Advertisement

Brain Slices pp 227-261 | Cite as

Optical Monitoring of Electrical Activity

Detection of Spatiotemporal Patterns of Activity in Hippocampal Slices by Voltage-Sensitive Probes
  • A. Grinvald
  • M. Segal

Abstract

This chapter describes a novel approach to investigate the spatiotemporal distribution of electrical activity in nervous systems. Using voltage-sensitive dyes and an electro-optical measuring system, it has recently become possible to monitor electrical activity simultaneously from multiple sites on the processes of single nerve cells, either in culture or in an intact central nervous system (CNS) in vitro, to detect the activity of many individual neurons controlling a behavioral response in invertebrate ganglia, or to follow the activity of populations of neurons at many neighboring loci in mammalian brain slices or in the intact brain. Employing optical recordings and a display processor, the images of nerve cells light up on a TV monitor when they are electrically active. Thus, the spread of electrical activity can literally be visualized in slow motion. This chapter describes recent progress in the implementation of this new technique.

Keywords

Electrical Activity Growth Cone Optical Signal Apical Dendrite Optical Recording 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agmon, A., Hildesheim, R., Anglister, L., and Grinvald, A., 1982, Optical recording from processes of individual leech CNS neurons iontophoretically injected with new fluorescent voltage-sensitive dyes, Neurosci. Lett. 10:535.Google Scholar
  2. Anglister, L., and Grinvald, A., 1983, Real-time visualization of the spatio-temporal spread of electrical responses in the optic tectum of vertabrates, IsraelJ. Med. Sci., in press.Google Scholar
  3. Andersen, P., Eccles, J. C., and Loyning, Y., 1964, Pathway of postsynaptic inhibition in the hippocampus, J. Neurophysiol. 27:608–619.PubMedGoogle Scholar
  4. Andersen, P., Silfvenius, H., Sundberg, S. H., Sveen, O., and Wigstrom, H., 1978, Functional characteristics of unmyelinated fibers in the hippocampal cortex, Brain Res. 144:11–18.PubMedCrossRefGoogle Scholar
  5. Brown, T. H., Fricke, R. A., and Perkel, D. H., 1981, Passive electrical constants in three classes of hippocampal neurons, J. Neurophysiol. 46:812–827.PubMedGoogle Scholar
  6. Cohen, L. B. and Keynes, R. D., 1971, Changes in light-scattering associated with the action potential in crab nerve, J. Physiol. (London) 212:259–275.Google Scholar
  7. Cohen, L. B. and Salzberg, B. M., 1978, Optical measurement of membrane potential, Rev. Physiol. Biochem. Pharmacol. 83:35–88.PubMedGoogle Scholar
  8. Cohen, L. B., Keynes, R. D., and Hille, B., 1968, Light scattering and birefringence changes during nerve activity, Nature (London) 218:438–441.CrossRefGoogle Scholar
  9. Cohen, L. B., Keynes, R. D., and Landowne, D., 1972, Changes in axon light-scattering that accompany the action potential: Current dependent components, J. Physiol. (London) 224:727–752.Google Scholar
  10. Cohen, L. B., Salzberg, B. M., Davila, H. V., Ross, W. N., Landowne, D., Waggoner, A. S., and Wang, C. H., 1974, Changes in axon fluorescence during activity; Molecular probes of membrane potential, J. Membrane Biol. 19:1–36.CrossRefGoogle Scholar
  11. Cohen, L. B., Salzberg, B. M., and Grinvald, A., 1978, Optical methods for monitoring neuron activity, Annu. Rev. Neurosa. 1:171–182.CrossRefGoogle Scholar
  12. Grinvald, A. and Farber, I., 1981. Optical recording of Ca+2 action potentials from growth cones of cultured neurons using a laser microbeam, Science 212:1164–1169.PubMedCrossRefGoogle Scholar
  13. Grinvald, A., Salzberg, B. M. and Cohen, L. B., 1977, Simultaneous recording from several neurons in an invertebrate central nervous system, Nature (London) 268:140–142.CrossRefGoogle Scholar
  14. Grinvald, A., Ross, W. N., Farber, I., Saya, D., Zutra, A., Hildesheim, R., Kuhnt, U., Segal, M., and Kimhi, Y., 1980, Optical methods to elucidate electrophysiological parameters, In: Neurotransmitters and Their Receptors (U. Z. Littauer, ed.), John Wiley and Sons, New York, pp. 531–546.Google Scholar
  15. Grinvald, A., Cohen, L. B., Lesher, S., and Boyle, M. B., 1981a, Simultaneous optical monitoring of activity of many neurons in invertebrate ganglia, using a 124 element ‘‘Photodiode’’ array, J. Neurophysiol. 45:829–840.PubMedGoogle Scholar
  16. Grinvald, A., Ross, W. N., and Farber, I., 1981b, Simultaneous optical measurements of electrical activity from multiple sites on processes of cultural neurons, Proc. Natl. Acad. Sci. USA, 78:3245–3249.PubMedCrossRefGoogle Scholar
  17. Grinvald, A., Manker, A., and Segal, M., 1982b, Visualization of the spread of electrical activity in rat hippocampal slices by voltage sensitive optical probes, J. Physiol. (London), 333:269–291.Google Scholar
  18. Grinvald, A., Hildesheim, R., Farber, I. C., and Anglister, L., 1982a, Improved fluorescent probes for the measurement of rapid changes in membrane potential, Biophys. J., 39:301–308.PubMedCrossRefGoogle Scholar
  19. Grinvald, A., Anglister, L., Hildesheim, R., and Freeman J. A., 1983a, Optical monitoring of naturally evoked dynamic patterns of neuronal activity from the frog optic tectum, Neurosci. Abstr. 9:540.Google Scholar
  20. Grinvald, A., Fine, A., Farber, I. C., and Hildesheim, R., 1983b, Fluorescence monitoring of electrical responses from small neurons and their processes, Biophys. J. 42:195–198.PubMedCrossRefGoogle Scholar
  21. Grinvald, A., Hildesheim, R., Agmon, A., and Fine A., 1982c, Optical recording from neuronal processes and their visualization by iontophoretic injection of new fluorescent voltage sensitive dyes, Neurosa. Abstr. 8:491.Google Scholar
  22. Gupta, R., Salzberg, B. M., Grinvald, A., Cohen, L. B., Kamino, K., Boyle, M. B., Waggoner, A. S., and Wang, C. H., 1981, Improvements in optical methods for measuring rapid changes in membrane potential, J. Membrane Biol. 58:123–138.CrossRefGoogle Scholar
  23. Krauthaimer, V. and Ross, W. N., 1981, Optical measurement of potential changes in axons and processes of neurons of a barnacle ganglion, Neurosa. Abstr. 7:114.Google Scholar
  24. Lipton, P., 1973, Effects of membrane depolarization on light scattering by cerebral slices, J. Physiol. (London) 231:365–383.Google Scholar
  25. Llinás, R. and Sugimori, M., 1980, Electrophysiological properties of in vitro Purkinje cell dendrites in mammalian cerebellar slices, J. Physiol. (London) 305:197–213.Google Scholar
  26. MacVicar, B. A. and Dudek, S. E., 1981, Electrotonic coupling between pyramidal cells: A direct demonstration in rat hippocampal slices, Science 213:782–785.PubMedCrossRefGoogle Scholar
  27. Orbach, S. H. and Cohen, L. B., 1983, Simultaneous optical monitoring of activity from many areas of the salamander olfactory bulb. A new method for studying functional organization in the vertebrate CNS, J. Neurosci, in press.Google Scholar
  28. Orbach, S. H., Cohen, L. B., and Grinvald, A., 1982, Optical monitoring of evoked activity in the visual cortex of the rat, Biol. Bull, 163:389.Google Scholar
  29. Orback, S. H., Cohen, L. B., and Grinvald, A., 1983, Optical monitoring of electrical responses in the rat somatosensory and visual cortex, Israel J. Med. Sci., in press.Google Scholar
  30. Ross, W. N. and Reichardt, L. F., 1979, Species-specific effects on the optical signals of voltage sensitive dyes, J. Membrane Biol. 48:343–356.CrossRefGoogle Scholar
  31. Ross, W. N., Salzberg, B. M., Cohen, L. B., Grinvald, A., Davila, H. V., Waggoner, A. S., and Wang, C. H., 1977, Changes in absorption, fluorescence, dichroism and birefringence in stained axons: Optical measurement of membrane potential, J. Membrane Biol. 33:141–183.CrossRefGoogle Scholar
  32. Salzberg, B. M., Davila, H. V., and Cohen, L. B., 1973, Optical recording of impulses in individual neurons of an invertebrate central nervous system, Nature (London) 246:508–509.CrossRefGoogle Scholar
  33. Salzberg, B. M., Grinvald, A., Cohen, L. B., Davila, H. V., and Ross, W. N., 1977, Optical recording of neuronal activity in an invertebrate central nervous system: Simultaneous monitoring of several neurons, J. Neurophys. 40:1281–1291.Google Scholar
  34. Schwartzkroin, P. A. and Prince, D. A., 1980, Effects of TEA on hippocampal neurons, Brain Res. 185:169–181.PubMedCrossRefGoogle Scholar
  35. Schwartzkroin, P. A. and Slawsky, M., 1977, Probable calcium spikes in hippocampal neurons, Brain Res. 135:157–161.PubMedCrossRefGoogle Scholar
  36. Sherrington, C. S., 1953, Man on His Nature, Doubleday and Company, Inc., Garden City, New York, p. 183.Google Scholar
  37. Spencer, W. A. and Kandel, E. R., 1961, Electrophysiology of hippocampal neurons. IV. Fast prepotentials, J. Neurophysiol. 24:272–285.Google Scholar
  38. Tasaki, I., Watanabe, A., Sandlin, R., and Camay, L., 1968, Changes in fluorescence turbidity and birefringence associated with nerve excitation, Proc. Natl. Acad. Sci. USA, 61:883–888.PubMedCrossRefGoogle Scholar
  39. Turner, D. A. and Schwartzkroin, P. A., 1980, The steady-state electrotonic analysis of intracellularly stained hippocampal neurons, J. Neurophysiol. 44:184–199.PubMedGoogle Scholar
  40. Waggoner, A. S., 1979, Dye indicators of membrane potential, Annu. Rev. Biophys. Bioeng. 8:47–63.PubMedCrossRefGoogle Scholar
  41. Waggoner, A. S. and Grinvald, A., 1977, Mechanisms of rapid optical changes of potential sensitive dyes, Ann. N. Y. Acad. Sci. 303:217–242.PubMedGoogle Scholar
  42. Wong, R. K. S., Prince, D. A., and Basbaum, A. I., 1979, Intradendritic recordings from hippocampal neurons, Proc. Natl. Acad. Sci. USA 76:986–990.PubMedCrossRefGoogle Scholar
  43. Yamamoto, C., 1972, Intracellular study of seizure-like afterdischarges elicited in thin hippocampal sections in vitro, Exp. Neurol. 35:154–164.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • A. Grinvald
    • 1
  • M. Segal
    • 1
  1. 1.The Weizmann Institute of ScienceRehovotIsrael

Personalised recommendations