, L., 1972, Tropomyosin: Amino acid sequence and coiled-coil structure, CSHSQB 37: 299–310.Google Scholar
  24. Izant, J. G., and McIntosh, R., 1980, Microtubule-associated proteins: A monoclonal antibody to MAP2 binds to differentiated neurons, Proc. Natl. Acad. Sci. USA 77: 4741–4745.PubMedCrossRefPubMedCentralGoogle Scholar
  25. Jameson, L., and Caplow, M., 1981, Modification of microtubule steady-state dynamics by phosphorylation of the microtubule-associated proteins, Proc. Natl. Acad. Sci. USA 78: 3413–3417.PubMedCrossRefPubMedCentralGoogle Scholar
  26. Jameson, L., Frey, T., Zeeberg, B., Dalldorf, F., and Caplow, M., 1980, Inhibition of microtubule assembly by phosphorylation of microtubule-associated proteins, Biochemistry 19: 2472–2479.PubMedCrossRefGoogle Scholar
  27. Kim, H., Binder, L., and Rosenbaum, J. L., 1979, The periodic association of MAP2 with brain microtubules in vitro, J. Cell Biol. 80: 266–276.PubMedCrossRefGoogle Scholar
  28. Kuznetsov, S. A., Rodionov, V. I., Bershadsky, A. D., Gelfand, V. I., and Rosenblat, V. A., 1980, High molecular weight protein MAP2 promoting microtubule assembly in vitro is associated with microtubules in cells, Cell Biol. Int. Rep. 4: 1017–1024.PubMedCrossRefGoogle Scholar
  29. Leterrier, J.-F., Liem, R. K. H., and Shelanski, M. C., 1982, Interactions between neurofilaments and microtubule-associated proteins: A possible mechanism for intraorganellar bridging, J. Cell Biol. 95: 982–986.PubMedCrossRefGoogle Scholar
  30. Luduena, R. F., Fellous, A., Francon, J., Nunez, J., and McManus, L., 1981, Effect of tau on the vinblastine-induced aggregation of tubulin, J. Cell Biol. 89: 680–683.PubMedCrossRefGoogle Scholar
  31. Margolis, R. L., and Rauch, C. T., 1981, Characterization of rat brain crude extract microtubule assembly: Correlation of cold stability with the phosphorylation state of a microtubule associated 64K protein, Biochemistry 20: 4451–4458.PubMedCrossRefGoogle Scholar
  32. Margolis, R. L., and Wilson, L., 1979, Regulation of the microtubule steady state in vitro by ATP, Cell 18: 673–679.PubMedCrossRefGoogle Scholar
  33. Matus, A., Bernhardt, R., and Hugh-Jones, T., 1981, High molecular weight microtubule-associated proteins are preferentially associated with dendritic microtubules in brain, Proc. Natl. Acad. Sci. USA 78: 3010–3014.PubMedCrossRefPubMedCentralGoogle Scholar
  34. McIntosh, J. R., 1974, Bridges between microtubules, J. Cell Biol. 61: 166–187.PubMedCrossRefPubMedCentralGoogle Scholar
  35. Miller, P., Walter, U., Theurkauf, W. E., Vallee, R. B., and DeCamilli, P., 1982, Frozen tissue sections as an experimental system to reveal specific binding sites for the regulatory subunit of type II cAMP-dependent protein kinase in neurons, Proc. Natl. Acad. Sci. USA 79: 5562–5566.PubMedCrossRefPubMedCentralGoogle Scholar
  36. Murphy, D. B., and Borisy, G. G., 1975, Association of high-molecular-weight proteins with microtubules and their role in microtubule assembly in vitro, Proc. Natl. Acad. Sci. USA 72: 2696–2700.PubMedCrossRefPubMedCentralGoogle Scholar
  37. Murphy, D. B., Vallee, R. B., and Borisy, G. G., 1977, Identity and polymerization-stimulatory activity of the non-tubulin proteins associated with microtubules, Biochemistry 16: 2598–2605.PubMedCrossRefGoogle Scholar
  38. Nishida, E., Kuwaki, T., and Sakai, H., 1981, Phosphorylation of microtubule-associated proteins (MAPs) and pH of the medium control interaction between MAPs and actin filaments, J. Biochem. (Tokyo) 90: 575–578.Google Scholar
  39. Olmsted, J. B., and Lyon, H. D., 1981, A microtubule-associated protein specific to differentiated neuroblastoma cells, J. Biol. Chem. 256: 3507–3511.PubMedGoogle Scholar
  40. Peloquin, J. G., and Borisy, G. G., 1979, Cell and tissue distribution of the major high molecular weight microtubule-associated protein from brain, J. Cell Biol. 83: 338a.CrossRefGoogle Scholar
  41. Peters, A., Palay, S. L., and Webster, H., deF., 1976, The Fine Structure of the Nervous System, W. B. Saunders, Philadelphia.Google Scholar
  42. Rangel-Aldao, R., Kupiec, J. W., and Rosen, O. M., 1979, Resolution of the phosphorylated and dephosphorylated cAMP-binding proteins of bovine cardiac muscle by affinity labeling and two-dimensional electrophoresis, J. Biol. Chem. 254: 2499–2508.PubMedGoogle Scholar
  43. Runge, M. S., El-Maghrabi, M. R., Claus, T. K., Pilkis, S. J., and Williams, R. C. Jr., 1981, A MAP2 stimulated protein kinase activity associated with neurofilaments, Biochemistry 20: 175–180.PubMedCrossRefGoogle Scholar
  44. Sattilaro, R. F., LeCluyse, E. L., and Dentier, W. L., 1980, Associations between microtubules and coated vesicles in vitro, J. Cell Biol. 87: 250a.Google Scholar
  45. Sattilaro, R. F., Dentier, W. L., and LeCluyse, E. L., 1981, Microtubule-associated proteins (MAPs) and the organization of actin filaments in vitro, J. Cell Biol. 90: 467–473.PubMedCrossRefGoogle Scholar
  46. Selden, S. C., and Pollard, T. D., 1982, Phosphorylation of microtubule-associated proteins (MAPs) regulates their interaction with actin filaments, J. Cell Biol. 95: 348a.Google Scholar
  47. Sherline, P., Lee, Y. C., and Jacobs, L. S., 1977, Binding of microtubules to pituitary secretory granules and secretory granule membranes, J. Cell Biol. 72: 380–389.PubMedCrossRefGoogle Scholar
  48. Sheterline, P., 1978, Localisation of the major high-molecular-weight protein on microtubules in vitro and in cultured cells, Exp. Cell Res. 115: 460–464.PubMedCrossRefGoogle Scholar
  49. Sheterline, P., 1980, Immunological-Characterisation of the microtubule-associated protein MAP2, FEBS Lett. 111: 167–170.CrossRefGoogle Scholar
  50. Sloboda, R. D., and Dickersin, K., 1980, Structure and composition of the cytoskeleton of nucleated erythrocytes I. The presence or microtubule associated protein 2 in the marginal band, J. Cell Biol. 87: 170–179.PubMedCrossRefGoogle Scholar
  51. Sloboda, R. D., and Rosenbaum, J. L., 1979, Decoration and stabilization of intact, smooth-walled microtubules with microtubule-associated protein, Biochemistry, 18: 48–55.PubMedCrossRefGoogle Scholar
  52. Sloboda, R. D., Rudolph, S. A., Rosenbaum, J. L., and Greengard, P., 1975, Cyclic AMP-dependent endogenous phosphorylation of a microtubule-associated protein, Proc. Natl. Acad. Sci. USA 72: 177–181.PubMedCrossRefPubMedCentralGoogle Scholar
  53. Smith, D. S., Jarlfors, U., and Cameron, B. G., 1975, Morphological evidence for the participation of microtubules in axonal transport, Ann. N.Y. Acad. Sci. 253: 472–506.PubMedCrossRefGoogle Scholar
  54. Theurkauf, W. E., and Vallee, R. B., 1982, Molecular characterization of the cAMP-dependent protein kinase bound to microtubule-associated protein 2, J. Biol. Chem. 257: 3284–3290.PubMedGoogle Scholar
  55. Theurkauf, W. E., and Vallee, R. B., 1983, Extensive cAMP dependent and cAMP independent phosphorylation of microtubule-associated protein 2, J. Biol. Chem. 258: 7883–7886.PubMedGoogle Scholar
  56. Valdivia, M. M., Avila, J., Coll, J., Colaco, C., and Sandoval, I., 1982, Quantitation and characterization of the microtubule associated MAP2 in procine tissues and its isolation from porcine (PK15) and human (HeLa) cell lines, Biochem. Biophys. Res. Commun. 105: 1241–1249.PubMedCrossRefGoogle Scholar
  57. Vallee, R. B., 1980a, Structure and phosphorylation of microtubule-associated protein 2 (MAP2), Proc. Natl. Acad. Sci. USA 77: 3206–3210.PubMedCrossRefPubMedCentralGoogle Scholar
  58. Vallee, R. B., 1980b, Structure and phosphorylation of MAP2, in: Microtubules and Microtubule Inhibitors (M. DeBrabander and J. DeMey, eds.), pp. 201–211, Elsevier/North Holland Biomedical Press, Amsterdam.Google Scholar
  59. Vallee, R. B., 1982, A taxol-dependent procedure for the isolation of microtubules and microtubule-associated proteins (MAPs), J. Cell Biol. 92: 435–442.PubMedCrossRefGoogle Scholar
  60. Vallee, R. B., and Borisy, G. G., 1977, Removal of the projections from cytoplasmic microtubules in vitro by digestion with trypsin, J. Biol. Chem. 252: 377–382.PubMedGoogle Scholar
  61. Vallee, R. B., and Borisy, G. G., 1978, The non-tubulin component of microtubule protein oligomers, J. Biol. Chem. 253: 2834–2845.PubMedGoogle Scholar
  62. Vallee, R. B., and Davis, S. E., 1983, Low molecular weight microtubule associated proteins are light chains of microtubule-associated protein 1 (MAPS), Proc. Natl. Acad. Sci. USA 80: 1342–1346.PubMedCrossRefPubMedCentralGoogle Scholar
  63. Vallee, R. B., DiBartolomeis, M. J., and Theurkauf, W. E., 1981, A protein kinase bound to the projection portion of MAP2 (microtubule-associated protein 2), J. Cell Biol. 90:568–576.Google Scholar
  64. Voter, W. A., and Erickson, H. P., 1982, Electron microscopy of MAP2 (microtubule-associated protein 2), J. Ultrastruct. Res. 80: 374–382.PubMedCrossRefGoogle Scholar
  65. Weatherbee, J. A., Luftig, R. B., and Weihing, R. R., 1980, Purification and reconstitution of HeLa cell microtubules, Biochemistry 19: 4116–4123.PubMedCrossRefGoogle Scholar
  66. Weatherbee, J. A., Sherline, P., Mascardo, R. N., Izant, J. G., Luftig, R. B., and Weihing, R. R., 1982, Microtubule-associated proteins of HeLa cells: Heat stability of the 200,000 molecular weight HeLa MAPs and detection of the presence of MAP2 in HeLa cell extracts and cycled microtubules, J. Cell Biol. 92: 155–163.PubMedCrossRefGoogle Scholar
  67. Weingarten, M. D., Lockwood, A. H., Hwo, S.-Y., and Kirschner, M. W., 1975, A protein factor essential for microtubule assembly, Proc. Natl. Acad. Sci. USA 72: 1858–1862.PubMedCrossRefPubMedCentralGoogle Scholar
  68. Weisenberg, R. C., 1972, Microtubule formation in vitro in solutions containing low calcium concentrations, Science 177: 1104–1105.PubMedCrossRefGoogle Scholar
  69. Wolosewick, J. J., and Porter, K. R., 1976, Stereo high-voltage electron microscopy of whole cells of human diploid line, W1–38, Am. J. Anat. 147: 303–324.PubMedCrossRefGoogle Scholar
  70. Zingsheim, H.-P., Herzog, W., and Weber, K., 1979, Differences in surface morphology of microtubules reconstituted from pure brain tubulin using two different microtubule-associated proteins: The high molecular weight MAP2 proteins and tau proteins, Eur. J. Cell Biol. 19: 175–183.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Richard B. Vallee
    • 1
  1. 1.Cell Biology GroupThe Worcester Foundation for Experimental BiologyShrewsburyUSA

Personalised recommendations