Mechanisms of Intracellular Organelle Transport

  • Manfred Schliwa


All eukaryotic cells exhibit some form of intracellular motility. The spectrum of motile activities observed inside living cells is extraordinarily broad, ranging from processes barely detectable even in time-lapse recordings, to the breathtaking bulk transport of cytoplasm best observed by slow-motion analysis. On the basis of their phenomenology, motile activities of cytoplasmic constituents may be subdivided into three broad categories:
  1. 1.

    Bulk movement of cytoplasm in association with, or as a consequence of, cell deformation. Good examples include the extension and retraction of cell processes (pseudopodia) in amoeboid cells, an activity accompanied by flow of cytoplasm into or out of these cell extensions. Cellular inclusions are carried along in the cytoplasm in a seemingly passive manner. Organelle translocation ceases as the protrusive or retractive activity of the cell comes to a standstill.

  2. 2.

    Uniform, continuous transport of organelles and cytoplasm along more or less defined pathways in the absence of cell deformation. Prime examples include the rotational or vectorial “streaming” of endoplasm in many plant cells, and shuttle streaming in slime molds.

  3. 3.

    Discontinuous, erratic, “saltatory” movements of particles and organelles. This form of transport is observed in a wide variety of eukaryotic cells and includes such diverse phenomena as organelle movements in protists and fast transport of materials in neurons.



Actin Filament Axonal Transport Pigment Granule Cytoplasmic Streaming Retrograde Axonal Transport 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abe, K., Robinson, G. A., Liddle, G. W., Butcher, R. W., Nicholson, W. E., and Baird, C. E., 1969, Role of cyclic AMP in mediating the effects of MSH, norepinephrine, and melatonin on frog skin color, Endocrinology 85: 674–682.PubMedGoogle Scholar
  2. Abe, T., Haga, T., and Kurokawa, M., 1973, Rapid transport of phosphatidylcholine occurring simultaneously with protein transport in the frog sciatic nerve, Biochem. J. 136: 731–740.PubMedPubMedCentralGoogle Scholar
  3. Abe, T., Haga, T., and Kurokawa, M., 1974, Retrograde axoplasmic transport: Its continuation as anterograde transport, FEBS Lett. 47: 272–275.PubMedGoogle Scholar
  4. Adams, R. J., 1982, Organelle movement in axons depends on ATP, Nature 297: 327–329.PubMedGoogle Scholar
  5. Allen, N. S., 1974, Endoplasmic filaments generate the motive force for rotational streaming in Nitella, J. Cell Biol. 63: 270–287.PubMedPubMedCentralGoogle Scholar
  6. Allen, N. S., 1980, Cytoplasmic streaming and transport in the characean alga Nitella, Can. J. Bot. 58: 786–796.Google Scholar
  7. Allen, N. S., and Allen, R. D., 1978, Cytoplasmic streaming in green plants, Annu. Rev. Biophys. Bioeng. 7: 497–526.PubMedGoogle Scholar
  8. Allen, R. D., and Kamiya, N., 1964, Primitive Motile Syctem.c in Cell Biology, Academic Press, New York.Google Scholar
  9. Allen, R. D., Travis, J. L., Allen, N. S., and Yilmaz, H. 1981a, Video-enhanced contrast polarization (AVEC-POL) microscopy: A new method applied to the detection of birefringence in the motile reticulopodial network of Allogromia laticollaris, Cell Motil. 1: 275–289.PubMedGoogle Scholar
  10. Allen, R. D., Allen, N. S., and Travis, J. L., 1981b, Video-enhanced contrast, differential interference contrast (AVEC-DIC) microscopy: A new method capable of analyzing microtubulerelated motility in the reticulopodial network of Allogromia laticollaris, Cell Motil. 1: 291–302.PubMedGoogle Scholar
  11. Allen, R. D., Metuzals, J., Tasaki, I., Brady, S. T., and Gilbert, S. P., 1982, Fast axonal transport in squid giant axon, Science 218: 1127–1129.PubMedGoogle Scholar
  12. Amos, W. B., 1975, Contraction and calcium binding in the vorticellid ciliates, in: Molecules and Cell Movement ( S. Inoue and R. E. Stephens, eds.), pp. 411–436, Raven Press, New York.Google Scholar
  13. Anderson, K.-E., Edström, A., and Mattson, H., 1972, Effects of cytochalasin B on uptake of glucosamine, leucine, and sulfate into nerve cells: Incorporation into glycoproteins and rapid axonal transport, Brain Res. 43: 343–353.Google Scholar
  14. Bagnara, J. T., and Hadley, M. E., 1973, Chromatophores and Color Change, Prentice Hall, Englewood Cliffs.Google Scholar
  15. Ballowitz, E., 1914, Über die Pigmentströmung in den Farbstoffzellen und die Kanälchenstruktor des Protoplasmas, Pflügers Arch. ges. Physiol. 157: 165–210.Google Scholar
  16. Banks, P., and Till, R., 1975, A correlation between the effects of anti-mitotic drugs on micro-tubule assembly in vitro and the inhibition of axonal transport in noradrenergic neurons,.J. Physiol. 252: 283–294.Google Scholar
  17. Banks, P., Mayor, D., Mitchell, M., and Tomlinson, D., 197la, Studies on the translocation of noradrenalin-containing vesicles in post-ganglionic sympathetic neurons in vitro. Inhibition of movement by colchicine and vinblastine and evidence for the invoh ement of axonal microtubules, J. Physiol. 216: 625–639.Google Scholar
  18. Banks, P., Mayor, D., and Tomlinson, D. R., 1971b, Further evidence for the involvement of microtubules in the intra-axonal movement of noradrenaline storage granules, J. Physiol. 219: 755–761.PubMedPubMedCentralGoogle Scholar
  19. Banks, P., Mayor, D., and Mraz, P., 1973, Cytochalasin B and the intra-axonal movement of noradrenaline storage vesicles, Brain Res. 49: 417–421.PubMedGoogle Scholar
  20. Bardele, C. F., 1976, Particle movement in heliozoan axopods associated with lateral displacement of highly ordered membrane domains, Z. Naturforsch. 31C: 190–194.Google Scholar
  21. Bardele, C. F., 1977, Comparative study of axopodial microtubule patterns and possible mechanisms of pattern control in the centrohelidan heliozoa Acanthocystis, Raphidiophrys, and Heterophrys, J. Cell Sci. 25: 205–232.PubMedGoogle Scholar
  22. Barondes, S. H., 1967, Axoplasmic transport, Neurosci. Res. Prog. Bull. 5: 307–419.Google Scholar
  23. Beckerle, M. C., and Porter, K. R., 1981, Intracellular motility in erythrophores examined by microinjection, J. Cell Biol. 91: 302a.Google Scholar
  24. Beckerle, M. C., and Porter, K. R., 1982, Inhibitors of dynein activity block intracellular transport in erythrophores, Nature 295: 701–703.PubMedGoogle Scholar
  25. Bell, E., Merrill, C., and Verna, J. M., 1980, Movements of intracellular particles in relation to the protrusions of cell processes, J. Cell Biol. 87: 328a.Google Scholar
  26. Berl, S., Puszku, S., and Nicklas, W. J., 1973, Actomyosin-like protein in brain, Science 179: 441–446.PubMedGoogle Scholar
  27. Berlinrood, M., McGee-Russel, S. M., and Allen, R. D., 1972, Pattern of particle movements in nerve fibers in vitro. An analysis by photokymography and microscopy, J. Cell Sci. 11: 875–886.PubMedGoogle Scholar
  28. Bhisey, A. N., and Freed, J. J., 1971, Altered movement of endosomes in colchicine-treated cultured macrophages, Exp. Cell Res. 64: 430–438.PubMedGoogle Scholar
  29. Bikle, D., Tilney, L. G., and Porter, K. R., 1966, Microtubules and pigment migration in the melanophores of Fundulus heteroclitus, Protoplasma 61: 322–345.Google Scholar
  30. Bitensky, M. W., and Burstein, S. R., 1965, Effects of cyclic adenosine monophosphate and melanocyte stimulating hormone on frog skin in vitro, Nature 208: 1282–1284.PubMedGoogle Scholar
  31. Black, M. M., and Lasek, R. J., 1979, Axonal transport of actin: Slow component b is the principal source of actin for the axon, Brain Res. 171: 401–413.PubMedGoogle Scholar
  32. Black, M. M., and Lasek, R. J., 1980, Slow components of axonal transport: Two cytoskeletal networks, J. Cell Biol. 86: 616–623.PubMedGoogle Scholar
  33. Bloodgood, R. A., 1977, Motility occurring in association with the surface of the Chlamydomonas flagellum, J. Cell Biol. 75: 983–989.PubMedGoogle Scholar
  34. Bloodgood, R. A., 1978, Unidirectional motility occurring in association with the axopodial membrane of Echinosphaerium nucleophilum, Cell Biol. Int. Rep. 2: 171–176.PubMedGoogle Scholar
  35. Bradley, M. O., 1973, Microfilaments and cytoplasmic streaming: Inhibition of streaming with cytochalasin, J. Cell Sci. 12: 327–343.PubMedGoogle Scholar
  36. Brady, S. T., and Lasek, R.J., 1981, Nerve-specific enolase and creatine phosphokinase in axonal transport: Soluble proteins and the axoplasmic matrix, Cell 23: 515–523.PubMedGoogle Scholar
  37. Brady, S. T., and Lasek, R. J., 1982a, Axonal transport: A cell biological method for studying proteins that associate with the cytoskeleton, Methods Cell Biol. 25: 365–398.PubMedGoogle Scholar
  38. Brady, S. T., and Lasek, R. J., 1982b, Fast axonal transport in isolated axoplasm: Roles of neurofilaments and microtubules, J. Cell Biol. 95: 330a.Google Scholar
  39. Brady, S. T., Crothers, S. D., Nosal, C., and McClure, W. O., 1980, Fast axoplasmic transport in the presence of high Cat+:Evidence that microtubules are not required, Proc. Natl. Acad. Sci. USA 77: 5909–5913.PubMedPubMedCentralGoogle Scholar
  40. Brady, S. T., Tydell, M., Heriot, K., and Lasek, R.J., 1981, Axonal transport of calmodulin: A physiologic approach to long-term associations between proteins, J. Cell Biol. 89: 607–614.PubMedGoogle Scholar
  41. Brady, S. T., Lasek, R. J., and Allen, R. D., 1982, Fast axonal transport in extruded axoplasm from squid giant axon, Science 218: 1129–1130.PubMedGoogle Scholar
  42. Bray, D., and Bunge, M. B., 1981, Serial analysis of microtubules in cultured rat sensory axons, J. Neurocytol. 10: 589–605.PubMedGoogle Scholar
  43. Bray, D., and Gilbert, D., 1981, Cytoskeletal elements in neurons, Annu. Rev. Neurosci. 4: 505–523.Google Scholar
  44. Bretscher, A., and Weber, K., 1978, Tropomyosin from brain contains two polypeptide chains of slightly different molecular weights, FEBS Lett. 85: 145–148.PubMedGoogle Scholar
  45. Breuer, A. C., Christian, C. M., Henkart, M., and Nelson, P. G., 1975, Computer analyses of organelle translocation in primary neuronal cultures and continuous cell lines, J. Cell Biol. 65: 562–576.PubMedGoogle Scholar
  46. Brimijoin, S., 1975, Stop-flow: A new technique for measuring axonal transport, and its application to the transport of dopamine-(3-hydroxylase, J. Neurobiol. 6: 379–394.PubMedGoogle Scholar
  47. Brimijoin, S., and Helland, L., 1976, Rapid retrograde transport of dopamine-(3-hydroxylase as examined by the stop-flow technique, Brain Res. 102: 217–228.PubMedGoogle Scholar
  48. Brimijoin, S., and Wiermaa, M. J., 1978, Rapid orthograde and retrograde transport of acetyl-cholinesterase as characterized by the stop-flow technique, J. Physiol. 285: 129–142.PubMedPubMedCentralGoogle Scholar
  49. Brimijoin, S., Olsen, J., and Rosenson, R., 1979, Comparison of the temperature-dependence of rapid axonal transport and microtubules in nerves of the rabbit and bullfrog, J. Physiol. 287: 303–314.PubMedPubMedCentralGoogle Scholar
  50. Broadwell, R. D., and Brightman, M. W., 1979, Cytochemistry of undamaged neurons transporting exogenous protein in vivo, J. Comp. Neurol. 185: 31–74.PubMedGoogle Scholar
  51. Brown, S. S., and Spudich, J. A., 1979, Cytochalasin inhibits the rate of elongation of actin filament fragments, J. Cell Biol. 83: 657–662.PubMedPubMedCentralGoogle Scholar
  52. Brücke, E., 1852, Untersuchungen über den Farbenwechsel des afrikanischen Chamäleons, Denkschr. Akad. Wiss. Wien, math. nat. KI. 4: 179.Google Scholar
  53. Buckley, I. K., 1981, Fine-structural and related aspects of non-muscle cell motility, in: Cell and Muscle Motility ( R. M. Dowben and J. W. Shay, eds.), pp. 135–203, Plenum Publishing, New York.Google Scholar
  54. Bunt, A. H., and Haschke, R. H., 1978, Features of foreign proteins affecting their retrograde transport in axons of the visual system, J. Neurocytol. 7: 665–678.PubMedGoogle Scholar
  55. Bunt, A. H., and Lund, R. D., 1974, Vinblastine-induced blockage of orthograde and retrograde axonal transport of protein in retinal ganglion cells, Exp. Neurol. 45: 288–297.PubMedGoogle Scholar
  56. Burnside, B., Adler, R., and O’Connor, P., 1982, Retinomotor pigment migration in the teleost retinal pigment epithelium: I. Roles for actin and microtubules in pigment granule transport and cone movement, J. Invest. Ophthalmol.,in press.Google Scholar
  57. Burridge, K., and Phillips, J. H., 1975, Association of actin and myosin with secretory granule membranes, Nature 254: 526–528.PubMedGoogle Scholar
  58. Burton, P. R., and Fernandez, H. L., 1973, Delineation by lanthanum staining of filamentous elements associated with the surfaces of axonal microtubules, J. Cell Sci. 12: 12: 567–583.PubMedGoogle Scholar
  59. Burton, P. R., and Hinkley, R. E., 1974, Further electron microscopic characterization of axoplasmic microtubules of the ventral nerve cord of the crayfish, J. Submicroscop. Cytol. 6: 311–326.Google Scholar
  60. Burton, P. R., and Kirkland, W. L., 1972, Actin detected in mouse neuroblastoma cells by binding of HMM, Nature New Biol. 239: 244–246.PubMedGoogle Scholar
  61. Burton, P. R., and Paige, J. L., 1981, Polarity of axoplasmic microtubules in the olfactory nerve of the frog, Proc. Natl. Acad. Sci. USA 78: 3269–3273.PubMedPubMedCentralGoogle Scholar
  62. Byers, H. R., and Porter, K. R., 1977, Transformations in the structure of the cytoplasmic ground substance in erythrophores during pigment aggregation and dispersion. I. A study using whole-cell preparations in stereo high voltage electron microscopy, J. Cell Biol. 75: 54 1558.Google Scholar
  63. Byers, M. R., 1974, Structural correlates of rapid axonal transport: Evidence that microtubules may not be directly involved, Brain Res. 75: 97–113.PubMedGoogle Scholar
  64. Cande, W. Z., 1980, Physiology of chromosome movement in lysed cell models, in: International Cell Biology ( H. G. Schweiger, ed.), pp. 382–391, Springer, Berlin.Google Scholar
  65. Carlsson, L., Nyström, L. E., Sundkist, I., Markey, F., and Lindberg, U., 1977, Actin polymerizability is influenced by profilin, a low molecular weight protein in non-muscle cells, J. Mol. Biol. 115: 465–483.PubMedGoogle Scholar
  66. Carter, S. B., 1967, Effects of cytochalasins on mammalian cells, Nature 213:261–264. Carter, S. B., 1972, The cytochalasins as research tools in cytology, Endeavour 31: 77–82.Google Scholar
  67. Chalfie, M., and Thomson, J. N., 1979, Organization of neuronal microtubules in the nematode Caenorhabditis elegans, J. Cell Biol. 82: 278–289.PubMedGoogle Scholar
  68. Chang, C. M., and Goldman, R. D., 1973, The localization of actin-like fibers in cultured neuroblastoma cells as revealed by HMM binding, J. Cell Biol. 57: 867–874.PubMedPubMedCentralGoogle Scholar
  69. Chen, J. C. W., and Kamiya, N., 1975, Localization of myosin in the internodal cell of Nitella as suggested by differential treatment with N-ethylmaleimide, Cell Struct. Funct. 1: 1–9.Google Scholar
  70. Claparéde, J., and Lachmann, W., 1858–1859, Études sur les Infusoires et les Rhizopodes,Geneve.Google Scholar
  71. Clark, T. G., and Rosenbaum, J. L., 1982, Pigment particle translocation in detergent-permeabilized melanophores of Fundulus heteroclitus, Proc. Natl. Acad. Sci. USA 79: 4655–4659.PubMedPubMedCentralGoogle Scholar
  72. Cooper, P. D., and Smith, R. S., 1974, The movement of optically detectable organelles in myelinated axons of Xenopus laevis, J. Physiol. 242: 77–97.PubMedPubMedCentralGoogle Scholar
  73. Corti, B., 1774, Osservatione Microscopisce Sulla Tremella e sulla Circulazione del Fluido in una Planto Acquaguola, Lucca, Italy.Google Scholar
  74. Crooks, R. F., and McClure, W. O., 1972, The effect of cytochalasin B on fast axoplasmic transport, Brain Res. 45: 643–646.PubMedGoogle Scholar
  75. Dahlström, A., 1971a, Effects of vinblastine and colchicine on monoamine containing neurons of the rat, with special regard to the axoplasmic transport of amine granules, Acta Nueorpathol. Suppl. 5: 226–237.Google Scholar
  76. Dahlström, A., 1971b, Axoplasmic transport (with particular respect to adrenergic neurons), Phil. Trans. R. Soc. London Ser. B 261: 325–358.Google Scholar
  77. Dahlström, A., and Häggendahl, J., 1966, Studies on the transport and life-span of amine storage granules in a peripheral adrenergic neuron system, Acta Physiol.Scand. 67: 278–288.PubMedGoogle Scholar
  78. Dahlström, A., and Häggendahl, J., 1967, Studies on the transport and life-span of amine storage granules in the adrenergic neuron system of the rabbit sciatic nerve, Acta Physiol. Scand. 69: 153–157.PubMedGoogle Scholar
  79. Dambach, M., and Weber, W., 1975, Inhibition of pigment movement by cytochalasin B in the chromatophores of the sea urchin, Centrostephanus longispinus, Comp. Biochem. Physiol. 50C: 49–52.Google Scholar
  80. Davidson, L. A., 1976, Ultrastructure of the membrane attachment sites of the extrusomes of Ciliophrys marina, Cell Tissue Res. 170: 353–365.PubMedGoogle Scholar
  81. Dawes, C. J., and Barilotti, D. C., 1969, Cytoplasmic organization and rhythmic streaming in growing blades of Caulerpa prolifera, Am. J. Bot. 56: 8–15.Google Scholar
  82. Dawes, C. J., and Rhamstine, E., 1967, An ultrastructural study of the giant green algal coenocyte, Caulerpa prolifera, J. Phycol. 3: 117–126.Google Scholar
  83. Dentier, W. L., Granett, S., and Rosenbaum, J. L., 1975, Ultrastructural localization of the high molecular weight proteins (MAPs) associated with in vitro assembled brain microtubules, J. Cell Biol. 65: 237–241.Google Scholar
  84. Donaldson, I. G., 1972, Cyclic longitudinal fibrillar motion as a basis for steady rotational protoplasmic streaming, J. Theoret. Biol. 37: 75–91.Google Scholar
  85. Dumas, M., Schwab, M. E., and Thoenen, H., 1979, Retrograde axonal transport of specific macromolecules as a tool for characterizing nerve terminal membranes, J. Neurobiol. 10: 179–197.PubMedGoogle Scholar
  86. Dustin, P., 1978, Microtubules, Springer Verlag, Berlin.Google Scholar
  87. Edds, K. T., 1975a, Motility in Echinosphaerium I. An analysis of particle motions in the axopodia and a direct test of the involvement of the axoneme, J. Cell Biol. 66: 145–155.PubMedGoogle Scholar
  88. Edds, K. T., 19756, Motility in Echinosphaerium II. Cytoplasmic contractility and its molecular basis, J. Cell Biol. 66: 156–164.Google Scholar
  89. Edström, A., 1977, Rapid axonal transport in vitro. Effects of derivatives of cyclic AMP and other agents acting on the cyclic AMP system, J. Neurobiol. 8: 371–380.PubMedGoogle Scholar
  90. Edström, A., and Hanson, M., 1973a, Temperature effects on fast axonal transport of proteins in vitro in frog sciatic nerves, Brain Res. 58: 345–354.PubMedGoogle Scholar
  91. Edström, A., and Hanson, M., 19736, Retrograde axonal transport of proteins in vitro in frog sciatic nerves, Brain Res. 61: 311–320.Google Scholar
  92. Edström, A., and Mattsson, H., 1972a, Fast axonal transport in vitro in the sciatic system of the frog, J. Neurochem. 19: 205–221.PubMedGoogle Scholar
  93. Edström, A., and Mattsson, H., 1972b, Rapid axonal transport in vitro in the sciatic system of the frog of fucose-, glucosamine-and sulphate-containing material,/ Neurochem. 19: 1717–1729.Google Scholar
  94. Egner, 0., 1971, Zur Physiologie der Melanosomenverlagerung in den Melanophoren von Pterophyllum scalare CUV, u. VAL., Cytobiologie 4: 262–292.Google Scholar
  95. Elam, J. S., and Agranoff, B. W., 1971, Transport of proteins and sulfated mucopolysaccharides in the goldfish visual system, J. Neurobiol. 2: 379–390.PubMedGoogle Scholar
  96. Elam, J. S., Goldberg, J. M., Radin, N. S., and Agranoff, B. W., 1970, Rapid axonal transport of sulfated mucopolysaccharide proteins, Science 170: 458–460.PubMedGoogle Scholar
  97. Ellisman, M. A., and Porter, K. R., 1980, Microtrabecular structure of the axoplasmic matrix: Visualization of cross-linking structures and their distribution, J. Cell Biol. 87: 464–479.PubMedGoogle Scholar
  98. Euteneuer, U., and McIntosh, J. R., 1980, Polarity of midbody and phragmoplast microtubules, J. Cell Biol. 87: 509–515.Google Scholar
  99. Euteneuer, U., and McIntosh, J. R., 198la, Polarity of some motility-related microtubules, Proc. Natl. Acad. Sci. USA 78: 372–376.Google Scholar
  100. Euteneuer, U., and McIntosh, J. R., 19816, Structural polarity of kinetochore microtubules in PtKi cells, J. Cell Biol. 89: 338–345.Google Scholar
  101. Euteneuer, U., Jackson, W. T., and McIntosh, J. R., 1982, Polarity of spindle microtubules in Haemanthus endosperm, J. Cell Biol. 94: 644–653.PubMedGoogle Scholar
  102. Fernandez, H. L., and Samson, F. E., 1973, Axoplasmic transport: Differential inhibition by cytochalasin B, J. Neurobiol. 4: 201–206.PubMedGoogle Scholar
  103. Fernandez, H. L., Huneeus, F. C,., and Davison, P. F., 1970, Studies on the mechanism of axoplasmic transport in the crayfish cord, J. Neurobiol. 1: 395–409.PubMedGoogle Scholar
  104. Fernandez, H. L., Burton, P. R., and Samson, F. E., 1971, Axoplasmic transport in the crayfish nerve cord. The role of fibrillar constituents of neurons, J. Cell Biol. 51: 176–192.PubMedPubMedCentralGoogle Scholar
  105. Filliatreau, G., and DiGiamberardino, L., 1981, Microtubule polarity in myelinated axons as studied after decoration with tubulin, Biol. Cell 42: 69–72.Google Scholar
  106. Fingerman, M., 1965, Chromatophores, Phys. Rev. 45: 296–339.Google Scholar
  107. Fingerman, M., Fingerman, S. W., and Lambert, D. T., 1975, Colchicine, cytochalasin B, and pigment movements in ovarian and integumentary erythrophores of the prawn, Palaernonetes vulgaris, Biol. Bull. (Woods Hole) 149: 165–177.Google Scholar
  108. Fink, B. R., Byers, M. R., and Middaugh, M. E., 1973, Dynamics of colchicine effects on rapid axonal transport and axonal morphology, Brain Res. 56: 299–312.PubMedGoogle Scholar
  109. Fink, D. J., and Gainer, H., 1980a, Axonal trasnport of proteins: A new view using in vivo covalent labeling, J. Cell Biol. 85: 175–186.PubMedGoogle Scholar
  110. Fink, D. J., and Gainer, H., 1980b, Retrograde axonal transport of endogenous proteins in sciatic nerve demonstrated by covalent labeling in vivo, Science 208: 303–305.PubMedGoogle Scholar
  111. Fisher, M., and Lyerla, T. A., 1974, The effect of cytochalasin B on pigment dispersion and aggregation in perfused Xenopus laevis tailfin melanophores, J. Cell Physiol. 83: 117–130.PubMedGoogle Scholar
  112. Fitzharris, T. P., Bloodgood, R. A., and McIntosh, J. R., 1972, Particle movement in the axopodia of Echinosphaeriuni• Evidence concerning the role of the axoneme, J. Mechanochem. Cell Motil. 1: 117–124.Google Scholar
  113. Flamant-Durand, J., and Dustin, P., 1972, Studies on the transport of secretory granules in the magnocellular hypothalamic neurons. I. Action of colchicine on axonal flow and neurotubules in the paraventricular nuclei, Z. Zellforsch. Mihrosk. Anat. 130: 440–454.Google Scholar
  114. Forman, D. S., 1982, Vanadate inhibits saltatory organelle movement in a permeabilized cell model, Exp. Cell Res. 141: 139–147.PubMedGoogle Scholar
  115. Forman, D. S., McEwen, B. S., and Grafstein, B., 1971, Rapid transport of radioactivity in goldfish optic nerve following injections of labeled glucosamine, Brain Res. 28: 119–130.PubMedGoogle Scholar
  116. Forman, D. S., Grafstein, B., and McEwen, B. S., 1972, Rapid axonal transport of [3H]fucosyl glycoproteins in the goldfish optic system, Brain Res. 48: 327–342.PubMedGoogle Scholar
  117. Forman, D. S., Padjen, A. L., and Siggins, G. R., 1977a, Axonal transport of organelles visualized by light microscopy: Cinemicrographic and computer analysis, Brain Res. 136: 197–213.PubMedGoogle Scholar
  118. Forman, D. S., Padjen, A. L., and Siggins, G. R., 19776, Effect of temperature on the rapid retrograde transport of microscopically visible intra-axonal organelles, Brain Res. 136: 215–226.Google Scholar
  119. Forman, D. S., Brown, K. J., Adelman, M. R., and Livengood, D. R., 1982, Nucleotide specificity of reactivation of saltatory movement in permeabilized giant axons, J. Cell Biol. 95: 323a.Google Scholar
  120. Fowler, V. M., and Pollard, H. B., 1982, Chromaffin granule membrane-F-actin interactions are calcium sensitive, Nature 295: 336–338.PubMedGoogle Scholar
  121. Freed, J. J., and Lebowitz, M. M., 1970, The association of a class of saltatory movements with microtubules in cultured cells, J. Cell Biol. 45: 334–354.PubMedPubMedCentralGoogle Scholar
  122. Friede, R. L., and Ho, K.-C., 1977, The relation of axonal transport of mitochondria with microtubules and other axoplasmic organelles, J. Physiol. 265: 507–519.PubMedPubMedCentralGoogle Scholar
  123. Frixione, E., Arechiga, H., and Tsutsumi, V., 1979, Photomechanical migrations of pigment granules along the retinula cells of the crayfish, J. Neurobiol. 10: 573–590.PubMedGoogle Scholar
  124. Fujii, R., 1969, Chromatophores and pigments, in: Fish Physiology (W. S. Hoar and D. J. Randall, eds.), pp. 307–353, Academic Press, New York.Google Scholar
  125. Fujii, R., and Miyashita, Y., 1975, Receptor mechanisms in fish chromatophores, Comp. Biochem. Physiol. 51C: 171–178.Google Scholar
  126. Garner, J. and Lasek, R. J., 1981, Clathrin is axonally transported as part of slow component b: The axoplasmic matrix, J. Cell Biol. 88:172–178.Google Scholar
  127. Gartz, R., 1970, Adaptationsmorphologie der Melanophoren von Krallenfroschlarven, Cytobiologie 2: 220–234.Google Scholar
  128. Gawlitta, W., Osborn, M., and Weber, K., 1981, Coiling of intermediate filaments induced by microinjection of a vimentin-specific antibody does not interfere with locomotion and mitosis, Eur. J. Cell Biol. 26: 83–90.PubMedGoogle Scholar
  129. Geschwind, I. I. Horowitz, J. M., Mikuckis, G. M., and Dewey, R. D., 1977, Iontophoretic release of cyclic AMP and dispersion of melanosomes within a single melanophore, J. Cell Biol. 74:928–943.Google Scholar
  130. Glenney, J. R., Glenney, P., Osborn, M., and Weber, K., 1982, An F-actin and calmodulin-binding protein from isolated intestinal brush borders has a morphology related to spectrin, Cell 28: 843–854.PubMedGoogle Scholar
  131. Goldberg, D. J., 1982, Microinjection into an identified axon to study the mechanism of fast axonal transport, Proc. Natl. Acad. Sci. USA 79: 4818–4822.PubMedPubMedCentralGoogle Scholar
  132. Goldberg, D. J., Harris, D. A., Lubit, B. W., and Schwartz, J. H., 1980, Analysis of the mechanism of fast axonal transport by intracellular injection of potentially inhibitory macromolecules: Evidence for a possible role for actin filaments, Proc. Natl. Acad. Sci. USA 77: 7448–7452.PubMedPubMedCentralGoogle Scholar
  133. Grafstein, B., 1967, Transport of protein by goldfish optic nerve fibers, Science 157:196–198. Grafstein, B., and Forman, D. S., 1980, Intracellular transport in neurons, Physiol. Rev. 60: 1167–1283.Google Scholar
  134. Grafstein, B., Miller, J. A., Ledeen, R. W., Haley, J., and Specht, S. C., 1975, Axonal transport of phospholipid in goldfish optic system, Exp. Neurol. 46: 261–281.PubMedGoogle Scholar
  135. Gras, H., and Weber, W., 1977, Light-induced alterations in cell shape and pigment displacement in chromatophores of the sea urchin Cenirostephanus longispinus, Cell Tissue Res. 182: 165–176.PubMedGoogle Scholar
  136. Green, L., 1968, Mechanism of movements of granules in melanocytes of Fundulus heteroclitus, Proc. Natl. Acad. Sci. USA 59: 1179–1186.PubMedPubMedCentralGoogle Scholar
  137. Green, P. B., 1969, Cell morphogenesis, Annu. Rev. Plant Physiol. 20: 365–394.Google Scholar
  138. Griffith, L. M., and Pollard, T. D., 1978, Evidence for actin filament microtubule interaction mediated by microtubule-associated proteins, J. Cell Biol. 78: 958–965.PubMedGoogle Scholar
  139. Gross, G. W., 1975, The microstream concept of axoplasmic and dendritic transport, Adv. Neurol. 12: 283–296.PubMedGoogle Scholar
  140. Hammond, G. R., and Smith, R. S., 1977, Inhibition of the rapid movement of optically detectable axonal particles by colchicine and vinblastine, Brain Res. 128: 227–242.PubMedGoogle Scholar
  141. Hanson, J., and Huxley, H. E., 1955, The structural basis of contraction in striated muscle, Symp. Soc. Exp. Biol. 9: 228–264.Google Scholar
  142. Hanson, M., and Edström, A., 1978, Mitosis inhibitors and axonal transport, Int. Rev. Cytol. Suppl. 7: 373–402.Google Scholar
  143. Hartwig, J. H., and Stossel, T. P., 1979, Cytochalasin B and the structure of actin gels, J. Mol. Biol. 134: 539–553.PubMedGoogle Scholar
  144. Hauser, M., and Schwab, D., 1974, Mikrotubuli und helikale Mikrofilamente im Cytoplasma der Foraminifere Allogromia laticollaris ARNOLD, Cytobiologie 9: 263–279.Google Scholar
  145. Hayama, T., and Tazawa M., 1980, Cat+ reversibly inhibits active rotation of chloroplasts in isolated cytoplasmic droplets of Chary, Protoplasma 102: 1–9.Google Scholar
  146. Hayama, T., Shimmen, T., and Tazawa, M., 1979, Participation of Ca`’+ in cessation of cytoplasmic streaming induced b) membrane excitation in Characeae internodal cells, Protoplasma 99: 305–321.Google Scholar
  147. Heidemann, S. R., and McIntosh, J. R., 1980, Visualization of the structural polarity of micro-tubules, Nature 286: 517–519.PubMedGoogle Scholar
  148. Heidemann, S. R., Landers, J. M., and Hamborg, M. A., 1981, Polarity orientation of axonal microtubules, J. Cell Biol. 91: 661–665.PubMedGoogle Scholar
  149. Heidenhain, M., 1907, Plasma und Zelle, G. Fischer Verlag, Jena.Google Scholar
  150. Hendrickson, A. E., 1972, Electron microscopic distribution of axoplasmic transport, J. Comp. Neurol. 144: 381–398.Google Scholar
  151. Hendry, I. A., Stockel, K., Thoenen, H., and Iversen, L. L., 1974, The retrograde axonal transport of nerve growth factor, Brain Res. 68: 103–121.PubMedGoogle Scholar
  152. Hepler, P. K., and Palevitz, B. A., 1974, Microtubules and microfilaments, Annu. Rev. Plant Physiol. 25: 309–362.Google Scholar
  153. Heslop, J. P., 1975, Axonal flow and fast transport in nerves, Adv. Comp. Physiol. Biochem. 6: 75–163.Google Scholar
  154. Higashi-Fujime, S., 1980, Active movement in vitro of bundles of microfilaments isolated from Nitella cell, J. Cell Biol. 87: 569–578.PubMedGoogle Scholar
  155. Hirokawa, N., 1982, Cross-linker system between neurofilaments, microtubules, and membraneous organelles in frog axons revealed by the quick-freeze, deep-etching method, J. Cell Biol. 94: 129–142.PubMedPubMedCentralGoogle Scholar
  156. Hitchcock, S. E., Carlsson, L., and Lindberg, I.J. 1976, DNase I-induced depolymerization of actin filaments, in: Cell Motility (R. Goldman, T. Pollard, and J. Rosenbaum,), pp. 545–559, Cold Spring Harbor Laboratory, New YorkGoogle Scholar
  157. Hoffmann, P. N., and Lasek, R. J., 1975, The slow component of axonal transport. Identification of major structural polypeptides of the axon and their generality among mammalian neurons, J. Cell Biol. 66: 351–366.Google Scholar
  158. Huang, B., and Pitelka, D., 1973, The contractile process in the ciliate, Stentor coerulens. I. The role of microtubules and filaments, J. Cell Biol. 57: 704–722.PubMedPubMedCentralGoogle Scholar
  159. Huxley, H. E., 1963, Electron microscope studies on the structure of natural and synthetic protein filaments from striated muscle, J. Mol. Biol. 7: 281–308.PubMedGoogle Scholar
  160. Hyams, J. S., and Stebbings, H., 1978, The mechanism of microtubule associated cytoplasmic transport. Isolation and preliminary characterization of microtubule transport system, Cell Tissue Res. 196: 103–116.Google Scholar
  161. Hyams, J. S., and Stebbings, H., 1979, Microtubule associated cytoplasmic transport, in: Microtubules (K. Roberts and J. S. Hyams,), pp. 487–530, Academic Press, London. Inoue, S., 1981, Video image processing greatly enhances contrast, quality and speed in polarization-based microscopy, J. Cell Biol. 89: 346–356Google Scholar
  162. Isenberg, G., Schubert, P., and Kreutzberg, G. W., 1980, Experimental approach to test the role of actin in axonal transport, Brain Res. 194: 588–593.PubMedGoogle Scholar
  163. Ishikawa, H., Bischoff, R., and Holtzer, H., 1968, Formation of arrowhead complexes with heavy meromyosin in a variety of cell types, J . Cell Biol. 43: 312–335.Google Scholar
  164. James, K. A. C., Bray, J. J., Morgan, I. G., and Austin, L., 1970, The effect of colchicine on the transport of axonal protein in the chicken, J. Biochem. 117: 767–771.PubMedPubMedCentralGoogle Scholar
  165. Jarlfors, U., and Smith, D. S., 1969, Association between synaptic versicles and neurotubules, Nature 224: 710–711.Google Scholar
  166. Jarosch, R., 1956a, Plasmaströmung und Chloroplastenrotation bei Characeen, Phyton 6: 87–107.Google Scholar
  167. Jarosch, R., 19566, Die Impulsrichtungsänderungen bei der Induktion der Protoplasmaströmung, Protoplasma 47: 478–486.Google Scholar
  168. Jarosch, R., 1976, Dynamisches Verhalten der Aktinfibrillen von Nitella auf Grund schneller Filamentrotation, Biochem. Physiol. Pflanz. 170: 111–131.Google Scholar
  169. Jeffrey, P. L., and Austin, L., 1973, Axoplasmic transport, Prog. Neurobiol. 2: 207–255.PubMedGoogle Scholar
  170. Jokusch, H., Jokusch, B., and Burger, M. M., 1979, Nerve fibers in culture and their interactions with non-neural cells visualized by immunofluorescence, J. Cell Biol. 80: 629–641.Google Scholar
  171. Junqueira, L. C. U., Raker, E., and Porter, K. R., 1974, Studies on pigment migration in the melanophores of the teleost, Fundulus heteroclitus, Arch. Histol. Jpn. 36: 339–366.PubMedGoogle Scholar
  172. Junqueira, L. C. U., Reinach, F., and Salles, L. M. M., 1977, The presence of spontaneous and induced filaments in the melanophores of three species of teleosts, Arch. Histol. Jpn. 40: 435–443.Google Scholar
  173. Kamitsubo, E., 1966, Motile protoplasmic fibrils in cells of characeae. II. Linear fibrillar structure and its bearing on protoplasmic streaming, Proc. Jpn. Acad. 42: 640–643.Google Scholar
  174. Kamitsubo, E., 1972a, A “window technique” for detailed observation of characean cytoplasmic streaming, Exp. Cell Res. 74: 613–616.PubMedGoogle Scholar
  175. Kamitsubo, E., 1972b, Motile protoplasmic fibrils in cells of the Characeae, Protoplasma 74: 53–70.Google Scholar
  176. Kamiya, N., 1959, Protoplasmic streaming, Protoplasmatolgia 8: 3a.Google Scholar
  177. Kamiya, N., 1981, Physical and chemical basis of cytoplasmic streaming, Annu. Rev. Plant Physiol. 32: 205–236.Google Scholar
  178. Kamiya, N., and Kuroda, K., 1956, Velocity distribution of the protoplasmic streaming in Nitella cells, Bot. Mag. 69: 544–554.Google Scholar
  179. Kamiya, N., and Kuroda, K., 1958, Measurement of the motive force of the protoplasmic rotation in Nitella, Protoplasma 50: 144–148.Google Scholar
  180. Kamiya, N., and Kuroda, K., 1973, Dynamics of cytoplasmic streaming in a plant cell, Biorheology 10: 179–187.PubMedGoogle Scholar
  181. Karlsson, J. O., and Sjöstrand, J., 1969, The effect of colchicine on axonal transport of protein in optic nerve and tract of the rabbit, Brain Res. 13: 617–619.PubMedGoogle Scholar
  182. Karlsson, J. O., and Sjöstrand, J., 197la, Synthesis, migration, and turnover of protein in retinal ganglion cells, J. Neurochem. 18: 749–767.Google Scholar
  183. Karlsson, J. O., and Sjöstrand, J., 197 l b, Rapid intracellular transport of fucose-containing glycoproteins in retinal ganglion cells, J. Neurochem. 18: 2209–2216.Google Scholar
  184. Karlsson, J. O., Hansson, H. A., and Sjöstrand, J., 1971, Effect of colchicine onaxonal transport and morphology of retinal ganglion cells, Z. Zellforsch. Mikrosk. Anat. 115: 265–283.PubMedGoogle Scholar
  185. Kato, T., and Tonomura, Y., 1977, Identification of myosin in Nitella flexilis, J. Biochem. 82: 777–782.PubMedGoogle Scholar
  186. Kersey, Y. M., Hepler, P. K., Palevitz, B. A., and Wessels, N. K., 1976, Polarity of actin filaments in Characean algae, Proc. Natl. Acad. Sci. USA 73: 165–167.PubMedPubMedCentralGoogle Scholar
  187. Kim, H., Binder, L. I., and Rosenbaum, J. L., 1979, The periodic association of MAP2 with brain microtubules in vitro, J. Cell Biol. 80: 266–276.PubMedGoogle Scholar
  188. Kirschner, M. W., 1978, Microtubule assembly and nucleation, Int. Rev. Cytol. 54: 1–71.PubMedGoogle Scholar
  189. Kitching, J. A., 1964, The axopods of the sun animacule, Actinophrys sol, in: Primitive Motile Systems in Cell Biology ( R. D. Allen and N. Kamiya, eds.), pp. 445–455, Academic Press, New York.Google Scholar
  190. Koop, H. U., and Kiermayer, O., 1980a, Protoplasmic streaming in the giant unicellular green alga, Acetabularia mediterranea. I. Formation of intracellular transport systems in the course of cell differentiation, Protoplasma 102: 147–166.Google Scholar
  191. Koop, H. U., and Kiermayer, O., 1980b, Protoplasmic streaming in the giant unicellular green alga, Acetabularia mediterranea. II. Differential sensitivity of movement systems to substances acting on microfilaments and microtubules, Protoplasma 102: 295–306.Google Scholar
  192. Koop, H. U., Schmid, R., Heunert, H. H., and Miethaler, B., 1978, Chloroplast migrations: A new circadian rhythm in Acetabularia, Protoplasma 97: 301–310.Google Scholar
  193. Kopenec, A., 1949, Farbwechsel der Larve von Corethra plumicornis, Z. vergl. Physiol. 31: 490–505.Google Scholar
  194. Koyama, Y., and Takeuchi, T., 1980, Differential effect of cytochalasin B on the aggregation of melanosomes in cultured mouse melanoma cells, Anat. Rec. 196: 449–459.PubMedGoogle Scholar
  195. Kreutzberg, G. W., 1969, Neuronal dynamics and axonal flow. IV. Blockage of intra-axonal enzyme transport by colchicine, Proc. Natl. Acad. Sci. USA 62: 722–728.PubMedPubMedCentralGoogle Scholar
  196. Kristensson, K., 1978, Retrograde transport of macromolecules in axons, Annu. Rev. Pharmacol. Toxicol. 18: 97–110.PubMedGoogle Scholar
  197. Kuczmarski, E., and Rosenbaum, J. L., 1979a, Chick brain actin and myosin. Isolation and characterization, J. Cell Biol. 80: 341–355.PubMedGoogle Scholar
  198. Kuczmarski, E., and Rosenbaum, J. L., 19796, Studies on the organization and localization of actin and myosin in neurons, J. Cell Biol. 80: 356–371.Google Scholar
  199. Kuroda, K., 1964, Behavior of naked cytoplasmic drops isolated from plant cells, in: Primitive Motile Systems in Cell Biology ( R. D. Allen and N. Kamiya, eds.), pp. 31–41, Academic Press, New York.Google Scholar
  200. Kuroda, K., and Kamiya, N., 1975, Active movement of Nitella chloroplaste in vitro, Proc. Jpn. Acad. 51: 774–777.Google Scholar
  201. Lambert, D. T., and Crowe, J. H., 1973, Colchicine and cytochalasin B: Effects on pigment granule translocation in melanophores of Uca pugilator, Comp. Biochem. Physiol. 45A: 11–16.Google Scholar
  202. Lambert, D. T., and Crowe, J. H., 1976, Colchicine, cytochalasin B, cyclic AMP, and pigment granule translocation in melanophores of Uca pugilator and Hemigrapsus oregonensis, Comp. Biochem. Physiol. 53C: 115–122.Google Scholar
  203. Lambert, D. T., and Fingerman, M., 1978a, Colchicine and cytochalasin B: A further characterization of their actions on crustacean chromatophores using the ionophore A 23187 and thiol reagents, Biol. Bull. 155: 563–575.Google Scholar
  204. Lambert, D. T., and Fingerman, M., 1978b, Evidence implicating calcium as the second messenger for red-pigment concentrating hormone in the prawn Palaemonetes pugio, Physiol. Zool. 52: 497–508.Google Scholar
  205. Lasek, R. J., 1968, Axoplasmic transport in cat dorsal root ganglion cells: As studied with [3H1-Lleucine, Brain Res. 7: 360–377.PubMedGoogle Scholar
  206. Lasek, R. J., and Hoffmann, P. N., 1976, The neuronal cytoskeleton, axonal transport, and axonal growth, in: Cell Motility ( R. Goldman, T. Pollard, and J. Rosenbaum, eds.), pp. 1021–1050, Cold Spring Harbor Conf. Cell Prolif., Cold Spring Harbor.Google Scholar
  207. Lavail, J. H., and LaVail, M. M., 1974, The retrograde intraaxonal transport of horseradish peroxidase in the chick visual system: A light and electron microscopic study, J. Comp. Neurol. 157: 303–358.Google Scholar
  208. Lavail, J. H., Rapisardi, S., and Sugino, 1. K., 1980, Evidence against the smooth endoplasmic reticulum as a continuous channel for the retrograde axonal transport of horseradish peroxidase, Brain Res. 191: 3–20.PubMedGoogle Scholar
  209. Lebeux, Y. J., and Willemot, J., 1975, An ultrastructural study of the microfilaments in rat brain by means of heavy meromyosin labeling. I. The perikaryon, dendrites, and the axon. Cell Tissue Res. 160: 1–36.PubMedGoogle Scholar
  210. Leestma, J. E., and Freeman, S. S., 1977, Computer assisted analysis of particulate axoplasmic flow in organized CNS tissue cultures, J. Neurobiol. 8: 453–467.PubMedGoogle Scholar
  211. Levine, J., and Willard, M., 1981, Fodrin: Axonally transported polypeptides associated with the internal periphery of many cells, J. Cell Biol. 90: 631–643.PubMedGoogle Scholar
  212. Lin, D. C., Tobin, K. D., Gramet, M., and Lin, S., 1980, Cytochalasins inhibit nuclei-induced actin polymerization by blocking filament elongation, J. Cell Biol. 84: 455–460.PubMedGoogle Scholar
  213. Lo, S. J., Tchen, T. T., and Taylor, J. D., 1980, Hormone-induced filopodium formation and movement of pigment into newly formed filopodia, Cell Tissue Res. 210: 371–382.PubMedGoogle Scholar
  214. Lorenz, T., and Willard, M., 1978, Subcellular fractionation of intra-axonally transported poly-peptides in the rabbit visual system, Proc. Natl. Acad. Sci. USA 75: 505–509.PubMedPubMedCentralGoogle Scholar
  215. Lubinska, L., 1964, Axoplasmic streaming in regenerating and in normal nerve fibers, in: Progress in Brain Research. Mechanisms of Neural Regeneration. ( M. Singer and J. P. Schade, eds.), pp. 1–66, Elsevier, Amsterdam.Google Scholar
  216. Lubinska, L., 1975, On axoplasmic flow, Int. Rev. Neurobiol. 17: 241–296.PubMedGoogle Scholar
  217. Luby, K.J., and Porter, K. R., 1980, The control of pigment migration in isolated erythrophores of Holocentrus ascensions. I. Energy requirements, Cell 21: 13–23.PubMedGoogle Scholar
  218. Luby-Phelps, K., and Porter, K. R., 1982, The control of pigment migration in isolated erythrophores of Holocentrus ascensionis. II. The role of calcium, Cell 29: 441–450.PubMedGoogle Scholar
  219. Luby-Phelps, K., and Schliwa, M., 1982, Pigment migration in chromatophores: A model system for intracellular particle transport, in: Axoplasmic Transport ( D. G. Weiss, ed.), pp. 15–26, Springer-Verlag, Berlin, Heidelberg.Google Scholar
  220. Lyerla, T. A., and Novales, R. R., 1972, The effect of cyclic AMP and cytochalasin B on tissue cultured melanophores of Xenopus laevis, J. Cell Physiol. 80: 243–251.PubMedGoogle Scholar
  221. Lynch, T. J., Taylor, J. D., and Tchen, T. T., 1982, Phosphorylation of organelle proteins during pigment translocation, J. Cell Biol. 95: 331a.Google Scholar
  222. Macgregor, H. C., and Stebbings, H., 1970, A massive system of microtubules associated with cytoplasmic movement in telotrophic ovarioles, J. Cell Sci. 6: 431–449.PubMedGoogle Scholar
  223. MacLean-Fletcher, S., and Pollard, T. D., 1980, Mechanism of action of cytochalasin B on actin, Cell 20: 329–341.PubMedGoogle Scholar
  224. Magun, B., 1973, Two actions of cyclic AMP on melanosome movement in frog skin, Dissection by cytochalasin B, J. Cell Biol. 57: 854–858.Google Scholar
  225. Malawista, S. E., 1965, On the action of colchicine, J. Exp. Med. 122: 361–384.Google Scholar
  226. Malawista, S. E., 1971a, The melanocyte model: Colchicine-like effects of other antimitotic agents, J. Cell Biol. 49: 848–855.PubMedPubMedCentralGoogle Scholar
  227. Malawista, S. E., 197lb, Cytochalasin B reversibly inhibits melanin granule movement in melanocytes, Nature 234: 354–355.Google Scholar
  228. Matsumoto, J., Watanabe, Y., Obika, M., and Hadley, M. E., 1978, Mechanisms controlling pigment movement within swordtail erythrophores in primary cell culture, Comp. Biochem. Physiol. 61A: 509–517.Google Scholar
  229. Matus, A., Bernhardt, R., and Hugh Jones, T., 1981, HMWP proteins are preferentially associated with dendritic microtubules in brain, Proc. Natl. Acad. Sci. USA 78: 3010–3014.PubMedPubMedCentralGoogle Scholar
  230. Maupin-Szamier, P., and Pollard, T. D., 1978, Actin filament destruction by osmium tetroxide, J. Cell Biol. 77: 837–852.PubMedGoogle Scholar
  231. Mays, U., 1972, Stofftransport im Ovar von Pyrrhocoris apterus L, Z. Zellforsch. 123: 395–410.PubMedGoogle Scholar
  232. McGee-Russel, S. M., 1974, Dynamic activities and labile microtubules in cytoplasmic transport in the marine foraminiferan, Allogromia, Symp. Soc. Exp. Biol. 28: 157–189.Google Scholar
  233. McGee-Russel, S. M., and Allen, R. D., 1971, Reversible stabilization of labile microtubules in the retriculopodial network of Allogromia, Adv. Cell Mol. Biol. 1: 153–184.Google Scholar
  234. McGuire, J., and Moellmann, G., 1972, Cytochalasin B: Effects on microfilaments and movement of melanin granules within melanocytes, Science 175: 642–644.PubMedGoogle Scholar
  235. McIntosh, J. R., Hepler, P. K., and Van Wie, D. G., 1969, Model for mitosis, Nature 224: 659–663.Google Scholar
  236. McIntosh, J. R., Euteneuer, U., and Neighbors, B., 1980, Intrinsic polarity as a factor in microtubule function, in: Microtubules and Microtubule Inhibitors 1980 ( M. DeBrabander and J. DeMey, eds.), pp. 357–371, Elsevier, Amsterdam.Google Scholar
  237. McLean, W. G., Frizell, M., and Sjöstrand, J., 1976, Labelled proteins in rabbit vagus nerve between the fast and slow phases of axonal transport, J. Neurochem. 26: 77–82.PubMedGoogle Scholar
  238. McNiven, M., and Porter, K. R., 1981, The microtubule-organizing center in erythrophores: Its three-dimensional structure and behavior during pigment motion, J. Cell Biol. 91: 334a.Google Scholar
  239. Meeusen, R. L., and Cande, W. Z., 1979, N-ethylmaleimide modified heavy meromyosin. A probe for actomyosin interactions, J. Cell Biol. 82: 57–65.PubMedGoogle Scholar
  240. Metuzals, J., 1969, Configuration of a filamentous network in the axoplasm of the squid (Loligo pealli L.) giant nerve fiber, I. Cell Biol. 43: 480–505.Google Scholar
  241. Metuzals, J., and Tasaki, I., 1978, Subaxolemmal filamentous network in the giant nerve fiber of the squid and its possible role in excitability, J. Cell Biol. 78: 597–622.PubMedGoogle Scholar
  242. Miani, N., 1960, Proximo-distal movement along the axon of protein synthesized in the perikaryon of regenerating neurons, Nature 189: 541.Google Scholar
  243. Miani, N., 1963, Analysis of the somato-axonal movement of phospholipids in the vagus and hypoglossal nerves, J. Neurochem. 10: 859–874.PubMedGoogle Scholar
  244. Murphy, D. B., and Borisy, G. G., 1975, Association of high molecular weight proteins with microtubules and their role in microtubule assembly in vitro, Proc. Natl. Acad. Sci. USA 72: 2696–2700.PubMedPubMedCentralGoogle Scholar
  245. Murphy, D. B., and Tilney, L. G., 1974, The role of microtubules in the movement of pigment granules in teleost melanophores, J. Cell Biol. 61: 757–779.PubMedPubMedCentralGoogle Scholar
  246. Murphy, D. B., and Wallis, K. T., 1981, The ATPase activity of neuronal microtubules is associated with membrane vesicles, J. Cell Biol. 91: 47a.Google Scholar
  247. Nadelhaft, I., 1974, Microtubule densities and total numbers in selected axons of the crayfish abdominal nerve cord, J. Neurocytol. 3: 73–86.PubMedGoogle Scholar
  248. Nagai, R., and Fukui, S., 1981, Differential treatment of Acetabularia with cytochalasin B and Nethylmaleimide with special reference to their effects on cytoplasmic streaming, Protoplasma 109: 79–89.Google Scholar
  249. Nagai, R., and Hayama, T., 1979, Ultrastructural aspects of cytoplasmic streaming in Characean cells, in: Cell Motility: Molecules and Organization ( S. Hatano, H. Ishikawa, and H. Sato, eds.), pp. 321–337, University of Tokyo Press, Tokyo.Google Scholar
  250. Nagai, R., and Kamiya, N., 1977, Differential treatment of Chara cells with cytochalasin B with special reference to its effect on cytoplasmic streaming, Exp. Cell Res. 108: 231–237.PubMedGoogle Scholar
  251. Nagai, R., and Rebhun, L. I., 1966, Cytoplasmic microfilaments in streaming Nitella cells, J. Ultrastruct. Res. 14: 571–585.Google Scholar
  252. Nauta, H.J. W., Kaiserman-Abramof, I. R., and L.asek, R. J., 1975, Electron microscopic observations of horseradish peroxidase transported from the caudoputamen to the substantia nigra in the rat: Possible involvement of the agranular reticulum, Brain Res. 85: 373–384.PubMedGoogle Scholar
  253. Nothnagel, E. A., and Webb, W. W., 1982, Hydrodynamic models of viscous coupling between motile myosin and endoplasm in Characean algae, J. Cell Biol. 94: 444–454.PubMedGoogle Scholar
  254. Nothnagel, E. A., Barak, L. S., Sanger, J. W., and Webb, W. W., 1981, Fluorescence studies on modes of cytochalasin B and phallotoxin action on cytoplasmic streaming in Chara, J. Cell Biol. 88: 364–372.PubMedGoogle Scholar
  255. Nothnagel, E. A., Sanger, J. W., and Webb, W. W., 1982, Effects of exogenous proteins on cytoplasmic streaming in perfused Chara cells, J. Cell Biol. 93: 735–742.PubMedGoogle Scholar
  256. Novales, R. R., and Davies, W. J., 1967, Melanin-dispersing effect of adenosine-3’5’-monophosphate on amphibian melanophores, Endocrinology 81: 283–290.PubMedGoogle Scholar
  257. Novales, R. R., and Davies, W. J., 1969, Cellular aspects of the control of physiological color changes in amphibians, Am. Zool.. 9: 479–488.Google Scholar
  258. Novales, R. R., and Fujii, R., 1969, A melanin-dispersing effect of cyclic adenosine monophosphate on Fundulus melanophores, J. Cell. Physiol. 75: 133–135.Google Scholar
  259. Novales, R. R., and Novales, B. J., 1972, Effect of cytochalasin B on the response of the chromatophores in isolated frog skin to MSH, theophylline, and dibutyryl-cyclic AMP, Gen. Comp. Endocrinol. 19: 363–366.PubMedGoogle Scholar
  260. Obika, M., Lo, S. J., Tchen, T. T., and Taylor, J. D., 1978a, Ultrastructural demonstration of hormone-induced movement of carotenoid droplets and endoplasmic reticulum in Xanthophores of the goldfish, Carassiu.s auratus, Cell Tissue Res. 190: 409–416.PubMedGoogle Scholar
  261. Obika, M., Menter, D. G., Tchen, T. T., and Taylor, J. D., 1978b, Actin microfilaments in melanophores of Fundulus heteroclitus. Their possible involvement in melanosome migration, Cell Tissue Res. 193: 387–397.PubMedGoogle Scholar
  262. O’Brien, T. P., and McCully, M. E., 1970, Cytoplasmic fibers associated with streaming and saltatory particle movement in Herculaneum mantegazzianum, Planta 94: 91–94.PubMedGoogle Scholar
  263. O’Brien, T. P., and Thiman, K. V., 1966, Intracellular fibers in oat coleoptile cells and their possible significance in cytoplasmic streaming, Proc. Natl. Acad. Sci. USA 56: 888–894.PubMedPubMedCentralGoogle Scholar
  264. Ochs, S., 1972a, Fast transport of materials in mammalian nerve fibers, Science 176: 252–260.PubMedGoogle Scholar
  265. Ochs, S., 1972b, Rate of fast axoplasmic transport in mammalian nerve fibers, J. Physiol. 227: 627–645.PubMedPubMedCentralGoogle Scholar
  266. Ochs, S., Johnson, J., and Ng, M.-H., 1967, Protein incorporation and axoplasmic flow in motoneuron fibres following intra-cord injection of labelled leucine, J. Neurochem. 14: 317–331.PubMedGoogle Scholar
  267. Ochs, S., Worth, R. M., and Chan, S.-J., 1977, Calcium requirement for axoplasmic transport in mammalian nerve, Nature 270: 748–750.PubMedGoogle Scholar
  268. Ohta, T., 1974, Movement of pigment granules within melanophores of an isolated fish scale. Effects of cytochalasin B on melanophores, Biol. Bull. (Woods Hole) 146: 258–266.Google Scholar
  269. Oplatka, A., and Tirosh, R., 1973, Active streaming in actomyosin solutions, Biochim. Biophys. Acta 305: 684–688.PubMedGoogle Scholar
  270. Oplatka, A., Gadasi, H., Tirosh, R., Lamed, Y., Muhlrad, A., and Liron, N., 1974, Demonstration of mechanochemical coupling in systems containing actin, ATP and non-aggregating active myosin derivates, J. Mechanochem. Cell Motil. 2: 295–306.PubMedGoogle Scholar
  271. Ostlund, R. E., Leung, J. T., and Kipnis, D. M., 1977, Muscle actin filaments bind pituitary secretory granules in vitro, J. Cell Biol. 73: 78–87.PubMedGoogle Scholar
  272. Palevitz, B. A., and Hepler, P. K., 1975, Identification of actin in situ at the ectoplasm—endoplasm interface of Nitella. Microfilament-chloroplast association, J. Cell Biol. 65: 29–38.PubMedGoogle Scholar
  273. Palevitz, B. A., Ash, J. F., and Hepler, P. K., 1974, Actin in the green algae Nitella, Proc. Natl. Acad. Sci. USA 71: 363–366.Google Scholar
  274. Papasozomenos, S. C., Autilio-Gambetti, L., and Gambetti, P., 1981, Reorganization of axoplasmic organelles following 13,13’-iminodipropionitrile administration, J. Cell Biol. 91: 866–871.PubMedGoogle Scholar
  275. Papasozomenos, S. C., Yoon, M., Crane, R., Autilio-Gambetti, L., and Gambetti, P., 1982, Redistribution of proteins of fast axonal transport following administration of 0,13’-iminodipropionitrile: A quantitative autoradiographic study, J. Cell Biol. 95: 672–675.PubMedGoogle Scholar
  276. Parthasarathy, M. V., and Mühlethaler, K., 1972, Cytoplasmic microfilaments in plant cells, J. Ultrastruct. Res. 38: 46–62.PubMedGoogle Scholar
  277. Parthasarathy, M. V., and Pesacreta, T. C., 1980, Microfilaments in plant vascular cells, Can. J. Bot. 58: 807–815.Google Scholar
  278. Paulson, J. C., and McClure, W. O., 1974, Microtubules and axoplasmic transport, Brain Res. 73: 333–337.PubMedGoogle Scholar
  279. Paulson, J. C., and McClure, W. O., 1975, Microtubules and axoplasmic transport. Inhibition of transport by podophyllotoxin: An interaction with microtubule protein, J. Cell Biol. 67: 461–467.PubMedPubMedCentralGoogle Scholar
  280. Pennigroth, S. M., Cheung, A., Bouchard, P., Gagnon, C., and Bordin, C. W., 1982, I)ynein ATPase is inhibited selectively in vitro by erythro-9-[3–2(hydroxynonyl)]adenine, Biochem. Biophys. Res. Commun. 104: 234–240.Google Scholar
  281. Pickett-Heaps, J. D., 1967, Ultrastructure and differentiation in Chara sp. I. Vegetative cells, Austr. J. Biol. Sci. 20: 539–551.Google Scholar
  282. Pomerat, C. M., Hendelman, W. J., Raiborn, C. W., and Massey, J. F., 1967, Dynamic activities of nervous tissues in vitro, in: The Neuron ( H. Hydén, ed.), pp. 119–178, Elsevier, Amsterdam.Google Scholar
  283. Porter, K. R., 1973, Microtubules in intracellular locomotion, Ciba Found. Symp. 14: 149–166.PubMedGoogle Scholar
  284. Porter, K. R., and McNiven, M. A., 1982, The cytoplast: A unit structure in chromatophores, Cell 29: 23–32.PubMedGoogle Scholar
  285. Pratt, M. M., 1980, The identification of a dynein ATPase in unfertilized sea urchin eggs, Dev. Biol. 74: 364–378.PubMedGoogle Scholar
  286. Puiseux-Dao, S., 1979, Movements cytoplsmiques et morphogenese chez l’Acetabularia mediterranea, Biol. Cellulaire 34: 83–90.Google Scholar
  287. Puszkin, S., Berl, S., Puszkin, E., and Clarke, D. D., 1968, Actomyosin-like protein isolated from mammalian brain, Science 161: 170–171.PubMedGoogle Scholar
  288. Puszkin, S., Nicklas, W. J., and Berl, S., 1972, Actomyosin-like protein in brain: Subcellular distribution, J. Neurochem. 19: 1319–1333.PubMedGoogle Scholar
  289. Putney, J. W., 1978, Stimulus-permeability coupling: Role of calcium in the receptor regulation of membrane permeability, Pharmacol. Rev. 30: 209–245.PubMedGoogle Scholar
  290. Raine, C. S., Ghetti, B., and Shelanski, M. L., 1971, On the association between microtubules and mitochondria within axons, Brain Res. 34: 389–393.PubMedGoogle Scholar
  291. Rambourg, A. and Droz, B., 1980, Smooth endoplasmic reticulum and axonal transport, J. Neurochem. 35: 16–25.PubMedGoogle Scholar
  292. Rebhun, L. I., 1972, Polarized intracellular particle transport: Saltatory movements and cytoplasmic streaming, Int. Rev. Cytol. 32: 93–137.PubMedGoogle Scholar
  293. Rinaldi, R. A., and Jahn, T. L., 1964, Shadowgraphs of protoplasmic movement in Allogromia laticollaris and a correlation of this movement to striated muscle contraction, Protoplasma 58: 369–390.Google Scholar
  294. Robison, W. G., and Charlton, J. S., 1973, Microtubules, microfilaments, and pigment granule movement in the chromatophores of Palaemonetes vulgaris, J. Exp. Zool. 186: 297–304.Google Scholar
  295. Ross, J., Olmsted, J. B., and Rosenbaum, J. L., 1975, The ultrastructure of mouse neuroblastoma cells in tissue culture, Tissue Cell 7: 107–136.Google Scholar
  296. Roth, L. E., and Shigenaka, Y., 1970, Microtubules in the heliozoan axopodium II. Rapid degradation by cupric and nickelous ions, J. Ultrastruct. Res. 31: 356–374.PubMedGoogle Scholar
  297. Sabnis, D. D., and Jacobs, W. P., 1967, Cytoplasmic streaming and microtubules in the coenocytic marine alga Caulerpa prolifera, J. Cell Sci. 2: 465–472.PubMedGoogle Scholar
  298. Saidel, W. M., 1977, Metabolic energy requirements during teleost melanophore adaptations, Experientia 33: 1573–1574.PubMedGoogle Scholar
  299. Samson, F. E., 1976, Pharmacology of drugs that affect intracellular movement, Annu. Rev. Pharmacol. Toxicol. 16: 143–159.PubMedGoogle Scholar
  300. Scheele, R. B., and Borisy, G. G., 1979, In vitro assembly of microtubules, in: Microtubules ( K. Roberts and J. S. Hyams, eds.), pp. 175–254, Academic Press, London.Google Scholar
  301. Schliwa, M., 1976, The role of divalent cations in the regulation of microtubule assembly. In vivo studies on microtubules of the heliozoan axopodium using the ionophore A 23187, J. Cell Biol. 70: 527–540.Google Scholar
  302. Schliwa, M., 1978, Microtubular apparatus of melanophores. Three-dimensional organization, J. Cell Biol. 76: 605–614.PubMedPubMedCentralGoogle Scholar
  303. Schliwa, M., 1979, Stereo high voltage electron microscopy of melanophores. Matrix transformations and the effects of cold and colchicine, Exp. Cell Res. 118: 323–340.PubMedGoogle Scholar
  304. Schliwa, M., 1981, Microtubule-dependent intracellular transport in melanophores, in: International Cell Biology 1980–1981 ( H. G. Schweiger, ed.), pp. 275–285, Springer Verlag, Berlin-Heidelberg.Google Scholar
  305. Schliwa, M., 1982a, Action of cytochalasin D on cytoskeletal networks, J. Cell Biol. 92: 79–91.PubMedGoogle Scholar
  306. Schliwa, M., 1982b, Chromatophores: Their use in understanding microtubule-dependent intracellular transport, Methods Cell Biol. 25: 285–312.PubMedGoogle Scholar
  307. Schliwa, M., and Bereiter-Hahn, J., 1973a, Pigment movements in fish melanophores: Morphological and physiological studies. II Cell shape and microtubules, Z. Zellforsch. 147: 107125.Google Scholar
  308. Schliwa, M., and Bereiter-Hahn, J., 1974b, Pigment movements in fish melanophores: Morphological and physiological studies. III. The effects of colchicine and vinblastine, Z. Zellforsch. 147: 127–148.Google Scholar
  309. Schliwa, M., and Euteneuer, U., 1978a, Quantitative analysis of the microtubule system in isolated fish melanophores, J. Supramol. Struct. 8: 177–190.Google Scholar
  310. Schliwa, M., and Euteneuer, U., 1978b, A microtubule-independent component may be involved in granule transport in pigment cells, Nature 273: 556–558.PubMedGoogle Scholar
  311. Schliwa, M., Osborn, M., and Weber, K., 1978, Microtubule system of isolated fish melanophores as revealed by immunofluorescence microscopy, J. Cell Biol. 76: 229–236.PubMedGoogle Scholar
  312. Schliwa, M., Euteneuer, U., Herzog, W., and Weber, K., 1979a, Evidence for rapid structural and functional changes of the melanophore microtubule-organizing center upon pigment movements, J. Cell Biol. 83: 623–632.PubMedPubMedCentralGoogle Scholar
  313. Schliwa, M., Wehland, J., and Weber, K., 19796, Localization and organization of actin in a fish melanophore, and a functional test of its involvement in intracellular transport, J. Cell Biol. 83:315a.Google Scholar
  314. Schliwa, M., Weber, K., and Porter, K. R., 1981, Localization and organization of actin in melanophores, J. Cell Biol. 89: 267–275.PubMedGoogle Scholar
  315. Schmitt, F. O., 1968, Fibrous proteins—neuronal organelles, Proc. Natl. Acad. Sci. USA 66: 1092 1101.Google Scholar
  316. Schnapp, B. J., and Reese, T. S., 1982, Cytoplasmic structure in rapid-frozen axons, J. Cell Biol. 94: 667–679.PubMedGoogle Scholar
  317. Schönharting, H., Breer, H., Rahmann, H., Siebert, G., and Wisner, H., 1977, Colchiceine, a novel inhibitor of fast axonal transport without tubulin binding properties, Eur. J. Cell Biol. 16: 106–117.Google Scholar
  318. Schonbach, J., Schonbach, C., and Cuénod, M., 1971, Rapid phase of axoplasmic flow and synaptic proteins: An electron microscopical autoradiographic study, J. Comp. Neurol. 141: 485–498.PubMedGoogle Scholar
  319. Schwab, M. E., 1977, Ultrastructural localization of nerve growth factor-horseradish peroxidase (NGF-HRP) coupling product after retrograde axonal transport in adrenergic neurons, Brain Res. 130: 190–196.PubMedGoogle Scholar
  320. Schwab, M. E., and Thoenen, H., 1978, Selective binding, uptake, and retrograde transport of tetanus toxin by nerve terminals in the rat iris, J. Cell Biol. 77: 1–13.PubMedGoogle Scholar
  321. Schwab, M. E., Suda, K., and Thoenen, H., 1979, Selective retrograde transsynaptic transfer of a protein, tetanus toxin, subsequent to its retrograde axonal transport, J. Cell Biol. 82: 798–810.Google Scholar
  322. Schwartz, J. H., 1979, Axonal transport: Components, mechanisms and specificity, Annu. Rev. Neurosci. 2: 467–504.Google Scholar
  323. Seitz, K., 1979, Cytoplasmic streaming and cyclosis of chloroplasts, in: Physiology of Movements ( W. Haupt and G. Feinlieb, eds.), pp. 150–169, Springer Verlag, Berlin.Google Scholar
  324. Selden, S. C., and Pollard, T. D., 1982, Phosphorylation of microtubule-associated proteins regulates their interaction with actin filaments, J. Cell Biol. 95: 348a.Google Scholar
  325. Sherline, P., Lee, Y.-C., and Jacobs, L. S., 1977, Binding of microtubules to pituitary secretory granules and secretory granule membranes, J. Cell Biol. 72: 380–389.PubMedGoogle Scholar
  326. Shimmen, T., 1978, Dependency of cytoplasmic streaming on intracellular ATP and Mgt+ concentrations, Cell Struct. Funct. 3: 113–121.Google Scholar
  327. Shimmen, T., and Tazawa, M., 1982, Cytoplasmic streaming in the cell model of Nitella, Protoplasma 112: 101–106.Google Scholar
  328. Simons, T. J. B., 1979, Vanadate—new tool for biologists, Nature 281: 337–338.PubMedGoogle Scholar
  329. Small, J. V., 1981, Organization of actin in the leading edge of cultured cells: Influence of osmium tetroxide and dehydration on the ultrastructure of actin meshworks, J. Cell Biol. 91: 695–705.PubMedGoogle Scholar
  330. Smith, D. S., 1971, On the significance of cross-bridges between microtubules and synaptic vesicles, Phil. Trans. R. Soc. London Ser. B 261: 365–405.Google Scholar
  331. Smith, D. S., Järlfors, U., and Cayer, M. L., 1977, Structural cross-bridges between microtubules and mitochondria in central axons of an insect (Periplaneta americana), J. Cell Sci. 27: 235–272.Google Scholar
  332. Smith, R. S., 1972, Detection of organelles in myelinated nerve fibers by dark field microscopy, Can. J. Physiol. Pharmacol. 50: 467–469.PubMedGoogle Scholar
  333. Smith, R. S., 1980, The short term accumulation of axonally transported organdies in the region of localized lesions of single melinated axons, J. Neurocytol. 9: 39–65.PubMedGoogle Scholar
  334. Smith, R. S., and Koles, Z. J., 1976, Mean velocity of optically detected intra-axonal particles measured by a cross-correlation method, Can. J. Physiol. Pharmacol. 54: 859–869.PubMedGoogle Scholar
  335. Sotelo, C., and Riche, D., 1974, The smooth endoplasmic reticulum and the retrograde and fast orthograde transport of horseradish peroxidase in the nigro-striatonigral loop, Anat. Embryol. 146: 209–218.PubMedGoogle Scholar
  336. Stearns, M. E., 1982, High voltage electron microscopy studies of axoplasmic transport in neurons: a possible regulatory role for divalent cations, J. Cell Biol. 92: 765–776.PubMedGoogle Scholar
  337. Stearns, M. E., and Ochs, R., 1982, A functional in vitro model for studies of intracellular motility in permeabilized erythrophores, J. Cell Biol. 94: 727–739.PubMedGoogle Scholar
  338. Stephens, R. E., and Edds, K. T., 1976, Microtubules: Structure, chemistry and function, Physiol. Rev. 56: 709–777.PubMedGoogle Scholar
  339. Stoeckel, K., Schwab, M., and Thoenen, H., 1975, Specificity of retrograde transport of nerve growth factor (NGF) in sensory neurons: A biochemical and morphological study, Brain Res. 89: 1–14.PubMedGoogle Scholar
  340. Stone, G. C., Wilson, D. L., and Hall, M. E., 1978, Two dimensional gel electrophoresis of proteins in rapid axoplasmic transport, Brain Res. 144: 287–302.PubMedGoogle Scholar
  341. Suchard, S. J., and Goode, D., 1982, Microtubule-dependent transport of secretory granules during stalk secretion in a peritrich ciliate, Cell Motil. 2: 47–71.Google Scholar
  342. Summers, K. E., and Gibbons, I. R., 1971, Adenosine triphosphate-induced sliding of tubules in trypsin-treated flagella of sea urchin sperm, Proc. Natl. Acad. Sci. USA 68: 3092–3096.PubMedPubMedCentralGoogle Scholar
  343. Suprenant, K. A., and Dentier, W. L., 1982, Association between endocrine pancreatic secretory granules and in vitro-assembled microtubules is dependent upon microtubule-associated proteins, J. Cell Biol. 93: 164–174.PubMedGoogle Scholar
  344. Tani, E., and Ametani, T., 1970, Substructure of microtubules in brain nerve cells as revealed by ruthenium red, J. Cell Biol. 46: 159–165.PubMedPubMedCentralGoogle Scholar
  345. Taylor, D. I,., and Condeelis, J. S., 1979, Cytoplasmic structure and contractility in amoeboid cells, Int. Rev. Cytol. 56: 57–144.Google Scholar
  346. Tazawa, M., 1964, Studies on Nitella having artificial cell sap. I. Replacement of the cell sap with artificial solutions, Plant Cell Physiol. 5: 33–43.Google Scholar
  347. Tazawa, M., 1968, Motive force of the cytoplasmic streaming in Nitella, Protoplasma 65: 207–222.Google Scholar
  348. Tazawa, M., Kikuyama, M., and Shimmen, T., 1976, Electric characteristics and cytoplasmic streaming of Characeae cells lacking tonoplast, Cell Struct. Funct. 1: 165–176.Google Scholar
  349. Thoenen, H., and Kreutzberg, G. W., 1981, The role of fast transport in the nervous system, Neurosci. Res. Prog. Bull. 20: (I).Google Scholar
  350. Tilney, L. G., 1968, Studies on the microtubules in heliozoa. IV. The effect of colchicine on the formation and maintenance of the axopodia and the redevelopment of pattern in Actinosphaerium nucleofilum (Barrett), f. Cell Sci. 3: 549–562.Google Scholar
  351. Tilney, L. G., and Porter, K. R., 1965, Studies on the microtubules in heliozoa. I. Fine structure of Actinosphaerium with particular reference to axial rod structure, Protoplasma 60: 317–344.PubMedGoogle Scholar
  352. Tilney, L. G., and Porter, K. R., 1967, Studies on the microtubules in heliozoa. II. The effect of low temperature on these structures in the formation and maintenance of axopodia, J. Cell Biol. 34: 327–343.PubMedPubMedCentralGoogle Scholar
  353. Tilney, L. G., Hiramoto, Y., and Marsland, D., 1966, Studies on the microtubules in heliozoa. III. A pressure analysis of the role of these structures in the formation and maintenance of the axopodia of Actinosphaerium nucleofilum, J. Cell Biol. 29: 77–95.Google Scholar
  354. Tirosh, R., and Oplatka, A., 1982, Active streaming against gravity in glass microcapillaries of solutions containing acto-heavy meromyosin and native tropomyosin, J. Biochem. 91: 1435–1440.PubMedGoogle Scholar
  355. Travis, J. L., and Allen, R. D., 1981, Studies on the motility of the Foraminifera. I. Ultrastructure of the reticulopodial network of Allogromia laticollaris (Arnold), J. Cell Biol. 90: 211–221.PubMedGoogle Scholar
  356. Troyer, D. S., 1975, Possible involvement of the plasma membrane in saltatory particle movement in heliozoan axopods, Nature 254: 696–698.PubMedGoogle Scholar
  357. Tsukita, S., and Ishikawa, H., 1980, The movement of membraneous organelles in axons. Electron microscopic identification of anterogradely and retrogradely transported organelles, J. Cell Biol. 84: 513–530.PubMedGoogle Scholar
  358. Tsukita, S., and Ishikawa, H., 1981, The cytoskeleton in myelinated axons: Serial section study, Biomed. Res. 2: 424–437.Google Scholar
  359. Tucker, J. B., 1974, Microtubule arms and cytoplasmic streaming and microtubule bending and stretching of intertubule links in the feeding tentacle of the suctorian ciliate Tokophrya, J. Cell Biol. 62: 424–437.Google Scholar
  360. Tucker, J. B., 1979, Spatial organization of microtubules. in: Microtubules ( K. Roberts and J. S. Hyams, eds.), pp. 315–357, Academic Press, London.Google Scholar
  361. Tytell, M., Black, M. M., Garner, J. A., and Lasek, R. J., 1981, Axonal transport: Each major rate component reflects the movement of distinct macromolecular complexes, Science 214: 179–181.PubMedGoogle Scholar
  362. Vallee, R. B., 1980, Structure and phosphorylation of microtubule-associated protein 2 (MAP 2), Proc. Natl. Acad. Sci. USA 77: 3206–3210.PubMedPubMedCentralGoogle Scholar
  363. Wagner, R. C., and Rosenberg, M. D., 1973, Endocytosis in Chang liver cells: The role of microtubules in vacuole orientation and movement, Cytobiology 7: 20–27.Google Scholar
  364. Wallach, D., Davies, P. J. A., and Pastan, I., 1978, Purification of mammalian filamin, J. Biol. Chem. 254: 10250–10255.Google Scholar
  365. Wang, E., and Choppin, P. W., 1981, Effect of vanadate on intracellular distribution and function of 10 nm filaments, Proc. Natl. Acad. Sci. USA 78: 2363–2367.PubMedPubMedCentralGoogle Scholar
  366. Wang, E., and Goldman, R. D., 1978, Functions of cytoplasmic fibers in intracellular movements in BHK-21 cells, J. Cell Biol. 79: 708–726.PubMedGoogle Scholar
  367. Wang, E., Cross, R. K., and Choppin, P. W., 1979, Involvement of microtubules and 10 mm filaments in the movement and positioning of nuclei in syncytia, J. Cell Biol. 83: 320–337.PubMedGoogle Scholar
  368. Wang, K., Ash, F., and Singer, S.J., 1975, Filamin: A new high molecular weight protein found in smooth muscle and nonmuscle cells, Proc. Natl. Acad. Sci. USA 72: 4483–4487.PubMedPubMedCentralGoogle Scholar
  369. Weber, W., and Dambach, M., 1972, Amöboid bewegliche Pigmentzellen im Epithel des Seeigels Centrostephanus longispinus, Z. Zellforsch. 133: 87–102.Google Scholar
  370. Wehland, J., Osborn, M., and Weber, K., 1977, Phalloidin-induced actin polymerization in the cytoplasm of cultured cells interferes with cell locomotion and growth, Proc. Natl. Acad. Sci. USA 74: 5613–5617.PubMedPubMedCentralGoogle Scholar
  371. Weiss, D., 1982, Axoplasmic Transport, Springer Verlag, Berlin.Google Scholar
  372. Weiss, P. A., and Hiscoe, H. B., 1948, Experiments on the mechanism of nerve growth, J. Exp. Zool. 107: 315–395.PubMedGoogle Scholar
  373. Weiss, P. A., and Mayr, R., 197la, Neuronal organelles in neuroplasmic (“axonal”) flow. I. Mitochondria, Acta Neuropathol. Suppl. 5: 187–197.Google Scholar
  374. Weiss, P. A., and Mayr, R., 1971b, Neuronal organelles in neuroplasmic (“axonal”) flow. II. Neurotubules, Acta Neuropathol. Suppl. 5: 198–206.Google Scholar
  375. Wessels, N., Spooner, B., Ash, J., Bradley, H., Luduena, M., Taylor, E., Wrenn, J., and Yamada, K., 1971, Microfilaments in cellular and developmental processes, Science 171: 135–143.Google Scholar
  376. Wieland, T., 1977, Modification of actins by phallotoxins, Naturwissenschaften 64:303–309. Wikswo, M. A., and Novales, R. R., 1969, The effect of colchicine on migration of pigment granules in the melanophores of Fundulus heteroclitus, Biol. Bull. 137: 228–237.Google Scholar
  377. Willard, M., 1977, The identification of two intra-axonally transported polypeptides resembling myosin in some respects in the rabbit visual system, J. Cell Biol. 75: 1–11.PubMedGoogle Scholar
  378. Willard, M., and Simon, C., 1981, Antibody decoration of neurofilaments, J. Cell Biol. 89: 198–205.PubMedGoogle Scholar
  379. Willard, M., Cowan, W. M., and Vagelos, P. R., 1974, The polypeptide composition of intraaxonally transported proteins: Evidence for four transport velocities, Proc. Natl. Acad. Sci. USA 71: 2183–2187.PubMedPubMedCentralGoogle Scholar
  380. Williamson, R. E., 1972, A light microscope study of the action of cytochalasin Bon the cells and isolated cytoplasm of the characeae, J. Cell Sci. 10: 811–819.PubMedGoogle Scholar
  381. Williamson, R. E., 1975, Cytoplasmic streaming in Chara: A cell model activated by ATP and inhibited by cytochalasin B, J. Cell Sci. 17: 655–668.PubMedGoogle Scholar
  382. Williamson, R. E., 1979, Filaments associated with the endoplasmic reticulum in the streaming cytoplasm of Chara corallina, Eur. J. Cell Biol. 20: 177–183.Google Scholar
  383. Williamson, R. E., 1980, Actin in motile and other processes in plant cells, Can. J. Bot. 58: 766–772.Google Scholar
  384. Wilson, D. L., and Stone, G. C., 1979, Axoplasmic transport of proteins, Annu. Rev. Biophys. Bioeng. 8: 27–45.PubMedGoogle Scholar
  385. Wolosewick, J. J., and Porter, K. R., 1976, Stereo high voltage electron microscopy of whole cells of the human diploid line WI-36, Am. J. Anat. 147: 303–323.PubMedGoogle Scholar
  386. Wolosewick, J. J., and Porter, K. R., 1979, The microtrabecular lattice of the cytoplasmic ground substance. Artifact or reality ? J. Cell Biol. 82: 114–139.PubMedGoogle Scholar
  387. Wuerker, R. B., and Kirkpatrick, J. B., 1972, Neuronal microtubules, neurofilaments, and micro-filaments, Int. Rev. Cytol. 33: 45–75.PubMedGoogle Scholar
  388. Yano, M., 1978, Observations of steady streamings in a solution of Mg-ATP and acto-heavy meromyosin from rabbit skeletal muscle, J. Biochem. 83: 1203–1204.PubMedGoogle Scholar
  389. Yano, M., Yamada, T., and Shimizu, H., 1978, Studies on the chemo-mechanical conversion in artifically produced streamings, J. Biochem. 84: 277–284.PubMedGoogle Scholar
  390. Yano, M., Yamamoto, Y., and Shimizu, H., 1982, An actomyosin motor, Nature 299: 557–559.PubMedGoogle Scholar
  391. Zatz, M., and Barondes, S. H., 1971, Rapid transport of fucosyl glycoproteins to nerve endings in mouse brain, J. Neurochem. 18: 1125–1133.PubMedGoogle Scholar
  392. Zenker, W., and Hohberg, E., 1973, A a-nerve fibre: Number of neurotubules in the stem fibre and in the terminal branches, J. Neurocytol. 2: 143–148.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Manfred Schliwa
    • 1
  1. 1.Department of ZoologyUniversity of California at BerkeleyBerkeleyUSA

Personalised recommendations