Advertisement

The Dynamics of Cytoskeletal Organization in Areas of Cell Contact

  • Benjamin Geiger
  • Zafrira Avnur
  • Thomas E. Kreis
  • Joseph Schlessinger

Abstract

The progress made in recent years in cell biology has focused much attention on the structure and mechanical properties of the cytoskeleton. Electron microscopic (EM) examinations using the “classic” sections of plastic-embedded tissues, the recently developed high voltage EM of whole cells, or the quick-freezing deep-etching technique revealed a wealth of densely interwoven cytoplasmic filaments (Pollard and Weihing, 1974; Buckley, 1975; Buckley and Porter, 1975; Heuser and Kirschner, 1980). These structures collectively termed “cytoskeletal networks” retained their complex filamentous appearance after extraction of “soluble” cytoplasmic components with nonionic detergents and preserved the overall shape of the cells (Brown et al., 1976; Ben Zeev et al., 1979; Schliwa and van Blerkom, 1980; Schliwa et al., 1981 Fulton et al., 1980; Cervera et al.,1981; Fulton et al., 1981; Penman et al.,1982).

Keywords

Actin Filament Cold Spring Harbor Stress Fiber Cell Contact Adherens Junction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abercrombie, M., and Dunn, G. A., 1975, Adhesions of fibroblasts to substratum during contact inhibition observed by interference reflection microscopy, Exp. Cell Res. 92: 57.PubMedGoogle Scholar
  2. Abercrombie, M., Heaysman, J. E. M., and Pegrum, S. M., 1970, The locomotion of fibroblasts in culture. I. Movements of the leading edge, Exp. Cell Res. 59: 393.PubMedGoogle Scholar
  3. Abercrombie, M. J., Heaysman, E. M., and Pegrum, S. M., 1971, The locomotion of fibroblasts in culture. IV. Electron microscopy of the leading lamella, Exp. Cell Res. 67: 359.PubMedGoogle Scholar
  4. Ali, I. U., Mautner, V., Lanza, R., and Hynes, R. O., 1977, Restoration of normal morphology: Adhesion and cytoskeleton in transformed cells by addition of a transformation-sensitive surface protein, Cell 11: 115.PubMedGoogle Scholar
  5. Anderton, B. H., 1981, Intermediate filaments: A family of homologous structures, J. Muscle Res. Cell Motil. 2: 141.PubMedGoogle Scholar
  6. Ash, J. F., Vogt, P. K., and Singer, S. J., 1976, Reversion from transformed to normal phenotype by inhibition of protein synthesis in rat kidney cells injected with a temperature sensitive mutant of Rous sarcomavirus, Proc. Natl. Acad. Sci. USA 73: 3603.PubMedPubMedCentralGoogle Scholar
  7. Ashton, F. T., Somlyo, A. V., and Somlyo, A. B., 1975, The contractile apparatus of vascular smooth muscle: Intermediate high voltage stereo electron microscopy, J. Mol. Biol. 98: 17.PubMedGoogle Scholar
  8. Avnur, Z., and Geiger, B., 1981a, Substrate-attached membranes of cultured cells isolation and characterization of ventral cell membranes and the associated cytoskeleton, J. Mol. Biol. 153: 361.PubMedGoogle Scholar
  9. Avnur, Z., and Geiger, B., 198lb, The removal of extracellular fibronectin from areas of cell-substrate contact, Cell 25: 121.Google Scholar
  10. Avnur, Z., Small, J. V., and Geiger, B., 1983, Actin independent association of vinculin with the cytoplasmic aspects of the plasma membrane in cell-substrate contacts, J. Cell Biol. 96: 1622.PubMedGoogle Scholar
  11. Axelrod, D., Koppel, D. E., Schlessinger, J., Elson, E. L., and Webb, W. W., 1976, Mobility measurement by analysis of fluorescence photobleaching recovery kinetics, Biophys. J. 16: 1055.PubMedPubMedCentralGoogle Scholar
  12. Ball, E. H., and Singer, S. J., 1982, Mitochondria are associated with microtubules and not with intermediate filaments in cultured fibroblasts, Proc. Natl. Acad. Sci. USA 79: 123.PubMedPubMedCentralGoogle Scholar
  13. Bennett, V., 1979, Immunoreactive forms of human erythrocyte ankyrin are present in diverse cells and tissues, Nature 281: 597.PubMedGoogle Scholar
  14. Bennett, V., and Davis, J., 1981, Erythrocyte ankyrin: Immunoreactive analogues are associated with mitotic structures in cultured cells and with microtubules in brain, Proc. Natl. Acad. Sci. USA 78: 7550.PubMedPubMedCentralGoogle Scholar
  15. Bennett, V., and Davis, J., 1982, Immunoreactive forms of human erythrocyte ankyrin are localized in mitotic structures in cultured cells and are associated with microtubules in brain, Cold Spring Harbor Symp. Quant. Biol. 46: 647.PubMedGoogle Scholar
  16. Bennett, V., Davis, J., and Fowler, W. F., 1982, Brain spectrin, a membrane associated protein related in structure and function to erythrocyte spectrin, Nature 299: 126.PubMedGoogle Scholar
  17. Ben-Zeev, A., Duerr, A., Solomon, F., and Penman, S., 1979, The outer boundary of the cytoskeleton: A lamina derived from plasma membrane proteins, Cell 17: 859.Google Scholar
  18. Ben-Zeev, A., Farmer, S. R., and Penman, S., 1980, Protein synthesis requires cell-surface contact while nuclear events respond to cell-shape in anchorage dependent fibroblasts, Cell 21: 365.Google Scholar
  19. Birchmeier, C., Kreis, T. E., Eppenberger, H. M., Winterhalter, K. H., and Birchmeier, W., 1980, Corrugated attachment membrane in WI-38 fibroblasts: Alternating fibronectin fibers and actin-containing focal contacts, Proc. Natl. Acad. Sci. USA 77: 4108.PubMedPubMedCentralGoogle Scholar
  20. Bloch, R. J., and Geiger, B., 1980, The localization of acetylcholine receptor clusters in areas of cell substrate contact in cultures of rat myotubes, Cell 21: 25.PubMedGoogle Scholar
  21. Branton, D., 1982, Membrane cytoskeletal interactions in the human erythrocyte, Cold Spring Harbor Symp. Quant. Biol. 46: 1.PubMedGoogle Scholar
  22. Branton, D., Cohen, C. M., and Tyler, J., 1981, Interaction of cytoskeletal proteins on the human erythrocyte membrane, Cell 24: 24.PubMedGoogle Scholar
  23. Bretscher, A., 1981, Fimbrin is a cytoskeletal protein that crosslinks F-actin in vitro, Proc. Natl. Acad. Sci. USA 78: 6849.PubMedPubMedCentralGoogle Scholar
  24. Bretscher, A., and Weber, K., 1979, Villin the major microfilament-associated protein of the intestinal microvillus, Proc. Natl. Acad. Sci. USA 76: 2321.PubMedPubMedCentralGoogle Scholar
  25. Bretscher, A., and Weber, K., 1980a, Villin: Is a major protein of the microvillus cytoskeleton which binds both G and F actin in a calcium dependent manner, Cell 20: 839.PubMedGoogle Scholar
  26. Bretscher, A., and Weber, K., 19806, Fimbrin, a new microfilament-associated protein present in microvilli and other cell surface structures, J. Cell Biol. 86: 335.Google Scholar
  27. Brinkley, B. R., Beall, P. T., Wible, L. J., Mace, M. L., Turner, D. S., and Cailleau, R. M., 1980, Variations in cell form and cytoskeleton in human breast carcinoma cells in vitro, Cancer Res. 40: 3118.PubMedGoogle Scholar
  28. Brown, S., Levinson, W., and Spudich, J., 1976, Cytoskeletal elements of chick embryo fibroblasts revealed by detergent extraction, J. Supramol. Struct. 5: 119.PubMedGoogle Scholar
  29. Brunser, O., and Luft, J., 1970, Fine structure of the apex of absorptive cells from rat small intestine, J . Ultrastruct. Res. 31: 291.PubMedGoogle Scholar
  30. Buckley, I. K., 1975, Three-dimensional fine structure of cultured cells; possible implications for subcellular motility, Tissue Cell 7: 51.PubMedGoogle Scholar
  31. Buckley, I. K., and Porter, K. R., 1975, Electron microscopy of critical point dried cultured cells, J . Mícrosc. 104: 107.PubMedGoogle Scholar
  32. Burridge, K., and Feramisco, J. R., 1980, Microinjection and localization of a 130 K protein in living fibroblasts: A relationship to actin and fibronectin, Cell 19: 587.PubMedGoogle Scholar
  33. Burridge, K., and Feramisco, J. R., 1982, a-actinin and vinculin from nonmuscle cells: Calcium sensitive interactions with actin, Cold Spring Harbor Symp. Quant. Biol. 46: 587.Google Scholar
  34. Cervera, M. G., Dreyfuss, G., and Penman, S., 1981, Messenger RNA is translated when associ-ated with the cytoskeletal framework in normal and VSV injected HeLa cells, Cell 23: 113.PubMedGoogle Scholar
  35. Chen, W.-T., 1981a, Mechanism of retraction of the trailing edge during fibroblast movement, J. Cell Biol. 90: 187.PubMedGoogle Scholar
  36. Chen, W-T., 198 lb, Surface changes during retraction-induced spreading of fibroblasts, J. Cell Sci. 49:1.Google Scholar
  37. Chen, W.-T., and Singer, S. J., 1980, Fibronectin is not present in the focal adhesions formed between normal cultured fibroblasts and their substrate, Proc. Natl. Acad. Sci. USA 77: 7318.PubMedPubMedCentralGoogle Scholar
  38. Chen, W.-T., and Singer, S. J., 1982, Immunoelectron microscopic studies of the sites of cell–substratum and cell–cell contacts in cultured fibroblasts, J. Cell Biol. 95: 205.PubMedGoogle Scholar
  39. Cohen, C. M., Foley, S., and Korsgren, C., 1982, Localization of immunoreactive forms of erythrocyte band 4.1 to fibroblast stress fibers, J . Cell Biol. 95: 285a.Google Scholar
  40. Collett, M. S., Purchio, A. F., and Erikson, R. L., 1980, Avian sarcoma virus-transforming protein pp60s« shows protein kinase activity specific for tyrosine, Nature 285: 167.PubMedGoogle Scholar
  41. Condeelis, J., 1981, Microfilament-membrane interactions in cell shape and surface architecture, in: International Cell Biology 1980–1981 ( H. G. Schweiger, ed.), pp. 306–320, Springer-Verlag, Berlin, Heidelberg, New York.Google Scholar
  42. Condeelis, J., and Taylor, D., 1977, The contractile basis of amoeboid movement, J. Cell Biol. 74: 901.PubMedPubMedCentralGoogle Scholar
  43. Connell, L., and Burridge, K., 1982, A new protein of the adhesion plaque, J. Cell Biol. 95: 299a.Google Scholar
  44. Coudrier, E., Reggio, H., and Louvard, D., 1981, Immunolocalization of the 110 KD molecular weight cytoskeletal protein of intestinal microvillus, J. Mol. Biol. 152: 49.PubMedGoogle Scholar
  45. Craig, S. W., and Pollard, T. D., 1982, Actin binding proteins, Trends Biochem. Res. 7: 88.Google Scholar
  46. Craig, S. W., and Powell, L. D., 1980, Regulation of actin polymerization by villin, a 95,000 dalton cytoskeletal component of intestinal brush borders, Cell 22: 739.PubMedGoogle Scholar
  47. David-Pfuety, T., and Singer, S. J., 1980, Altered distributions of the cytoskeletal proteins, vinculin and a-actinin in cultured fibroblasts transformed by Rous sarcoma virus, Proc. Natl. Acad. Sci. USA 77: 6687.Google Scholar
  48. Dentler, W. L., 1981, Microtubule—membrane interactions in cilia and flagella, Int. Rev. Cytol. 72.Google Scholar
  49. DeRosier, D. J., and Tilney, L. G., 1982, How actin filaments pack into bundles, Cold Spring Harbor Symp. Quant. Biol. 46: 525.PubMedGoogle Scholar
  50. Edelman, G. M., and Yahara, I., 1976, Temperature-sensitive changes in surface modulating assemblies of fibroblasts transformed by mutants of Rous sarcoma virus, Proc. Natl. Acad. Sci. USA 73: 2047.PubMedPubMedCentralGoogle Scholar
  51. Farquhar, M. G., and Palade, G. E., 1963, Junctional complexes in various epithelia, J. Cell Biol. 17: 375.PubMedPubMedCentralGoogle Scholar
  52. Fawcett, D. W., 1981, The Cell, 2nd ed., pp. 1–862. W. B. Saunders, Philadelphia.Google Scholar
  53. Feramisco, J. R., Burridge, K., Smart, J. E., and Thomas, G. P., 1981, Co-existence of vinculin and a vinculin-like protein of higher molecular weight in smooth muscle, J. Cell Biol. 91: 292a.Google Scholar
  54. Folkman, J., and Moscona, A., 1978, Role of cell shape in growth control, Nature 273: 345.PubMedGoogle Scholar
  55. Franke, W. W., Schmid, E., Schiller, D. L., Winter, S., Jarasch, E.-D., Moll, R., Deuk, H., Jackson, B., and Illmensee, K., 1982, Differentiation-related patterns of expression of proteins of intermediate-sized filaments in tissues and cultured cells, Cold Spring Harbor Symp. Quant.Biol. 46: 431.PubMedGoogle Scholar
  56. Fulton, A. B., Wan, K., and Penman, S., 1980, The spatial distribution of polyribosomes in 3T3 cells and the associated assembly of proteins into the skeletal framework, Cell 20: 849.PubMedGoogle Scholar
  57. Fulton, A. B., Prives, J., Farmer, S. R., and Penman, S., 1981, Developmental reorganization of the skeletal framework and its surface lamina in fusing muscle cells, J. Cell Biol. 91: 103.PubMedGoogle Scholar
  58. Geiger, B., 1979, A 130 K protein from chicken gizzard: Its localization at the termini of micro-filament bundles in cultured chicken cells, Cell 18: 193.PubMedGoogle Scholar
  59. Geiger, B., 198la, Transmembrane linkage and cell attachment: The role of vinculin, in: International Cell Biology (H. G. Schweiger, ed.), pp. 761–773, Springer Verlag, New York.Google Scholar
  60. Geiger, B., 1981b, The association of rhodamine-labelled a-actinin with actin bundles in demembranated cells, Cell Biol. Int. Rep. 5: 627.PubMedGoogle Scholar
  61. Geiger, B., 1982a, Involvement of vinculin in contact-induced cytoskeletal interactions, Cold Spring Harbor Symp. Quant. Biol. 46: 671.PubMedGoogle Scholar
  62. Geiger, B., 1982b, Microheterogeneity of avian and mammalian vinculin. Distinctive subcellular distribution of different isovinculins, J. Mol. Biol. 159: 685.PubMedGoogle Scholar
  63. Geiger, B., 1983, Membrane-cytoskeleton interaction, Biochim. Biophys. Acta 737: 305–341.PubMedGoogle Scholar
  64. Geiger, B., and Singer, S. J., 1980, Association of microtubules and intermediate filaments in chicken gizzard cells as detected by double immunofluorescence, Proc. Natl. Acad. Sci. USA 77: 4769.PubMedPubMedCentralGoogle Scholar
  65. Geiger, B., Tokuyasu, K. T., Dutton, A. H., and Singer, S. J., 1980, Vinculin, an intracellular protein localized at specialized sites where microfilament bundles terminate at cell membranes, Proc. Natl. Acad. Sci. USA 77: 4127.PubMedPubMedCentralGoogle Scholar
  66. Geiger, B., Dutton, A. H., Tokuyasu, K. T., and Singer, S. J., 1981, Immunoelectron microscopic studies of membrane-microfilament interactions. The distributions of a-actinin, tropomyosin and vinculin in intestinal epithelial brush border and in chicken gizzard smooth muscle, J. Cell Biol. 91: 614.PubMedGoogle Scholar
  67. Geiger, B., Avnur, Z., and Schlessinger, J., 1982, Restricted mobility of membrane constituents in cell substrate focal contacts of chicken fibroblasts, J. Cell Biol. 93: 495.PubMedGoogle Scholar
  68. Geiger, B., Schmid, E., and Franke, W. W., 1983, Spatial distribution of proteins specific for desmosomes and adherens junctions in epithelial cells demonstrated by double immunofluorescence microscopy, Differentiation 23: 189.PubMedGoogle Scholar
  69. Gingell, D., 1981, The interpretation of interference-reflection images of spread cells: Significant contribution from the peripheral cytoplasm, J. Cell Sci. 49: 237.PubMedGoogle Scholar
  70. Glenney, J. R., Bretscher, A., and Weber, K., 1980, Calcium control of the intestinal microvillus cytoskeleton; Its implications for the regulation of microfilament organizations, Proc. Natl. Acad. Sci. USA 77: 6458.PubMedPubMedCentralGoogle Scholar
  71. Glenney, J. R., Kaulfus, Ph., and Weber, K., 1981a, F-actin assembly modulated by villin: Ca++-dependent nucleation and capping of the barbed end, Cell 24: 471.PubMedGoogle Scholar
  72. Glenney, J. R., Kaulfus, Ph., Matsudaira, P., and Weber, K., 198 lb, F-actin binding and bundling properties of fimbrin, a major cytoskeletal protein of microvillus core filaments, J. Biol. Chem. 256: 9283.Google Scholar
  73. Glenney, J. R., Glenney, P., and Weber, K., 1982a, Erythroid spectrin, brain fodrin and intestinal brush border proteins (TW-260/240) are related molecules containing a common calmodulin-binding subunit bound to a variant cell type specific subunit, Proc. Natl. Acad. Sci. USA 79: 4002.PubMedPubMedCentralGoogle Scholar
  74. Glenney, J. R., Glenney, P., Osborn, M., and Weber, K., 1982b, An F-actin and calmodulin-binding protein from isolated intestinal brush borders has a morphology related to spectrin, Cell 28: 843.PubMedGoogle Scholar
  75. Glenney, J. R., Osborn, M., and Weber, K., 1982c, the intracellular localization of the microvillus 110 K protein, a component considered to be involved in side on membrane attachment of F-actin, Exp. Cell Res. 138: 199.Google Scholar
  76. Goodman, S. R., Zagon, I. S., and Kulikowski, R. R., 1981, Identification of a spectrin-like protein in nonerythroid cells, Proc. Natl. Acad. Sci. USA 78: 7570.PubMedPubMedCentralGoogle Scholar
  77. Gospodarowicz, D., Greenburg, G., and Birdwell, C. R., 1978, Determination of cellular shape by the extracellular matrix and its correlation with the control of cellular growth, Cancer Res. 38: 4155.PubMedGoogle Scholar
  78. Gratzer, W. B., 1981, The red cell membrane and its cytoskeleton, Biochem. J. 198: 1.PubMedPubMedCentralGoogle Scholar
  79. Griffith, L. M., and Pollard, T. D., 1978, Evidence for actin filament-microtubule interaction mediated by microtubule-associated proteins, J. Cell Biol. 78: 958.PubMedGoogle Scholar
  80. Grinnell, F., 1978, Cellular adhesiveness and extracellular substrata, Int. Rev. Cytol. 53:65. Grinnell, F., 1980, Visualization of cell substratum adhesion plaques by antibody exclusion, Cell Biol. Int. Rep. 4: 1031.Google Scholar
  81. Grinnell, F., and Feld, M. K., 1979, Initial adhesion of human fibroblasts in serum-free medium: Possible role of secreted fibronectin, Cell 17: 117.PubMedGoogle Scholar
  82. Gröschel-Stewart, U., 1980, Immunochemistry of cytoplasmic contractile proteins, Int. Rev. Cytol. 65: 193.PubMedGoogle Scholar
  83. Hanafusa, H., 1977, Cell transformation by RNA tumor viruses, in: Comprehensive Virology, Vol. 10 (Fraenkel-Control and R. R. Wagner), pp. 401–483, Plenum Press, New York.Google Scholar
  84. Harris, A., 1973, Location of cellular adhesions to solid substrate, Dev. Biol. 35: 97.PubMedGoogle Scholar
  85. Hasegawa, T., Takahashi, S., Hayashi, H., and Hatano, S., 1980, Fragmin: A calcium ion sensitive regulatory factor on the formation of actin filaments, Biochemistry 19: 2677.PubMedGoogle Scholar
  86. Hay, E. D., and Meier, S., 1976, Stimulation of corneal differentiation by interaction between cell surface and extracellular matrix. II. Further studies on the nature and site of transfilter “induction”, Dev. Biol. 52: 141.PubMedGoogle Scholar
  87. Heath, J. P., and Dunn, G. A., 1978, Cell to substratum contacts of chick fibroblasts and their relation to the microfilament system. A correlated interference-reflexion and high-voltage electron-microscopy study, J. Cell Sci. 29: 197.PubMedGoogle Scholar
  88. Heggeness, M. H., Ash, J. F., and Singer, S. J., 1978a, Transmembrane linkage of fibronectin to intracellular actin-containing filaments in culture human fibroblasts, Ann. N.Y. Acad. Sci. USA 312: 414.Google Scholar
  89. Heggeness, M. H., Simon, M., and Singer, S. J., 1978b, Association of mitochondria with micro-tubules in cultured cells, Proc. Natl. Acad. Sci. USA 75: 3863.PubMedPubMedCentralGoogle Scholar
  90. Heuser, J. E., and Kirschner, M. W., 1980, Filament organization revealed in platinum replicas of freeze-dried cytoskeletons, J. Cell Biol. 86: 212.PubMedGoogle Scholar
  91. Hillman, G., and Schlessinger, J., 1982, The lateral diffusion of epidermal growth factor complexed to its surface receptor does not account for the thermal sensitivity of patch formation and endocytosis, Biochemistry 21: 1667.PubMedGoogle Scholar
  92. Hinssen, H., 1981, An actin modulating protein from Physarum polycephalum. II. Ca’2 dependence and other properties, Eur. J. Cell Biol. 23: 234.PubMedGoogle Scholar
  93. Hirokawa, N., and Tilney, L. G., 1982, Interactions between actin filaments and between actin filaments and membranes in quick frozen and deeply etched hair cells of chick ear, J. Cell Biol. 95: 249.PubMedGoogle Scholar
  94. Hull, B. E., and Staehelin, L. A., 1979, The terminal web: A reevaluation of its structure and function, J. Cell Biol. 81: 67.PubMedGoogle Scholar
  95. Hunter, T., and Sefton, B. M., 1980, The transforming gene product of Rous sarcoma virus phosphorylates tyrosine, Proc. Natl. Acad. Sci. USA 77: 1311.PubMedPubMedCentralGoogle Scholar
  96. Hynes, R. 0., 1973, Alteration of cell-surface proteins by viral transformation and proteolysis, Proc. Natl. Acad. Sci. USA 70: 3170.PubMedPubMedCentralGoogle Scholar
  97. Hynes, R. 0., 1981, Relationships between fibronectin and the cytoskeleton, Cell Surf. Rev. 7:97. Hynes, R. 0., and Destree, A. T., 1978, Relationships between fibronectin (LETS protein) and actin, Cell 15: 875.Google Scholar
  98. Hynms, R. O., Destree, A. T., and Wagner, D. D., 1982, Relationships between microfilaments, cell substratum adhesion, and fibronectin, Cold Spring Harbor Symp. Quant. Biol. 46: 659.Google Scholar
  99. Isenberg, G., Leonard, K., and Jockusch, B. M., 1982, Structural aspects of vinculin-actin interac-tions, J. Mol. Biol. 158: 231.PubMedGoogle Scholar
  100. Izzard, C. S., and Lochner, L. R., 1976, Cell-to-substrate contact in living fibroblasts. An inter-ference reflexion study with an evaluation of the technique, J. Cell Sci. 27: 129.Google Scholar
  101. Izzard, C. S., and Lochner, L. R., 1980, Formation of cell-to-substrate contacts during fibroblast motility: An interference-reflection study, J. Cell Sci. 41: 81.Google Scholar
  102. Jockusch, B. M., and Isenberg, G., 1981, Interaction of a-actinin and vinculin with actin: Op-posite effect on filament network formation, Proc. Natl. Acad. Sci. USA 78: 3005.PubMedPubMedCentralGoogle Scholar
  103. Jockusch, B. M., and Isenberg, G., 1982, Vinculin and a-actinin: Interaction with actin and effect on microfilament network formation, Cold Spring Harbor Symp. Quant. Biol. 46: 613.PubMedGoogle Scholar
  104. Kirkpatrick, F. H., 1976, Spectrin: Current understanding of its physical, biochemical, and func-tional properties, Life Sci. 19: 1.PubMedGoogle Scholar
  105. Kirschner, M. W., 1978, Microtubule assembly and nucleation, Int. Rev. Cytol. 54: 1.PubMedGoogle Scholar
  106. Koppel, D. E., Axelrod, D., Schlessinger, J., Elson, E. L., and Webb, W. W., 1976, Dynamics of fluorescence marker concentration as a probe for mobility, Biophys. J. 16: 1315.PubMedPubMedCentralGoogle Scholar
  107. Korn, E. D., 1978, Biochemistry of actomyosin-dependent cell motility (a review) Proc. Natl. Acad. Sci. USA 75:588.Google Scholar
  108. Kreis, T. E., Geiger, B., and Schlessinger, J., 1982, Mobility of microinjected rhodamine actin within living chicken gizzard cells determined by fluorescence photobleaching recovery, Cell 29: 835.PubMedGoogle Scholar
  109. Kreuger, J. G., Wang, E., and Goldberg, A. R., 1980, Evidence that the src gene product of Rous sarcoma virus is membrane associated, Virology 101: 25.Google Scholar
  110. Lazarides, E., 1976, Actin, a-actinin, and tropomyosin interaction in the structural organization of actin filaments in nonmuscle cells, J. Cell Biol. 68: 202.PubMedGoogle Scholar
  111. Lazarides, E., 1980, Intermediate filaments as mechanical integrators of cellular space, Nature 283: 249.PubMedGoogle Scholar
  112. Lazarides, E., 1981, Intermediate filaments-chemical heterogeneity in differentiation, Cell 23: 649.PubMedGoogle Scholar
  113. Lazarides, E., and Burridge, K., 1979, a-Actinin: Immunofluorescent localization of a muscle structural protein in nonmuscle cells, Cell 6: 289.Google Scholar
  114. Lazarides, E., and Nelson, W. J., 1982, Expression of spectrin in nonerythroid cells, Cell 31: 505.PubMedGoogle Scholar
  115. Lazarides, E., and Weber, K., 1974, Actin antibody: The specific visualization of actin filaments in non-muscle cells, Proc. Natl. Acad. Sci. USA 71: 2268.PubMedPubMedCentralGoogle Scholar
  116. Levi, A., Shechter, Y., Newfeld, E. J., and Schlessinger, J., 1980, Mobility, clustering and transport of nerve growth factor in embryonal sensory cells and in a sympathetic neuronal cell line, Proc. Natl. Acad. Sci. USA 77: 3465.Google Scholar
  117. Levine, J., and Willard, M., 1981, Fodrin: Axonally transported polypeptides associated with the internal periphery of many cells, J. Cell Biol. 90: 631.PubMedGoogle Scholar
  118. Lin, S., Wilkins, J. A., Cribbs, D. H., Grumet, M., and Lin, D. C., 1982, Proteins and complexes that affect actin filament assembly and interactions, Cold Spring Harbor Symp. Quant. Biol. 46: 625.Google Scholar
  119. Lindberg, U., Carlsson, L., Markey, F., and Nystrom, L. E., 1979, Meth. Achiev. Exp. Pathol. 8: 143.Google Scholar
  120. Lux, S. E., 1979, Spectrin-actin membrane skeleton of normal and abnormal red blood cells, Sem. Hematol. 16: 21.Google Scholar
  121. Mangeat, P., Kelly, T., and Burridge, K., 1982, Non-erythrocyte spectrin actin-membrane attachment proteins occurring in many cell types, J. Cell Biol. 95: 294a.Google Scholar
  122. Marchesi, V. T., 1979, Spectrin: Present status of a putative cytoskeletal protein of the red cell membrane, J. Membr. Biol. 51: 101.PubMedGoogle Scholar
  123. Matsudaira, P. T., and Burgess, D. R., 1979, Identification and organization of the components in the isolated microvillus cytoskeleton, J. Cell Biol. 83: 667.PubMedGoogle Scholar
  124. Matsudaira, P. T., and Burgess, D. R., 1982, Structure and function of the brush border cytoskeleton, Cold Spring Harbor Symp. Quant. Biol. 46: 845.PubMedGoogle Scholar
  125. Mooseker, M. S., 1976, Actin filament-membrane attachment in microvilli of intestinal epithelial cells, in: Cell Motility ( Mooseker, M. S.), pp. 631–650, Cold Spring Harbor Laboratory.Google Scholar
  126. Mooseker, M. S., and Tilney, L. G., 1975, The organization of an actin filament membrane complex: Filament polarity and membrane attachment in the microvilli of intestinal epithelial cells, J. Cell Biol. 67: 725.PubMedGoogle Scholar
  127. Mooseker, M. S., Graves, T. A., Wharton, K. A., Falco, N., and Howe, C. L., 1980, Regulation of microvillus structure: Calcium-dependent solation and cross-linking of actin filaments in the microvilli of intestinal epithelial cells, J. Cell Biol. 87: 809.PubMedGoogle Scholar
  128. Mukherjee, T. M., and Staehelin, L. A., 1979, The fine structural organization of the brush border of intestinal epithelial cells, J . Cell Sci. 8: 573.Google Scholar
  129. Oesch, B., and Birchmeier, W., 1982, New surface component of fibroblast’s focal contacts identified by a monoclonal antibody, Cell 31: 671.PubMedGoogle Scholar
  130. Olmsted, J. B., and Borisy, G. G., 1973, Microtubules, Annu. Rev. Biochem. 42: 507.PubMedGoogle Scholar
  131. Penman, S., Fulton, A., Capco, D., Ben Zeev, A., Wittelsberger, S., and Tse, C. F., 1982, Cytoplasmic and nuclear architecture in cells and tissue: Form, functions and mode of assembly, Cold Spring Harbor Symp. Quant. Biol. 46: 1013.PubMedGoogle Scholar
  132. Pollack, R., Osborn, M., and Weber, K., 1975, Patterns of organization of actin and myosin in normal and transformed cultured cells, Proc. Natl. Acad. Sci. USA 72: 994.PubMedPubMedCentralGoogle Scholar
  133. Pollard, T. D., and Weihing, R. R., 1974, Actin and myosin end cell movement, CRC Crit. Rev. Biochem. 2: 1.PubMedGoogle Scholar
  134. Raz, A., and Geiger, B., 1982, Altered organization of cell-substrate contacts and membrane-associated cytoskeleton in tumor cell variant exhibiting different metastatic capabilities, Cancer Res. 42: 5183.PubMedGoogle Scholar
  135. Repasky, E. A., Granger, B. L., and Lazarides, E., 1982, Widespread occurrence of avian spectrin in nonerythroid cells, Cell 29: 821.PubMedGoogle Scholar
  136. Rohrschneider, L. R., 1980, Adhesion plaques of Rous sarcoma virus-transformed cells contain the src gene product, Proc. Natl. Acad. Sci. USA 77: 3514.PubMedPubMedCentralGoogle Scholar
  137. Rohrschneider, L., Rosok, M., and Shriver, K., 1982, Mechanism of transformation by Rous sarcoma virus: Events within adhesion plaques, Cold Spring Harbor Symp. Quant. Biol. 46: 953.PubMedGoogle Scholar
  138. Rouslahti, E., and Vaheri, A., 1975, Interaction of soluble fibroblast-surface antigen with fibrinogen and fibrin. Identity with cold insoluble globulin of human plasma, J . Exp. Med. 141: 497.Google Scholar
  139. Schlee, R. B., and Borisy, G. G., 1979, In vitro assembly of microtubules, in: Microtubules ( K. Roberts and J. S. Hymas, eds.), pp. 175–254, Academic Press, New York.Google Scholar
  140. Schlessinger, J., and Elson, E. L., 1982, Fluorescence methods for studying membrane dynamics, in:Methods of Experimental Physics, Vol. 20 (H. Ehrenstein and H. Lecar), pp. 197–227, Academic Press, New York.Google Scholar
  141. Schliwa, M., 1979, Stereo high voltage electron microscopy of melanophores, Exp. Cell Res. 118: 323.PubMedGoogle Scholar
  142. Schliwa, M., and van Blerkom, J., 1980, Three-dimensional organization and interaction of cytoskeletal structures, Eur. J . Cell. Biol. (Abstr.) 22: 352.Google Scholar
  143. Schliwa, M., and van Blerkom, J., 1981, Structural interaction of cytoskeletal components, J. Cell Biol. 90: 222.PubMedPubMedCentralGoogle Scholar
  144. Schliwa, M., van Blerkom, J., and Porter, K. R., 1981, Stabilization of the cytoplasmic ground substance in detergent opened cells and a structural and biochemical analysis of its composition, Proc. Natl. Acad. Sci. USA, 78: 4329–4334.PubMedPubMedCentralGoogle Scholar
  145. Sefton, B. M., Hunter, T., Ball, E. H., and Singer, S. J., 1981, Vinculin: A cytoskeletal target of the transforming protein of Rous sarcoma virus, Cell 24: 165.PubMedGoogle Scholar
  146. Sefton, B. M., Hunter, T., Nigg, E. A., Singer, S. J., and Walter, G., 1982, Cytoskeletal targets for viral transforming proteins with tyrosine protein kinase activity, Cold Spring Harbor Symp. Quant. Biol. 46: 939.PubMedGoogle Scholar
  147. Shelanski, M. L., Liem, R. K. H., Leterrier, J.-F., and Keith, C. H., 1981, The cytoskeleton and neuronal disease, in: International Cell Biology ( G. H. Schwieger, ed.), pp. 428–439, Springer-Verlag, Berlin, Heidelberg, New York.Google Scholar
  148. Siliciano, J. D., and Craig, S. W., 1982, Meta vinculin: A vinculin related proteins with solubility properties of a membrane protein, Nature 300: 533.PubMedGoogle Scholar
  149. Singer, I. I., 1979, The fibronexus: A transmembrane association of fibronectin-containing fibers and bundles of 5 nm microfilaments in hamster and human fibroblasts, Cell 16: 675.PubMedGoogle Scholar
  150. Singer, I. I., and Paradiso, P. R., 1981, A transmembrane relationship between fibronectin and vinculin (130 Kd protein): Serum modulation in normal and transformed hamster fibroblasts, Cell 24: 481.PubMedGoogle Scholar
  151. Small, J. V., and Sobieszek, A., 1980, The contractile apparatus of smooth muscle, Int. Rev. Cytol. 64: 241.PubMedGoogle Scholar
  152. Staehelin, L. A., 1974, Structure and function of intercellular junctions, Int. Rev. Cytol. 39: 191.PubMedGoogle Scholar
  153. Steck, T. L., 1974, Organization of proteins in the human red blood cell membrane, J. Cell Biol. 62: 1PubMedPubMedCentralGoogle Scholar
  154. Steinert, P., Idler, W., Aynardi-Whitman, M., Zackroff, R., and Goldman, R. D., 1982, Heterogeiety of intermediate filaments assembled in vitro, Cold Spring Harbor Symp. Quant. Biol. 46: 465.PubMedGoogle Scholar
  155. Stephens, N. L., (ed.), 1977, Contractile proteins in smooth muscle, in: The Biochemistry of Smooth Muscle, pp. 363–551, University Park Press, Baltimore.Google Scholar
  156. Stephens, R. E., and Edds, K. T., 1976, Microtubules: Structure, chemistry and function, Physfiol. Rev. 56: 709.Google Scholar
  157. Stossel, T., and Hartwig, J., 1976, Interactions of actin, myosis and a new actin binding protein of rabbit pulmonary macrophages. II. Role in cytoplasmic movement and phagocytosis, J. Cell Biol. 68: 602.PubMedGoogle Scholar
  158. Tilney, L. G., 1975, The role of actin in non-muscle cell motility, in: Molecules and Cell Movement ( S. Inoue and R. E. Stephens, eds.), pp. 339–388, Raven Press, New York.Google Scholar
  159. Timasheff, S. N., and Grisham, L. M., 1980, In vitro assembly of cytoplasmic microtubules, Annu. Rev. Biochem. 49: 565.Google Scholar
  160. Vaheri, A., and Ruoslahti, E., 1974, Disappearance of a major cell-type specific surface glycoprotein (SF) after transformation of fibroblasts by Rous sarcoma virus, Int. J. Cancer 13: 579.PubMedGoogle Scholar
  161. Wang, E., and Goldberg, A. R., 1976, Changes in microfilament organization and surface topography upon transformation of chick embryo fibroblasts with Rous sarcoma virus, Proc. Natl. Acad. Sci. USA 73: 4065.PubMedPubMedCentralGoogle Scholar
  162. Wang, K., and Singer, S. J., 1977, Interaction of filamin with F actin in solution, Proc. Natl. Acad. Sci. USA 74: 2021.PubMedPubMedCentralGoogle Scholar
  163. Weatherbee, J. A., 1981, Membranes and cell movement: Interactions of membranes with the proteins of the cytoskeleton, Int. Rev. Cytol. Suppl. 12: 113.PubMedGoogle Scholar
  164. Weber, K., and Osborn, M., 1982, Intermediate filaments: Cell type specific markers in differentiation and pathology, Cell 31: 303.PubMedGoogle Scholar
  165. Weber, M. J., Hale, A. H., and Losasso, L., 1977, Decreased adherence to the substrate in Rous sarcoma virus-transformed chicken embryo fibroblasts, Cell 10: 45.PubMedGoogle Scholar
  166. Wehland, J., Osborn, M., and Weber, K., 1979, Cell-to-substratum contacts in living cells: A direct correlation between interference-refexion and indirect immunofluorescence microscopy using antibodies against actin and a-actinin, J. Cell Sci. 37: 257.PubMedGoogle Scholar
  167. Wilkins, J. A., and Lin, S., 1982, High affinity interaction of vinculin with actin filaments in vitro, Cell 28: 83.PubMedGoogle Scholar
  168. Willingham, M. C., Jay, G., and Pastan, I., 1979, Localization of the ASV src gene product to the plasma membrane of transformed cells by electron microscopic immunocytochemistry, Cell 18: 125.PubMedGoogle Scholar
  169. Wojcieszyn, J. W., Schlegel, R. A., Wu, E.-S., and Jacobson, K., 1981, Diffusion of injected macromolecules within the cytoplasm of living cells, Proc. Natl. Acad. Sci. USA 78: 4407.PubMedPubMedCentralGoogle Scholar
  170. Yamada, K. M., and Olden, K., 1978, Fibronectins—Adhesive glycoproteins of cell surface and blood, Nature 275: 179.PubMedGoogle Scholar
  171. Yamada, K. M., Yamada, S. S., and Pastan, I., 1976, Cell surface protein partially restores morphology, adhesiveness and contact inhibition of movement of transformed fibroblasts, Proc. Natl. Acad. Sci. USA 73: 1217.PubMedPubMedCentralGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Benjamin Geiger
    • 1
  • Zafrira Avnur
    • 1
  • Thomas E. Kreis
    • 1
  • Joseph Schlessinger
    • 1
  1. 1.Department of Chemical ImmunologyThe Weizmann Institute of ScienceRehovotIsrael

Personalised recommendations