Cell Shape and Membrane Receptor Dynamics

Modulation by the Cytoskeleton
  • David F. Albertini
  • Brian Herman


The cell surface is thought to be a major site for the transfer of information from the extracellular environment to the cell interior. Glycoprotein receptors, embedded in the plasma membrane, most likely mediate the process of information transfer since they provide a mechanism whereby cells can recognize particular signals in the environment which modulate cellular metabolism. Among the signals affecting cellular metabolism are soluble proteins, such as hormones and toxins, or macromolecular complexes, such as LDL and viruses, each of which bind to specific cell surface receptors to initiate their effects. Subsequent to ligand-receptor binding, many ligands and their receptors are internalized within coated vesicles which form endosomes that travel to specific cytoplasmic locations such as the Golgi-lysosome region where further processing occurs (Pastan and Willingham, 1981). The available evidence indicates that the movement of ligands, and perhaps their receptors, both at the cell surface and within the cytoplasm, is nonrandom and subject to control by the cytoskeleton (Albertini and Anderson, 1977; Edelman, 1976; Herman and Albertini, 1982; Oliver and Berlin, 1982; Rebhun, 1972).


Granulosa Cell Stress Fiber Coated Vesicle Endocytic Vesicle Time Lapse Video 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albertini, D. F., and Anderson, E., 1977, Microtubule and microfilament rearrangements during capping of concanavalin A receptors on cultured ovarian granulosa cells, J. Cell Biol. 73: 111.PubMedCrossRefGoogle Scholar
  2. Albertini, D. F., and Clark, J. I., 1975, Membrane-microtubule interactions: Concanavalin A capping induced redistribution of cytoplasmic microtubules and colchicine binding proteins, Proc. Natl. Acad. Sci. USA 72: 4976.PubMedCrossRefPubMedCentralGoogle Scholar
  3. Albertini, D. F., and Kravit, N. G., 1981, Isolation and biochemical characterization of the tennanometer filaments from ovarian granulosa cells, J. Biol. Chem. 256: 2484.PubMedGoogle Scholar
  4. Albertini, D. F., Oliver, J. M., and Berlin, R. D. 1977, The mechanism of concanavalin A cap formation is leukocytes, J. Cell Sci. 26: 57.PubMedGoogle Scholar
  5. Avivi, A., Tramontano, D., Ambesi-Impionabata, F. S., and Schlessinger, J., 1981, Adenosine 3’:5’-monophosphate modulates thyrotropin receptor clustering and thyrotropin activity in culture, Science 214: 1237.PubMedCrossRefGoogle Scholar
  6. Barak, L. S., Yocum, R. R., Nothnagel, E. A., and Webb, W. W., 1980, Fluorescence staining of the actin cytoskeleton in living cells with 7-nitrobenz-2-oxa-1,3-diazole phallicidin, Proc. Natl. Acad. Sci. USA 77: 980.PubMedCrossRefPubMedCentralGoogle Scholar
  7. Batten, B. E., and Anderson, E., 1981, The effects of Ca and Mg deprivation of cell shape in cultured ovarian granulosa cells, Am. J. Anat. 161: 101.PubMedCrossRefGoogle Scholar
  8. Bennet, V., and Davis, J., 1981, Erythrocyte ankyrin: immunoreactive analogues are associated with mitotic structures in cultured cells and with microtubules in brain, Proc. Natl. Acad. Sci. USA 78: 7550.CrossRefGoogle Scholar
  9. Berlin, R. D., Oliver, J. M., and Walter, R. J., 1978, Surface functions during mitosis I: Phagocytosis, pinocvtosis and mobility of surface-bound Con A, Cell 15: 327.PubMedCrossRefGoogle Scholar
  10. Bourguignon, L. W., and Singer, S. J., 1977, Transmembrane interactions and the mechanism of capping of surface receptors by their specific ligands, Proc. Natl. Acad. Sci. USA 74: 5031.PubMedCrossRefPubMedCentralGoogle Scholar
  11. Branton, D., Cohen, C. M., and Tyler, J., 1981, Interaction of cytoskeletal proteins on the erythrocyte membrane, Cell 24: 24.PubMedCrossRefGoogle Scholar
  12. Brown, K. D., Friedkin, M., and Rozengurt, E., 1980, Colchicine inhibits epidermal growth factor degradation in 3T3 cells, Proc. Natl. Acad. Sci. USA 77: 480.PubMedCrossRefPubMedCentralGoogle Scholar
  13. Burridge, K., Kelly, T., and Mangeat, P., 1982, Nonerythrocyte spectrins: actin-membrane attachment proteins occurring in many cell types, J. Cell Biol. 95: 478.PubMedCrossRefGoogle Scholar
  14. Cheung, W. Y., 1980, Calmodulin plays a pivotal role in cellular regulation, Science 207: 19.PubMedCrossRefGoogle Scholar
  15. Chung, M. P., and Batten, B. E., 1982, The effect of cytoskeletal perturbants on progesterone secretion by rat ovarian granulosa cells, J. Cell Biol. 95: 204a.CrossRefGoogle Scholar
  16. Condeelis, J., 1979, Isolation of concanavalin A caps during various stages of formation and their association with actin and myosin, J. Cell Biol. 80: 751.PubMedCrossRefPubMedCentralGoogle Scholar
  17. Crossin, K. L., and Carney, D. H., 1981, Microtubule stabilization by taxol inhibits initiation of DNA synthesis by thrombin and by epidermal growth factor, Cell 27: 341.PubMedCrossRefGoogle Scholar
  18. Edelman, G. M., 1976, Surface modulation in cell recognition and cell growth, Science 192: 218.PubMedCrossRefGoogle Scholar
  19. Folkman, J., and Moscona, A., 1978, Role of cell shape in growth control, Nature 273: 345.PubMedCrossRefGoogle Scholar
  20. Fujiwara, K., Porter, M. E., and Porter, T. D., 1978, Alpha-actinin localization in the cleavage furrow during cytokinesis, J. Cell Biol. 79: 268.PubMedCrossRefGoogle Scholar
  21. Fujiwara, R., and Pollard, T. D., 1978, Simultaneous localization of myosin and tubulin in human tissue culture cells by double antibody staining, J. Cell Biol. 77: 182.PubMedCrossRefGoogle Scholar
  22. Goldstein, J. L., Anderson, R. G. W., and Brown, M. S., 1979, Coated pits, coated vesicles, and receptor-mediated endocytosis, Nature 279: 679.PubMedCrossRefGoogle Scholar
  23. Hagmann, J., and Fishman, P. H., 1980, Modulation of adenylate cyclase in intact macrophages by microtubules, J. Biol. Chem. 255: 2659.PubMedGoogle Scholar
  24. Herman, B., and Albertini, D. F., 1982, The intracellular movement of endocytic vesicles in cultured granulosa cells, Cell Motil. 2, in press.Google Scholar
  25. Herman, B., and Fernandez, S. M., 1982, Dynamics and topographical distribution of con-canavalin A receptors during myogenic cell fusion in vitro, Biochemstry 21: 3275.CrossRefGoogle Scholar
  26. Hirokawa, N., 1982, Cross-linker system between neurofilaments, microtubules, and mem-branous organdies in frog axons revealed by the quick-freeze, deep-etching method, J. Cell Biol. 94: 129.PubMedCrossRefPubMedCentralGoogle Scholar
  27. Kahn, C. R., Baird, K. L., Harrett, D. B., and Flier, J. S., 1978, Direct demonstration that receptor cross-linking or aggregation is important in insulin action, Proc. Natl. Acad. Sci. USA 75: 4209.PubMedCrossRefPubMedCentralGoogle Scholar
  28. Lawrence, J. S., Ginzberg, R. D., Gilula, N. B., and Beers, W. H., 1979, Hormonally induced cell shape changes in cultured rat ovarian granulosa cells, J. Cell Biol. 80: 21.PubMedCrossRefGoogle Scholar
  29. Levine, J., and Willard, M., 1983, Redistribution of fodrin (a component of the cortical cytoplasm accompanying capping of cell surface molecules, Proc. Natl. Acad. Sci. USA 77: 1561.Google Scholar
  30. Oliver, J., and Berlin, R. D., 1982, Distribution of receptors and functions on cell surfaces: Quantitation of ligand-receptor mobility and a new model for control of plasma membrane topography, Phil. Trans. R. Soc. London B299: 215.CrossRefGoogle Scholar
  31. Pastan, I. H., and Willingham, M. C., 1981, Journey to the center of the cell: Role of the receptosome, Science 214: 504.PubMedCrossRefGoogle Scholar
  32. Phaire-Washington, L., Silverstein, S. C., and Wang, E., 1980, Phorbol myristate acetate stimulates microtubule and 10-nm filament extension and lysosome redistribution in mouse macrophages, J. Cell Biol. 86: 641.PubMedCrossRefGoogle Scholar
  33. Pilch, P. F., Shia, M. A., Benson, R. J., and Fine, R. E., 1983, Coated vesicles participate in the receptor-mediated endocytosis of insulin, J. Cell Biol. 96: 133.PubMedCrossRefGoogle Scholar
  34. Pollard, T. D., and Korn, E. D., 1973, Electron microscopic identification of actin associated with isolated plasma membranes, J. Biol. Chem. 248: 448.PubMedGoogle Scholar
  35. Rapoport, B., and Jones, A. L., 1978, Acute effects of thyroid-stimulating hormone on cultured thyroid cell morphology, Endocrinology 102: 175.PubMedCrossRefGoogle Scholar
  36. Rebhun, L. I., 1972, Polarized intracellular particle transport: Saltatory movements and cytoplasmic streaming, Int. Rev. Cytol. 32: 93.PubMedCrossRefGoogle Scholar
  37. Rudolph, S. A., Greengard, P., and Malawista, S. E., 1977, Effects of colchicine on cyclic AMP levels in human leukocytes, Proc. Natl. Acad. Sci. USA 74: 3404.PubMedCrossRefPubMedCentralGoogle Scholar
  38. Rudolph, S. A., Hegstrand, L. R., Greengard, P., and Malawista, S. E., 1979, The interaction of colchicine with hormone-sensitive adenylate cyclase in human leukocytes, Mol. Pharmacol. 16: 805.PubMedGoogle Scholar
  39. Salisbury, J. L., Condeelis, J. S., Maihle, N. J., and Satir, P., 1981, Calmodulin localization during capping and receptor-mediated endocytosis, Nature 294: 163.PubMedCrossRefGoogle Scholar
  40. Sloboda, R. D., Rudolph, S. A., Rosenbaum, J. L., and Greengard, P., 1975, Cyclic AMP-dependent endogenous phosphorylation of a microtubule-associated protein, Proc. Natl. Acad. Sci. USA 72: 177.PubMedCrossRefPubMedCentralGoogle Scholar
  41. Solomon, F., 1981, Specification of cell morphology by endogenous determinants, J. Cell Biol. 90: 547.PubMedCrossRefGoogle Scholar
  42. Steinman, R. M., Mellman, I. S., Muller, W. A., and Cohn, Z. A., 1983, Endocytosis and the recycling of plasma membrane, J. Cell Biol. 96: 1.PubMedCrossRefGoogle Scholar
  43. Schiff, P. B., and Horwitz, S. B., 1980, Taxol stabilizes microtubules in mouse fibroblast cells, Proc. Natl. Acad. Sci. USA 77: 1561.PubMedCrossRefPubMedCentralGoogle Scholar
  44. Tramontano, D., Avivi, A., Ambesi-Impiombato, F. S., Barak, L., Geiger, B., and Schlessinger, J., 1982, Thyrotropin induced changes in the morphology and the organization of microfilament structures in cultured thyroid cells, Exp. Cell Res. 137: 269.PubMedCrossRefGoogle Scholar
  45. Vasiliev, J. M., and Gelfand, I. M., 1976, Effects of Colcemid on morphogenetic processes and locomotion of fibroblasts, in: Cell Motility, Vol. I (R. Goldman, T. Pollard, and“ Rosenbaum,), p. 279, Cold Spring Harbor Laboratory, New York.Google Scholar
  46. Westermark, B., and Porter, K. R., 1982, Hormonally induced changes in the cytoskeleton of human thyroid cells in culture, J. Cell Biol. 94: 42.PubMedCrossRefGoogle Scholar
  47. Wolosewick, J. J., and Porter, K. R., 1979, Microtrabecular lattice of the cytoplasmic ground substance. Artifact or reality, J. Cell Biol. 82: 114.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • David F. Albertini
    • 1
  • Brian Herman
    • 1
  1. 1.Department of Anatomy and Laboratory of Human Reproduction and Reproductive BiologyHarvard Medical SchoolBostonUSA

Personalised recommendations