Cytoskeleton in Platelet Function

  • Jon C. Lewis


The circulating platelet is a discoid shaped cellular fragment which originates in the bone marrow through the orderly demarcation of megakaryocyte cytoplasm (Odell and Jackson, 1969; Behnke, 1968a; Marsh et al., 1955; for review see Ebbe, 1976). The number of platelets in circulation varies widely among species, and among individuals within a species the concentrations in blood typically range from 200,000–500,000 per microliter. On the average, the circulation life is 8–9 days. However, with constant activation to participate in the hemostatic process and contribute to maintenance of blood vessel integrity (Henry, 1977), the turnover times range from 6–11 days (Harker, 1979). In man, it has been estimated that platelet consumption is approximately 35,000 platelets/µ1 of blood per day (Harker, 1979). Although the number of platelets arising from a single megakaryocyte has been estimated to be as high as 12,000 (Ebbe, 1976; Tavassoli, 1980; Kaufman et al., 1965) and probably varies with species and ploidy of the megakaryocyte (Kaufman et al., 1965), it is clear from ultrastructural studies of both circulating and bone marrow cells that megakaryocyte demarcation (Behnke, 1968a; Marsh et al., 1955) proceeds in a well-controlled fashion to ensure structural and functional integrity of the platelet (Kaufman et al., 1965; White and Gerrard, 1976; White, 1979; Lewis et al., 1980a; Lewis and Bowie, 1978; Barnhart, 1978).


Platelet Function Human Platelet Blood Platelet Adherent Platelet Clot Retraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adelstein, R. S., and Pollard, T. D., 1978, Platelet contractile proteins, in: Progress in Hemostasis and Thrombosis 4 (T. H. Spaet, ed.), pp. 37–58, Grune Stratton, New York.Google Scholar
  2. Albrecht, R. M., and Lewis, J. C., 1982, Examination of platelet activation by HVEM and SEM: Cytoskeleton receptors sites and dense tubular system, J. Cell Biol. 95: 466a.Google Scholar
  3. Aleksandrowicz, J., Blicharski, J., and Feltynowski, A., 1957, Mikroskopia elektronowa krwinek badanych metoda ultracienkich skrawow, Haematol. Clin. Med. Intern. Acad. Med. Cracoviensis 1: 3.Google Scholar
  4. Allen, R. D., Zacharski, L. R., Widersky, S. T., Rosenstein, R., Zaitlin, L. M., and Burgess, D. R., 1979, Transformation and motility of human platelets: Details of the shape change and release reaction observed by optical and electron microscopy, J. Cell Biol. 83: 126–142.PubMedGoogle Scholar
  5. Barnhart, M. I., 1978, Platelet responses in health and disease, Mol. Cell Biochem. 22: 113–137.PubMedGoogle Scholar
  6. Barnhart, M. I., Walsh, R. T., and Robinson, J. A., 1972, A 3-D view of platelet response to chemical stimuli, Ann. N.Y. Acad. Sci. 201: 360–391.PubMedGoogle Scholar
  7. Behnke, O., 1965, Further studies on microtubules. A marginal bundle in human and rat thrombocytes, J. Ultrastruct. Res. 13: 469.PubMedGoogle Scholar
  8. Behnke, O„ 1966, Morphological changes in the hyalomere of rat blood platelets in experimental venous thrombi, Scand. J. Haemat. 3: 136–148.PubMedGoogle Scholar
  9. Behnke, O., 1968a, An electron microscope study of the megakaryocyte of the rat bone marrow. I. Development of the demarcation membrane system and the platelet surface coat, J. Ultrastruct. Res. 24: 412–433.PubMedGoogle Scholar
  10. Behnke, O., 1968b, Electron microscopical observation on the surface coating of human platelets, J. Ultrastruct. Res. 24: 51–69.PubMedGoogle Scholar
  11. Behnke, O., and Zelander, T., 1967, Filamentous substructure of microtubules of the marginal bundle of mammalian blood platelets, J. Ultrastruct. Res. 19: 147–165.PubMedGoogle Scholar
  12. Behnke, O., Kristensen, B. I., and Engdahl-Nielson, L., 1971, Electron microscopical observations on actinoid and myosinoid filaments in blood platelets, J. Ultrastruct. Res. 37: 351–369.PubMedGoogle Scholar
  13. Bennett, J. S., Vilaire, G., Coleman, R. F., and Colman, R. W., 1981, Localization of human platelet membrane-associated actomyosin using the affinity label 5-p-fluorosulfonylbenzoyl adenosine, J. Biol. Chem. 256: 1185–1190.PubMedGoogle Scholar
  14. Bentfield, M. E., and Bainton, D. F., 1976, Primary lysosomes of rat megakaryocytes and platelets, J. Clin, Invest. 56: 1635–1639.Google Scholar
  15. Bessis, M., and Breton-Gorius, J., 1965, Les microtubules et les fibrilles dans les plaquettes etalees, Nouvelle Revue Francaise d’Hematologie 5: 657–662.Google Scholar
  16. Bessis, M., and Bricka, M., 1948, Etude sur L’ultra-structure du protoplasm des thrombocytes au microscope electronique, Biochim. Biophys. Acta 2: 339–349.Google Scholar
  17. Bessis, M., and Burstein, M., I948a, Etudes sur les thrombocytes au microscope electronique, Revue D’Hematologie 3: 48–68.Google Scholar
  18. Bessis, M., and Burstein, M., 1948b, Une technique pour examiner les plaquettes au microscope électronique, Comptes Rendus Société de Biologie 142: 27–28.Google Scholar
  19. Bettex-Galland, M., and Löscher, E. F., 1959, Extraction of an actomyosin-like protein from human thrombocytes, Nature 184: 276–277.PubMedGoogle Scholar
  20. Bettex-Galland, M., and Löscher, E. F., 1963, Studies on the metabolism of human blood platelets in relation to clot retraction, Thrombosis et Diathesis Haemorrhagica 4: 178–195.Google Scholar
  21. Bizzozero, J., 1882, Ubër einen neuen formbestandtil des blutes and dessen rolle bie de throm-bose and der blutgerinnung, Virchows Arch. Pathol. Anat. 90: 261.Google Scholar
  22. Booyse, F. M., and Rafelson, M. E., 1972, Regulation and mechanism of platelet aggregation, Ann. N.Y. Acad. Sci. 301: 37–60.Google Scholar
  23. Booyse, F. M., Sternberger, L. A., Zschocke, D., and Rafelson, M. E., 1971, Ultrastructural localization of contractile protein (thrombobosthen) in human platelets using an unlabeled antibody-peroxidase staining technique, J. Histochem. Cytochem. 19: 540–550.PubMedGoogle Scholar
  24. Born, G. V. R., 1956, The break-down of adenine triphosphate in blood platelets during clotting, J. Physiol. 133: 61–62.PubMedGoogle Scholar
  25. Bouvier, C. A., Gabbiani, G., Badonnel, G. B., Manjo, G., and Luscher, E. G., 1977, Binding of anti-actin autoantibodies to platelets, Thrombosis and Haemostasis 37: 321–328.PubMedGoogle Scholar
  26. Breton-Gorius, J., and Guichard, J., 1972, Ultrastructural localization of peroxidase activity in human platelets and megakaryocytes, Am. J. Pathol. 66: 277–294.PubMedPubMedCentralGoogle Scholar
  27. Carlsson, L., Nyström, L. E., Sundkvist, I., Markey, F., and Lindberg, U., 1977, Actin polymerization is influenced by profilin, a low molecular weight protein in nonmuscle cells, J. Mol. Biol. 115: 465–483.PubMedGoogle Scholar
  28. Carlsson, L., Markey, F., Blikstad, I., Persson, T., and Lindberg, U., 1979, Reorganization of actin in platelets stimulated by thrombin as measured by the DNase I inhibition assay, Proc. Natl. Acad. Sci. USA 76: 6376–6380.PubMedPubMedCentralGoogle Scholar
  29. Carroll, R. C., and Gerrard, J. M., 1982, Phophorylation of platelet actin-binding protein during platelet activation, Blood 59: 466–471.PubMedGoogle Scholar
  30. Cohen, I., 1979, The contractile system of blood platelets and its function, Meth. Achiev. Exp. Pathol. 9: 40–86.Google Scholar
  31. Cohen, I., and Cohen, C., 1972, A tropomyosin-like protein from human platelets, J. Mol. Biol. 68: 383–387.PubMedGoogle Scholar
  32. Cohen, I., Gerrard, J. M., and White, J. G., 1982, Ultrastructure of clots during isometric contraction, J. Cell Biol. 93: 775–787.PubMedGoogle Scholar
  33. Coller, B. S., 1981, Inhibition of von Willebrand factor-dependent platelet function by increased platelet cyclic AMP and its prevention by cytoskeleton-disrupting agents, Blood 57: 846–855.PubMedGoogle Scholar
  34. Collier, N. C., and Wang, K., 1982, Purification and properties of human platelet P235, J. Biol Chem. 257: 6937–6943.PubMedGoogle Scholar
  35. Cote, G. P., and Smillie, L. B., 1981, The interaction of equine platelet thropomyosin with skeletal muscle actin, J. Biol. Chem. 256: 7257–7261.PubMedGoogle Scholar
  36. Crawford, N., 1976, Platelet microfilaments and microtubules, in: Platelets in Biology and Pathology U. I. Gordon, ed.), pp. 121–153, North Holland, New York.Google Scholar
  37. Crawford, N., and Taylor, D. G., 1977, Biochemical aspects of platelet behavior associated with surface membrane reactivity, Br. Med. Bull. 33: 199–206.PubMedGoogle Scholar
  38. Daniel, J. L., Molish, I. R., and Holmsen, H., 1981, Myosin Phosphorylation in intact platelets, J. Biol. Chem. 256: 7510–7514.PubMedGoogle Scholar
  39. Da Prada, M., and Pletscher, A., 1974, Mechanisms of 5-hydroxy tryptamine storage in subcellular organelles of blood platelets, Adv. Biochem. Psychopharmacol. 10: 311–320.PubMedGoogle Scholar
  40. Davies, G. E., and Palek, J., 1982a, The state of actin polymerization in tetracaine treated platelets, Thrombosis Haemostasis 48: 153–155.PubMedGoogle Scholar
  41. Davies, G. E., and Palek, J., 1982b, Platelet protein organization: Analysis by treatment with membrane-permeable cross-linking reagents, Blood 59: 502–513.PubMedGoogle Scholar
  42. Debus, E., Weber, K., and Osborn, M., 1981, The cytoskeleton of blood platelets viewed by immunofluorescence microscopy, Eur. J. Cell Biol. 24: 45–52.PubMedGoogle Scholar
  43. De Robertis, E., Paseyro, P., and Ressig, M., 1953, Electron microscopic studies of the actin of thrombin on blood platelets, Blood 8: 587–597.Google Scholar
  44. Diggle, T. A., Toh, B. H., Firkin, B. G., and Pfueller, S. L., 1979, Human platelet actin surface expression after platelet activation, Thrombosis Haemostasis 42: 799–802.PubMedGoogle Scholar
  45. Ebbe, S., 1976, Biology of megakaryocytes, in: Progress in Hemostasis and Thrombosis 3 ( T. H. Spaet, ed.), pp. 211–230, Grune Stratton, New York.Google Scholar
  46. Eberth, J. C., and Schimmelbusch, C., 1885, Die blutplätchen and die blutgerinnung, Virchows Arch. Pathol. Anat. 101: 201.Google Scholar
  47. Feinstein, M. B., 1982, The role of calcium in hemostasis, in: Progress in Hemostasis and Thrombosis ( T. H. Spaet, ed.), pp. 25–63, Grune Stratton, New York.Google Scholar
  48. Feinstein, M. B., and Walenga, R., 1981, The role of calcium in platelet adhesion, in: Biochemistry of the Acute Allergic Reactions ( J. Golden, ed.), pp. 279–293, Alan R. Liss, New York.Google Scholar
  49. Feinstein, M. B., Fiekers, J., and Fraser, C., 1975, An analysis of the mechanism of local anaesthetic inhibition of platelet aggregation and secretion, J. Pharmacol. Exp. Ther. 197: 215–228.Google Scholar
  50. Fox, J. E. B., and Phillips, D. R., 1982, Role of phosphorylation in mediating the association of myosin with the cytoskeletal structures of human platelets, J. Biol. Chem. 257: 4120–4126.PubMedGoogle Scholar
  51. Fox, J. E. B., Dockter, M. E., and Phillips, D. R., 1981, An improved method by determining the actin filament content of nonmuscle cells by the DNase I inhibition assay, Anal. Biochem. 117: 170–177.PubMedGoogle Scholar
  52. Frojmovic, M. M., and Milton, J. G., 1982, Human platelet size, shape and related functions in health and disease, Physiol. Rev. 62: 185–261.PubMedGoogle Scholar
  53. George, J. N., and Morgan, R. K., 1981, Glanzmann’s thrombasthenia: Deficient association of actin with the platelet membrane following thrombin-induced secretion, Thrombosis Res. 22: 503–506.Google Scholar
  54. George, N. N., Lyons, R. M., and Morgan, R. K., 1980, Membrane changes associated with platelet activation, J. Clin. Invest. 66: 1–9.PubMedPubMedCentralGoogle Scholar
  55. Gerrard, J. M., Schollmeyer, J. V., Phillips, D. R., and White, J. G., 1979, a-actinin deficiency in thrombasthenia, Am. J. Pathol. 94: 509–522.Google Scholar
  56. Gogstad, G. O., Solum, N. O., and Hagen, I., 1981, Platelet glycoprotein III and a-actinin are different proteins, Thrombosis Res. 24: 157–162.Google Scholar
  57. Gonnella, P. A., and Nachmias, J. T., 1981, Platelet activation and microfilament bundling, J. Cell Biol. 89: 146–151.PubMedGoogle Scholar
  58. Harker, L., 1979, Platelet survival game: Its measurement and use, in: Progress in Hemo.stasis and Thrombosis 4 (T. H. Spaet, ed.), pp. 321–348, Grune Sc Stratton, New York.Google Scholar
  59. Hathaway, D. R., Eaton, C. R., and Adelstein, R. S., 1981, Regulation of human platelet myosin light chain kinase by the catalytic subunit of cyclic AMP-dependent protein kinase, Nature 291: 252–254.PubMedGoogle Scholar
  60. Hayem, G., 1878, Recherches sur l’évolution des Hématies dans le sang de l’homme et des vertébrés, Arch. Physiol. Norm. Pathol. 2: 692–733.Google Scholar
  61. Henry, R. L., 1977, Platelet function, Seminars Thrombosis Hemostasis 5: 93–122.Google Scholar
  62. Hidaka, H., and Nishikawa, M., 1980, Platelet aggregation and protein phosphorylation, Acta Haematol. Japonica 43: 1124–1129.Google Scholar
  63. Hutter, R. V. P., 1957, Electron microscopic observations on platelets from human blood, Am. J. Clin. Pathol. 28: 447–460.PubMedGoogle Scholar
  64. Jain, N. C., 1975, A scanning electron microscopy study of platelets of certain animal species, Thrombosis Diath. Haemorrhage 33: 501–507.Google Scholar
  65. Jean, G., and Racine, L., 1962, Proceedings of the 5th International Congress on Electron Microscopy, Philadelphia Vol. 2, pp. 1–8, Academic Press, New York.Google Scholar
  66. Jennings, L. K., Fox, J. E. B., Edwards, H. H., and Phillips, D. R., 1981, Changes in the cytoskeletal structure of human platelets following thrombin activation, J. Biol. Chem. 256: 6927–6932.PubMedGoogle Scholar
  67. Kaplan, K. L., Broekman, M. J., and Chernoff, A., 1979, Platelet a-granule protein studies on release and subcellular localization, Blood 53: 605–618.Google Scholar
  68. Kaufman, R., Airo, R., Pollack, S., and Crosby, W., 1965, Circulating megakaryocytes and platelet release in the lung, Blood 26: 720–729.PubMedGoogle Scholar
  69. Langer, B. G., Leung, L. L., Gonnella, P. A., Nachmias, V. T., Nachman, R. L., and Pepe, F. A., 1982, a-Actinin and membrane glycoprotein IIIa are different proteins in human blood platelets, Proc. Natl. Acad. Sci. USA 79: 432–435.Google Scholar
  70. Lewis, J. C., and Bowie, E. J. W., 1978, Ultrastructural studies of platelets of von Willebrand and normal swine, Mayo Clin. Proc. 53: 179–183.PubMedGoogle Scholar
  71. Lewis, J. C., Maldonado, J. E., and Mann, K. G., 1976a, Phagocytosis in human platelets: Localization of acid phosphatase positive phagosomes following latex uptake, Blood 47: 833–840.PubMedGoogle Scholar
  72. Lewis, J. C., Maldonado, J. E., Mann, K. G., and Moertel, C. G., 1979b, Ultrastructural cytochemistry of platelets and megakaryocytes in the carcinoid syndrome, Mayo Clin. Proc. 51: 585–593.Google Scholar
  73. Lewis, J. C., Cowley, L. H., Taylor, R. G., and Clarkson, T. B., 1980a, Ultrastructural analysis of platelets in nonhuman primates. I. Comparative morphometrics on six species, Exp. Mol. Pathol. 32: 175–187.PubMedGoogle Scholar
  74. Lewis, J. C., Prater, T., Taylor, R. G., and White, M. S., 1980b, The use of correlative SEM and TEM to study thrombocyte and platelet adhesion to artificial surfaces, Scan. Elect. Microsc. 3: 189–202.Google Scholar
  75. Lewis, J. C., White, M. S., Prater, T., Taylor, R. G., and Davis, K. S., 1982a, Ultrastructural analysis of platelets in nonhuman primates. III. Stereo microscopy of microtubules during platelet adhesion and the release reaction, Exp. Mol. Pathol. 37: 370–381.PubMedGoogle Scholar
  76. Lewis, J. C., White, M. S., Prater, T., Hartle, F. A., Campbell, G., and Wray, G., 1982b, Cytoskeletal 3-dimensional organization during platelet adhesion and release, in: 40th Annual Proceedings of the Electron Microscopy Society of America ( G. E. Bailey, ed.), pp. 12–13, Claitor’s, Baton Rouge.Google Scholar
  77. Lewis, J. C., White, M. S., Prater, T., Porter, K. R., and Steele, R. J., 1983, Cytoskeletal changes during adhesion and release: Observations of human and nonhuman primate platelets, Scan. Elect. Microsc.,in press.Google Scholar
  78. Lind, S. E., and Stossel, T. P., 1982, The microfilament network of the platelet, in: Progress in Hemostasis and Thrombosis 6 ( T. H. Spaet, ed.), pp. 63–78, Grune Stratton, New York.Google Scholar
  79. Lind, S. E., Yin, H. L., and Sotssel, T. P., 1982, Human platelets contain gelsolin: A regulator of actin filament length, J. Clin. Invest. 69: 1384–1387.PubMedPubMedCentralGoogle Scholar
  80. Lucas, R. C., Detwiler, T. C., and Stracher, A., 1976, The identification and isolation of a high molecular weight (270,000 dalton) actin-binding-protein from human platelets, J. Cell Biol. 70: 259a.Google Scholar
  81. Löscher, E. F., 1956a, Viscous metamorphosis of blood platelets and clot retraction, Vox Sanquinis 1: 133–156.Google Scholar
  82. Löscher, E. F., 1956b, Glukose als cofactor bei retraktion des blutgerinnsels, Experientia 12: 294.Google Scholar
  83. Löscher, E. F., 1980, Regulation of the contractile system of blood platelets, Eur. J. Cancer 16: 5–6.Google Scholar
  84. Maclntyre, D. E., 1976, The platelet release reaction: Association with adhesion and aggregation and comparison with secretory responses in other cells, in: Platelets in Biology and Pathology U. I. Gordon, ed.), pp. 61–85, Elsevier/North Holland, Amsterdam.Google Scholar
  85. Markey, F., Persson, T., and Lindberg, U., 1981, Characterization of platelet extracts before and after stimulation with respect to the possible role of profilactin as microfilament precursor, Cell 23: 145–153.PubMedGoogle Scholar
  86. Marsh, Q. B., Kautz, J., Motulsky, A. G., 1955, An electron microscope study of sectioned platelets and megakaryocytes, J. Clin. Invest. 34: 929–930.Google Scholar
  87. Mattson, J. C., and Zuiches, C. A., 1981, Elucidation of the platelet cytoskeleton, Ann. N.Y. Acad. Sci. 370: 11–21.PubMedGoogle Scholar
  88. Menche, D., Israel, A., and Karpatkid, S., 1980, Platelets and microtubules, J. Clin. Invest. 66: 284–291.PubMedPubMedCentralGoogle Scholar
  89. Mills, D. C. B., and MacFarlane, 1976, Platelet receptors, in: Platelets in Biology and Pathology (J. I. Gordon, ed.), Elsevier/North Holland, Amsterdam.Google Scholar
  90. Nachmias, V. T., 1980, Cytoskeleton of human platelets at rest and after spreading,/ Cell Biol. 86: 795–802.Google Scholar
  91. Nachmias, V. T., and Sullender, J. S., 1978, The cytoskeleton of human platelets at rest and after spreading: Whole mounts viewed at 200 KV correlated with negatively stained specimens examined at 50 KV, Ninth International Congress on Electron Microscopy I1: 458–459.Google Scholar
  92. Nachmias, V., Sullender, J., and Asch, A., 1977, Shape and cytoplasmic filaments in control and lidocaine-treated platelets, Blood 50: 39–53.PubMedGoogle Scholar
  93. Nachmias, V. T., Sullender, J., Fallon, J., and Asch, A., 1979a, Observation on the “cytoskeleton” of human platelets, Thrombosis and Haemostasis 42: 1661–1665.Google Scholar
  94. Nachmias, V. T., Sullender, J. S., and Fallon, J. R., 1979b, Effects of local anesthetics on human platelets: Filopodial suppression and endogenous proteolysis, Blood 53: 63–72.PubMedGoogle Scholar
  95. Odell, T. T., and Jackson, C. W., 1969, Megakaryocytopoiesis, in: Symposium on Hemapoietic Cellular Proliferation ( F. Stohlman, ed.), pp. 278, Grune Stratton, New York.Google Scholar
  96. Painter, R. G., Ginsberg, M., and Jaques, B., 1982, Concanavalin A induces interactions between surface glycoproteins and the platelet cytoskeleton, J. Cell Biol. 92: 565–573.PubMedGoogle Scholar
  97. Phillips, D. R., 1980, An evaluation of membrane glycoproteins in platelet adhesion and aggrega-tion, in: Progress in Hemostasis and Thrombosis ( T. H. Spaet, ed.), pp. 81–109, Grune Strat-ton, New York.Google Scholar
  98. Phillips, D. R., Jennings, L. K., and Edwards, H. H., 1980, Identification of membrane proteins mediating the interaction of human platelets, J. Cell Biol. 86: 77086.Google Scholar
  99. Pollard, T. D., 1979, Platelet contractile proteins, Thrombosis Haemostasis 42: 1634–1637.Google Scholar
  100. Porter, K. R., and Tucker, J. B., 1981, The ground substance of the lining cell, Sci. Am. 244: 57–67.Google Scholar
  101. Pribluda, V., Laub, F., and Rotman, A., 1981, The state of actin in activated platelets, Eur. J. Biochem. 116: 293–296.PubMedGoogle Scholar
  102. Prowse, C., Pepper, D., and Dawes, J., 1982, Prevention of the platelet actin-granule release reaction by membrane-active drugs, Thrombosis Res. 25: 218–227.Google Scholar
  103. Puszkin, E. G., Maldonado, R., Spaet, T. H., and Zucker, M. B., 1977, Platelet myosin. Localization of the rod myosin fragment and effect of its antibodies and platelet function, J. Cell Biol. 252: 4371–4378.Google Scholar
  104. Rebuck, J. W., Riddle, J. M., Johnson, S. A., Monto, R. W., and Spurrock, R. M., 1960, Contribu-tions of electron microscopy to the study of platelets, Henry Ford Hasp. Med. Bull. 8: 273–292.Google Scholar
  105. Rosenberg, S., Stracher, A., and Lucas, R. C., 1981a, Isolation and characterization of actin and actin-binding protein from human platelets, J. Cell Biol. 91: 201–211.PubMedGoogle Scholar
  106. Rosenberg, S., Stracher, A., and Burridae, K., 1981b, Isolation and characterization of a calcium-sensitive a-actinin-like protein from human platelet cytoskeletons, J. Biol. Chem. 256: 12986–12991.PubMedGoogle Scholar
  107. Rosenstein, R., Zacharski, L. R., and Allen, R. D., 1981, Quantitation of human plaetlet transformation on siliconized glass: A comparison of “normal” and “abnormal” platelets, Thrombosis Haemo.ctasis 46: 521–524.Google Scholar
  108. Rotman, A., and Heldman, J., 1981, Intracellular viscosity changes during activation of blood platelets: Studies by fluorescence polarization, Biochemistry 20: 5995–5999.PubMedGoogle Scholar
  109. Shultz, H., Jurgens, R., and Hiepler, E., 1958, Die ultrastruktur dur thrombozyten bei der konstitutionellen thrombopathie (v. Willebrand-Jurgens) mit einem beitrag zur submikroskopischen orthologie der thrombozyten, Thrombosis Diath. Haemorrhage 2: 319–323.Google Scholar
  110. Sixma, J.1, and Molenaar, I., 1966, Microtubules and microfilaments in human platelets, Thrombosis et Diathesis Haemorrhagica 16: 153–162.Google Scholar
  111. Small, J. V., and Langanger, G., 1981, Organization of actin in the leading edge of cultured cells: Influence of oxmium tetroxide and dehydration on the ultrastructure of actin meshworks, J. Cell Biol. 91: 695–705.PubMedGoogle Scholar
  112. Tavassoli, M., 1980, Megakaryocyte-platelet axis and the process of platelet formation and release, Blood 55: 537–545.PubMedGoogle Scholar
  113. Tuszynski, G. P., Kornecki, E., Niewiarowski, S., Knight, L., and Srivastava, S., 1982a, Platelet cytoskeletons contain receptors for fibrinogen, J. Cell Biol. 95: 3a.Google Scholar
  114. Tuszynski, G. P., Walsh, P. N., Schick, P., and Koshy, A., 1982b, Platelet cytoskeletons possess platelet factor 3 activity, Circulation 66 (Suppl. II): 176.Google Scholar
  115. Tuszynski, G. P., Walsh, P. N., Piperno, J. R., and Koshy, A., 1982c, Association of coagulation factor V with the platelet cytoskeleton, J. Biol. Chem. 247: 4557–4563.Google Scholar
  116. Walsh, R. T., Bauer, R. B., and Barnhart, M. I., 1975, Platelet function in transient ischemia and cerebrovascular disease, in: Platelets, Recent Advances in Basic Research and Clinical Aspects, pp. 367–377, Excerpta Medica, Amsterdam.Google Scholar
  117. Wang, L. L., and Bryan, J., 1981, Isolation of calcium-dependent platelet proteins that interact with actin, Cell 25: 637–649.PubMedGoogle Scholar
  118. White, J. G., 1967, The submembrane filaments of blood platelets, Am. J. Pathol. 56: 267–277.Google Scholar
  119. White, J. G., 1969, The dense bodies of human platelets: Inherent electron opacity of serotonin storage particles, Blood 33: 598–606.PubMedGoogle Scholar
  120. White, J. G., 1979, Current concepts of platelet structure, Am. J. Clin. Pathol. 71: 363–378.PubMedGoogle Scholar
  121. White, J. G., 1983, Ultrastructural physiology of platelets with randomly dispersed rather than circumferential band microtubules, Am. J. Pathol. 110: 55–63.PubMedPubMedCentralGoogle Scholar
  122. White, J. G., and Gerrard, J. M., 1976, Ultrastructural features of abnormal blood platelets, Am. J. Pathol. 83: 590–614.Google Scholar
  123. White, J. G., and Gerrard, J. M., 1979, Interaction of microtubules and micorfilaments in platelet contractile physiology, Meth. Achiev. Exp. Pathol. 9: 1–39.Google Scholar
  124. Wolosowick, J. J., and Porter, K. R., 1979, Microtrabecular lattice of the cytoplasmic ground substance. Artifact or reality, J. Cell Biol. 82: 114–139.Google Scholar
  125. Wolpero, C., and Ruska, H., 1939, Strukturuntersuchungen zur blutgerinnung, Klinische Wochenschrift 19: 1078–1083.Google Scholar
  126. Wright, J. H., and Minot, G. R., 1917, The viscous metamorphosis of the blood platelets, J. Exp. Med. 26: 395–409.PubMedPubMedCentralGoogle Scholar
  127. Zucker-Franklin, D., 1969, Microfibrils of blood platelets: Their relationship to microtubules and the contractile protein, J. Clin. Invest. 48: 165–171.PubMedPubMedCentralGoogle Scholar
  128. Zucker-Franklin, D., 1970, The submembranous fibrils of human blood platelets, J. Cell Biol. 47: 295.Google Scholar
  129. Zucker-Franklin, D., and Grusky, G., 1972, The actin and myosin filaments of human and bovine blood platelets, J. Clin. Invest. 51: 419–429.PubMedPubMedCentralGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Jon C. Lewis
    • 1
  1. 1.Department of Pathology, Bowman Gray School of MedicineWake Forest UniversityWinston-SalemUSA

Personalised recommendations