Monoclonal Antibodies to Intermediate Filament Proteins

Use in Diagnostic Surgical Pathology
  • Arthur M. Vogel
  • Allen M. Gown


Surgical pathologists base diagnoses upon characteristic features of neoplasms such as gland formation, papillary structures, and the spindle shape of tumor cells. Tumors without obvious differentiated features pose diagnostic problems because they lack the features that allow an accurate identification of tumor type. In such situations, one depends upon ultrastructural analysis by electron microscopy or relatively nonspecific histochemical stains to gain a clue as to the identity of the neoplasm. Clearly, what has been lacking in diagnostic pathology is a set of well-characterized tissue-specific reagents capable of distinguishing among different cells. Recently, anti-intermediate filament protein antibodies have been employed to distinguish cell type in poorly differentiated neoplasms.


Glial Fibrillary Acidic Protein Stratum Corneum Intermediate Filament Squamous Epithelium Intermediate Filament Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Altmannsberger, M., Osborn, M., Schauer, A., and Weber, K., 1981, Antibodies to different intermediate filament proteins: Cell type specific markers in paraffin-embedded human tissue, Lab. Invest. 45: 427–434.PubMedGoogle Scholar
  2. Bannasch, P., Zerban, H., Schmid, E., and Franke, W., 1980, Liver tumors distinguished by immunofluorescence microscopy with antibodies to proteins of intermediate-sized filaments, Proc. Natl. Acad. Sci. USA 77: 4948–4952.PubMedCrossRefPubMedCentralGoogle Scholar
  3. Bignami, A., Dahl, D., and Rueger, D., 1980, Glial fibrillary acidic protein (GFA) in normal neural cells and in pathological conditions, Adv. Cell Neurobiol. 1: 285–310.CrossRefGoogle Scholar
  4. Dahl, D., and Bignami, A., 1973, Immunochemical and immunofluorescence studies of the glial fibrillary acidic protein in vertebrates, Brain Res. 61: 279–293.PubMedCrossRefGoogle Scholar
  5. Dahl, D., Bignami, A., Weber, K., and Osborn, M., 1981, Filament proteins in rat optic nerves undergoing Wallerian degeneration. II. Localization of vimentin, the fibroblastic 100 A filament protein in normal and ractive astrocytes, Exp. Neurol. 73: 496–506.PubMedCrossRefGoogle Scholar
  6. Denk, H., Krepler, R., Artlieb, U., Gabbiani, G., and Franke, W., 1983, Immunocytochemical and biochemical approach to the classification of soft tissue tumors, Cancer,in press.Google Scholar
  7. Eng, L., and Kosek, J., 1974, Electron microscopic localization of the glial fibrillary acidic protein and S-100 protein by immunoenzymatic techniques, Trans. Am. Soc. Neurochem. 5: 160–175.Google Scholar
  8. Franke, W., Schmid, E., Osborn, M., and Weber, K., 1978a, Different intermediate sized filaments distinguished by immunofluorescence microscopy, Proc. Natl. Acad. Sci. USA 75: 5034–5038.PubMedCrossRefPubMedCentralGoogle Scholar
  9. Franke, W., Weber, K., Osborn, M., Schmid, E., and Freudenstein, C., 19786, Antibody to prekeratin: Decoration of tonofilament-like arrays in various cells of epithelial character, Exp. Cell Res. 116: 429–445.Google Scholar
  10. Franke, W., Schmid, E., Winter, S., Osborn, M., and Weber, K., 1979, Widespread occurrence of intermediate sized filaments of the vimentin-type in cultured cells from diverse vertebrates, Exp. Cell Res. 123: 25–46.PubMedCrossRefGoogle Scholar
  11. Franke, W., Schiller, D., Moll, R., Winter, S., Schmid, E., Engelbrecht, I., Denk, H., Krepler, R., and Platzer, B., 1981, Diversity of cytokeratins: Differentiation specific expression of cytokeratin polypeptides in epithelial cells and tissues, J. Mol. Biol. 153: 933–959.PubMedCrossRefGoogle Scholar
  12. Fuchs, E., and Green, M., 1978, The expression of keratin genes in epidermis and cultured epidermal cells, Cell 15: 887–897.PubMedCrossRefGoogle Scholar
  13. Gabbiani, G., Kapanci, Y., Barazzone, P., and Franke, W., 1981, Immunochemical identification of intermediate-sized filaments in human neoplastic cells: A diagnostic aid for the surgical pathologist, Am. J. Pathol. 104: 206–216.PubMedPubMedCentralGoogle Scholar
  14. Gard, D., Bell, P., and Lazarides, E., 1979, Coexistence of desmin and the fibroblast intermediate filament subunit in muscle and normal cells: Identification and comparative peptide analysis, Proc. Natl. Acad. Sci. USA 76: 3894–3898.PubMedCrossRefPubMedCentralGoogle Scholar
  15. Geisler, N., and Weber, K., 1981, Comparison of the proteins of two immunologically distinct intermediate-sized filaments by amino acid sequence analysis: Desmin and vimentin, Proc. Natl. Acad. Sci. USA 78: 4120–4123.PubMedCrossRefPubMedCentralGoogle Scholar
  16. Gown, A., and Vogel, A., 1982, Monoclonal antibodies to intermediate filament proteins of human cells: Unique and cross-reacting antibodies, J. Cell Biol. 95: 414–424.PubMedCrossRefPubMedCentralGoogle Scholar
  17. Hus, S., Raine, L., and Fanger, H., 1981, Use of avidin-biotin-peroxidase complex (ABC) in immunoperoxidase techniques: A comparison between ABC and unlabeled antibody (PAP) procedures, J. Histochem. Cytochem. 29: 577–580.CrossRefGoogle Scholar
  18. Hynes, R., and Destree, A., 1978, 10 nm filaments in normal and transformed cells, Cell 13: 151–163.Google Scholar
  19. Lazarides, E., 1980, Intermediate filaments as mechanical integrators of cellular space, Nature (London) 283: 249–256.CrossRefGoogle Scholar
  20. Lazarides, E., 1982, Intermediate filaments: A chemically heterogeneous, developmentally regulated class of proteins, Annu. Rev. Biochem. 51: 219–250.CrossRefGoogle Scholar
  21. Lazarides, E., and Hubbard, B., 1976, Immunological characterization of the subunit of the 100 A filaments from muscle cells, Proc. Natl. Acad. Sci. USA 73: 4344–4348.PubMedCrossRefPubMedCentralGoogle Scholar
  22. Lehtonen, K., Agikainen, J., and Badley, R., 1982, Rhabdomyoma: Ultrastructural features and distribution of desmin, muscle type of intermediate filament protein, Acta Pathol. Microbiol. Immunol. Scand. 90: 125–129.Google Scholar
  23. Liem, R., Yen, S., Salomon, G., and Shelanski, M., 1978, Intermediate filaments in nervous tissue, J. Cell Biol. 79: 637–645.PubMedCrossRefPubMedCentralGoogle Scholar
  24. Moll, R., Franke, W., Schiller, D., Geiger, B., and Krepla, R., 1982, The catalog of human cytokeratins: Patterns of expression in normal epithelia, tumors and cultured cells, Cell 31: 11–24.PubMedCrossRefGoogle Scholar
  25. Ramaekers, F., Puts, J., Kant, A., Moesker, O., Jap, P., and Vooiss, G., 1981, Use of antibodies to intermediate filaments in the characterization of human tumors, Cold Spring Harbor Symp. Quant. Biol. 46: 331–339.CrossRefGoogle Scholar
  26. Schlegel, R., Banks-Schlegel, S., and Pinkus, G., 1980a, Immunohistochemical localization of keratin in normal human tissues, Lab. Invest. 42: 91–96.PubMedGoogle Scholar
  27. Schlegel, R., Banks-Schlegel, S., McLeod, J., and Pinkus, G., 1980b, Immunoperoxidase localiza- tion of keratin in human neoplasms: A preliminary study, Am. J. Pathol. 101: 41–49.PubMedPubMedCentralGoogle Scholar
  28. Shaw, G., Osborn, M., and Weber, K., 1981, An immunofluorescence microscopical study of the neurofilament triplet proteins, vimentin and glial fibrillary acidic protein with the adult rat brain, Eur. J. Cell Biol. 24: 20–27.PubMedGoogle Scholar
  29. Starger, J., and Goldman, R., 1977, Isolation and preliminary characterization of 10 nm filaments from baby hamster kidney (BHK-21) cells, Proc. Natl. Acad. Sci. USA 74: 2422–2426.PubMedCrossRefPubMedCentralGoogle Scholar
  30. Steinert, P., Idler, W., Cabral, F., Gottesman, M., and Goldman, R., 1981, In vitro assembly of homopolymers and copolymers filaments from intermediate filament subunits of muscle and fibroblastic cells, Proc. Natl. Acad. Sci. USA 78: 3692–3696.PubMedCrossRefPubMedCentralGoogle Scholar
  31. Sun, T., and Green, H., 1978, Keratin filaments of cultured human epidermal cells. Formation of intermolecular disulfide bonds during terminal differentiation, J. Biol. Chem. 253: 2053–2060.PubMedGoogle Scholar
  32. Sun, T., Shih, C., and Green, H., 1979, Keratin cytoskeletons in epithelial cells of internal organs, Proc. Natl. Acad. Sci. USA 76: 2813–2817.PubMedCrossRefPubMedCentralGoogle Scholar
  33. Tseng, S., Jarvinen, M., Nelson, W., Huang, J., Woodcock-Mitchell, J., and Sun, T., 1982, Correlation of specific keratins with different types of epithelial differentiation: Monoclonal antibody studies, Cell 30: 361–372.PubMedCrossRefGoogle Scholar
  34. Tuszynski, G., Frank, E., Damsky, C., Buck, C., and Warren, L., 1979, The detection of smooth muscle desmin-like protein in BHK21/C13 fibroblasts, J. Biol. Chem. 254: 6138–6143.PubMedGoogle Scholar
  35. Wu, Y., Parker, L., Binder, N., Beckett, M., Sinard, J., Griffiths, C., and Rheinwald, J., 1982, The mesothelial keratins: A new family of cytoskeletal proteins identified in cultured mesothelial cells and nonkeratinizing epithelia, Cell 31: 693–703.PubMedCrossRefGoogle Scholar
  36. Yen, S., and Fields, K., 1981, Antibodies to neurofilament, glial filament, and fibroblast intermediate filament proteins bind to different cell types of the nervous system, J. Cell Biol. 88: 115–126.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Arthur M. Vogel
    • 1
  • Allen M. Gown
    • 1
  1. 1.Department of Pathology SM-30University of WashingtonSeattleUSA

Personalised recommendations