Advertisement

Brain Slices pp 113-153 | Cite as

Energy Metabolism and Brain Slice Function

  • Peter Lipton
  • Tim S. Whittingham

Abstract

The brain slice preparation has been used in a wide variety of investigations since its development in the 1930s by Quastel and by Elliot (Elliot and Wolfe, 1962). Prior to the 1970s, most of this work centered on slice metabolism, with a particular focus on the metabolic consequences of electrical activity (McIlwain and Bachelard, 1971). Although these studies were fundamental to the whole development of the brain slice as a useful preparation, they had a serious drawback in that normal electrophysiological responses could not be obtained from these cortical preparations. Thus, electrical activity was mimicked by profound membrane depolarizations, produced either by high-frequency electrical stimulation or by large changes in extracellular K+ concentrations. More recently, the development of the olfactory and the hippocampal slice preparations (Yamamoto and Kurokawa, 1970; Skrede and Westgaard, 1971) has opened the door to much more sophisticated studies of the relationship between neural activity and energy metabolism than was possible with the previous cortical slice preparation. Thus, it is now possible to correlate metabolic and electrophysiological changes in different conditions and thereby determine mechanisms by which neural transmission affects metabolism and vice-versa (Yamamoto and Kurokawa, 1970).

Keywords

Energy Metabolism Creatine Kinase Brain Slice Hippocampal Slice Energy Charge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amtorp, O., 1979, Distribution of inulin, sucrose, and mannitol in rat brain cortex slices following in vivo or in vitro equilibration, J. Physiol. (London) 294:81–89.Google Scholar
  2. Andersen, P., 1960, Interhippocampal impulses. II. Apical dendritic activation of CA1 neurons, Acta Physiol Scand. 48:178–189.PubMedCrossRefGoogle Scholar
  3. Arieff, A. I., Kerian, A., Massry, S. G., and DeLima, J., 1976, Intracellular pH of brain: Alterations in acute respiratory acidosis and alkalosis, Am. J. Physiol. (London) 230:804–812.Google Scholar
  4. Astrup, J., Sorensen, P. M., and Sorensen, H. K., 1981, Oxygen and glucose consumption related to Na-K transport in canine brain, Stroke 12:726–730.PubMedCrossRefGoogle Scholar
  5. Bachelard, H. S., Campbell, W. J., and Mcllwain, H., 1963, The sodium and other ions of mammalian cerebral tissues maintained and electrically stimulated in vitro, Biochem. J. 84:225–237.Google Scholar
  6. Baethmann, A. and Sohler, K., 1975, Electrolyte and fluid spaces of rat brain in situ after infusion with dinitrophenol, J. Neurobiol. 6:73–84.PubMedCrossRefGoogle Scholar
  7. Bak, I. J., Misgeld, U., Weiler, M., and Morgan, E., 1980, The preservation of nerve cells in rat neostriatal slices maintained in vitro: A morphological study, Brain Res. 197:341–353.PubMedCrossRefGoogle Scholar
  8. Baker, P. F. and Knight, D. E., 1981, Calcium control of exocytosis and endocytosis in bovine adrenal medullary cells, Philos. Trans. R. Soc. London, Ser. B 296:83–103.PubMedCrossRefGoogle Scholar
  9. Beaugé, L. and di Polo, R., 1981, The effects of ATP on interactions between monovalent cations and the sodium pump in dialysed squid axons, J. Physiol. (London) 314:457–480.Google Scholar
  10. Benardo, L. S. and Prince, D. A., 1982, Dopamine action on hippocampal pyramidal cells, J. Neurosci. 2:415–423.PubMedGoogle Scholar
  11. Benjamin, A. M. and Verjee, Z. H., 1980, Control of aerobic glycolysis in the brain in vitro, Neurochem. Res. 5:921–934.CrossRefGoogle Scholar
  12. Berne, R. M., Rubio, R., and Duling, B. R., 1971, Vasoactive substances affecting the coronary circulation in Myocardial Ischemia, in: Excerpta Medica, (R. S. Ross and F. Hoffman, eds.) Elsevier North Holland, Amsterdam pp. 28–43.Google Scholar
  13. Berne, R. M., Rubio, R., and Curnish, R. R., 1974, Release of adenosine from ischemic brain, Circ. Res. 35:262–271.Google Scholar
  14. Bertman, L., Dahlgren, N., and Siesjo, B. K., 1979, Cerebral oxygen consumption and blood flow in hypoxia: Influence of sympathoadrenal activation, Stroke 10:20–30.CrossRefGoogle Scholar
  15. Bertoni, J. M. and Siegel, G. J., 1978, Development of Na-K ATPase in rat cerebrum: correlation with Na-dependent phosphorylation and K-paranitrophenylphosphatase, J. Neurochem. 31:1501–1511.PubMedCrossRefGoogle Scholar
  16. Booth, R. F. G. and Clark, J. B., 1978, Studies on the mitochondrially bound form of rat brain creatine kinase, Biochem. J. 170:145–152.PubMedGoogle Scholar
  17. Bosley, T. M., Woodhams, P. L., Gordon, R. D., and Balazs, R., 1983, Effects of anoxia on the stimulated release of amino acid neurotransmitters in the cerebellum in vitro, J. Neurochem. 40:189–201.PubMedCrossRefGoogle Scholar
  18. Bourke, R. S. and Tower, D. B., 1966, Fluid compartmentation and electrolytes of cat cerebral cortex in vitro. II Sodium, potassium and chloride of mature cerebral cortex, J. Neurochem. 13:1099–1117.PubMedCrossRefGoogle Scholar
  19. Burke, B. E. and DeLorenzo, R. J., 1982, Ca and calmodulin dependent phosphorylation of endogenous synaptic vesicle tubulin by a vesicle-bound calmodulin-kinase system, J. Neurochem. 38:1205–1218.PubMedCrossRefGoogle Scholar
  20. Carpenter, D. O., Hubbard, J. H., Humphrey, D. R., Thompson, H. K., and Marshall, W., 1974, Carbon dioxide effects on nerve cell function, in: Carbon Dioxide and Metabolic Regulation (G. Nahas and K. E. Shaefer, eds.) Springer-Verlag, New York.Google Scholar
  21. Carregal, E. J. A., 1975, The site of anoxic block in the spinal monosynaptic pathway, J. Neurobiol. 6:103–113.PubMedCrossRefGoogle Scholar
  22. Chan, P. H. and Fishman, R. A., 1978, Brain edema:Induction in cortical slices by polyunsaturated fatty acids, Science 201:358–360.PubMedCrossRefGoogle Scholar
  23. Cohen, S. R., 1974, The dependence of water content and extracellular,, marker spaces of incubated mouse brain slices on thickness, Exp. Br. Res. 20:435–457.Google Scholar
  24. Dingledine, R., Dodd, J., and Kelly, J. S., 1980, The in vitro brain slice as a useful neu-rophysiological preparation for intracellular recording, J. Neurosci. Methods 2:323–362.PubMedCrossRefGoogle Scholar
  25. Duffy, T. E., Nelson, S. R., and Lowry, O. H., 1972, Cerebral carbohydrate metabolism during acute hypoxia and recovery, J. Neurochem. 19:959–977.PubMedCrossRefGoogle Scholar
  26. Dunwidde, T. V. and Hoffer, B. J., 1980, Adenine nucleotides and synaptic transmission in the in vitro rat hippocampus, Br. J. Pharmacol. 69:59–68.Google Scholar
  27. Eckert, R. and Tillotson, D. L., 1981, Calcium-mediated inactivation of the calcium conductance in caesium-loaded giant neurons of aplysia californica, J. Physiol. 314:265–280.PubMedGoogle Scholar
  28. Elliot, K. A. C. and Wolfe, L., 1962, Brain tissue respiration and glycolysis, in: Neurochemistry (K. A. C. Elliot, L. Wolfe, and J. H. Quastel, eds.), Thomas, Springfield, 111.Google Scholar
  29. Farr, D. A. and Fuhrman, F. A., 1965, Role of diffusion of oxygen in the respiration of tissues at different temperatures, J. Appl. Physiol. 20:637–646.PubMedGoogle Scholar
  30. Folbergova, J., Ingvar, M., and Siesjo, B. K., 1981, Metabolic changes in cerebral cortex, hippocampus and cerebellum during sustained bicuculline-induced seizures, J. Neurochem. 37:1228–1238.CrossRefGoogle Scholar
  31. Franck, G., Cornette, M., and Schoeffeniels, E., 1968, The cationic composition of incubated cerebral cortex slices, J. Neurochem. 15:843–857.PubMedCrossRefGoogle Scholar
  32. Fredholm, B. B. and Hedqvist, P., 1980, Modulation of neurotransmission by purine nucleotides and nucleosides, Biochem. Pharmacol. 29:1635–1643.PubMedCrossRefGoogle Scholar
  33. Fredholm, B. B., Janzen, B., Lindgren, E., and Lindstrom, K., 1982, Adenosine receptors mediating cyclic AMP production in the rat hippocampus, J. Neurochem. 39:165–175.PubMedCrossRefGoogle Scholar
  34. Fujii, T., Baumgartl, H., and Lubbers, D. W., 1982, Limiting section thickness of guinea pig olfactory cortical slices studied from tissue p02 values and electrical activities, Pflüger Arch. 393:83–87.CrossRefGoogle Scholar
  35. Garthwaite, J., Woodhams, P. L., Collins, M. J., and Balazs, R., 1979, On the preparation of brain slices: Morphology and cyclic nucleotides, Brain Res. 173:373–377.PubMedCrossRefGoogle Scholar
  36. Ghajar, J. B. G., Plum, F., and Duffy, T. E., 1982, Cerebral oxidative metabolism and blood flow during acute hypoglycemia and recovery in anesthetized rats, J. Neurochem. 38:397–409.PubMedCrossRefGoogle Scholar
  37. Gibson, G. E., Peterson, C., and Sansone, J., 1981, Decreases in amino acid and acetylcholine metabolism during hypoxia, J. Neurochem. 37:192–201.PubMedCrossRefGoogle Scholar
  38. Goodman, F. R., Weiss, G. B., and Alderice, M. T., 1973, On the measurement of extracellular space in slices prepared from different rat brain areas, Neuropharmacology 12:867–873.PubMedCrossRefGoogle Scholar
  39. Grossman, R. G. and Williams, V. E., 1971, Electrical activity and ultrastructure of cortical neurons and synapses in ischemia, in: Brain Hypoxia (G. Brierly and B. Meldrum, eds.), Lippincott, Philadelphia.Google Scholar
  40. Hansen, A. J., Hounsgaard, J., and Jahnsen, H., 1982, Anoxia increases potassium conductance in hippocampal nerve cells, Acta Physiol. Scand. 115:301–310.PubMedCrossRefGoogle Scholar
  41. Hawkins, R. A., Williamson, D. H., and Krebs, H. A., 1971, Ketone body utilization by adult and suckling rat brain in vivo, Biochem. J. 122:13–18.Google Scholar
  42. Hertz, L., Schousboe, A., and Weiss, G. B., 1970, Estimation of ionic concentrations and intracellular pH in slices from different areas of rat brain, Acta Physiol. Scand. 79:506–515.PubMedCrossRefGoogle Scholar
  43. Jacobus, W. E., 1980, Myocardial energy transport: Current concepts of the problem, in: Heart Creatine Kinase (W. E. Jacobus and J. S. Ingwall, eds.),Williams and Wilkins, Baltimore.Google Scholar
  44. Jundt, H., Parzig, H., Reuter, H., and Stucki, J. W., 1975, The effect of substances releasing intracellular calcium ions on sodium-dependent calcium efflux from guinea-pig auricles, J. Physiol. (London) 246:229–241.Google Scholar
  45. Kaasik, A. E., Nilsson, L., and Siesjo, B. K., 1970, The effect of asphyxia upon the lactate, pyruvate and bicarbonate concentrations of brain tissue and cisternal CSF, and upon the tissue concentrations of phosphocreatine and adenine nucleotides in anesthetized rats, Acta. Physiol. Scand. 78:433–447.PubMedCrossRefGoogle Scholar
  46. Kass, I. S. and Lipton, P., 1982, Mechanisms involved in irreversible anoxic damage to the in vitro hippocampal slice, J. Physiol. (London) 332:459–472.Google Scholar
  47. Katzman, R. and Pappius, H. M., 1973, Brain Electrolytes and Fluid Metabolism Williams and Wilkins, Baltimore.Google Scholar
  48. Keesey, J. C., Wallgren, H., and Mcllwain, H., 1965, The sodium, potassium and chloride of cerebral tissues: Maintenance, change on stimulation and subsequent recovery, Biochem. J. 95:289–300.PubMedGoogle Scholar
  49. Kimelberg, H. K., Biddlecome, R., Narumi, S., and Bourke, R. S., 1978, ATPase and carbonic anhydrase actuities of bulk-isolated neurons, glia and synaptosome fractions from rat brain, Brain Res. 141:305–323.PubMedCrossRefGoogle Scholar
  50. King, L. J., Schoepfle, G. M., Lowry, O. H., Passonneau, J. V., and Wilson, S., 1967, Effects of electrical stimulation on metabolites in brain of decapitated mice, J. Neu- rochem. 14:613–618.Google Scholar
  51. Kobayashi, M., Lust, W. D., and Passonneau, J. V., 1977, Concentrations of energy metabolites and cyclic nucleotides during and after bilateral ischemia in the gerbil cerbral cortex, J. Neurochem. 29:53–59.PubMedCrossRefGoogle Scholar
  52. Krnjevic, K., 1975, Coupling of neuronal metabolism and electrical activity, Alfred Benzon Symposium (D. H. Ingrar and N. A. Hassen, eds.), Marksgaard, Copenhagen, pp. 65–78.Google Scholar
  53. Krnjevic, K., and Miledi, R., 1959, Presynaptic failure of neuromuscular propagation in rats, J. Physiol. (London) 149:1–22.Google Scholar
  54. Krnjevic, K., Randic, M., and Siesjo, B. K., 1965, Cortical CO2 tension and neuronal excitability, J. Physiol. (London) 176:105–122.Google Scholar
  55. Lai, Y. L., Atteberg, B. A., and Brown, E. B. Jr., 1973, Intracellular adjustments of skeletal muscle, heart and brain to prolonged hypercapnia, Respir. Physiol. 19:115–122.PubMedCrossRefGoogle Scholar
  56. Landau, E. M. and Nachson, D. A., 1975, The interaction of pH and divalent cations at the neuromuscular junction, J. Physiol. 251:775–790.PubMedGoogle Scholar
  57. Lee, K. and Schubert, P., 1982, Modulation of an inhibitory circuit by adenosine and AMP in the hippocampus, Brain Res. 246:311–314.PubMedCrossRefGoogle Scholar
  58. Lipton, P. and Heimbach, C. J., 1977, The effect of extracellular potassium concentration on protein synthesis in guinea pig hippocampal slices, J. Neurochem. 28:1347–1354.PubMedCrossRefGoogle Scholar
  59. Lipton, P. and Heimbach, C. J., 1978, Mechanism of extracellular potassium stimulation of protein synthesis in the in vitro hippocampus, J. Neurochem. 31:1299–1307.PubMedCrossRefGoogle Scholar
  60. Lipton, P. and Korol, D., 1981, Evidence that decreases in intracellular pH rapidly inhibit transmission in the guinea pig hippocampal slice, Abstr. Soc. Neurosci. 7:440.Google Scholar
  61. Lipton, P. and Robacker, K. M., 1982, Adenosine may cause early inhibition of synaptic transmission during anoxia, Abstr. Soc. Neurosci. 8:982.Google Scholar
  62. Lipton, P. and Whittingham, T. S., 1979, The effect of hypoxia on evoked responses in the in vitro hippocampus, J. Physiol. (London) 287:427–438.Google Scholar
  63. Lipton, P. and Whittinghahm, T. S., 1982, Reduced ATP concentration as a basis for synaptic transmission failure during hypoxia in the in vitro guinea pig hippocampus, J. Physiol. (London) 325:51–65.Google Scholar
  64. Ljunggren, B., Ratcheson, R. A., and Siesjo, B. K., 1974, Cerebral metabolic state following complete compression ischemia, Brain Res. 73:291–307.PubMedCrossRefGoogle Scholar
  65. Lowry, O. H., Passonneau, J. V., Hasselberger, F. X., and Schulz, D. W., 1964, Effect of ischemia on known substrates and cofactors of the glycolytic pathway in brain, J. Biol. Chem. 239:18–30.PubMedGoogle Scholar
  66. Lund-Andersen, H., 1974, Extracellular and intracellular distribution of inulin in rat brain cortex slices, Brain Res. 65:239–254.PubMedCrossRefGoogle Scholar
  67. Lust, W. D., Whittingham, T. S., and Passonneau, J. V., 1982, Effects of slice thickness and method of preparation on energy metabolism in the in vitro hippocampus, Abstr. Soc. Neurosci. 8:1000.Google Scholar
  68. MacMillan, V., 1975, The effects of acute carbon monoxide intoxication on the cerebral nergy metabolism of the rat, Can. J. Physiol. Pharmacol. 53:354–362.PubMedCrossRefGoogle Scholar
  69. MacMillan, V. and Siesjo, B. K., 1972, Intracellular pH of the brain in arterial hypoxemia, valuated with the CO2 method and from the creatine Phosphokinase equilibrium, cand. J. Clin. Invest. 30:117–125.CrossRefGoogle Scholar
  70. Maker, H. S., Lehrer, G. M., Silides, D. J., and Weiss, C. 1973, Regional changes in erebellar creatine phosphate metabolism during late maturation, Exp. Neurol. 38:295–300.PubMedCrossRefGoogle Scholar
  71. Matthews, D. A., Cotman, C. A., and Lynch, G., 1976, An electron microscope study of lesion-induced synaptogenesis in the dentate gyrus of the adult rat, Brain Res. 115:1–15.PubMedCrossRefGoogle Scholar
  72. McGilvery, R. W. and Murray, T. W., 1974, Calculated equilibria of phosphocreatine and adenosine diphosphates during utilization of high energy phosphate by muscle, J. Biol. Chem. 249:5845–5850.PubMedGoogle Scholar
  73. McIlwain, H., 1953, The effects of depressants on the metabolism of stimulated cerebral tissues, Biochem. J. 53:403–412.PubMedGoogle Scholar
  74. McIlwain, H. and Bachelard, H. S., 1971, Biochemistry and the Central Nervous System, Churchill Livingston, Edinburgh.Google Scholar
  75. Meldrum, B. S. and Nilsson, B., 1976, Cerebral blood flow and metabolic rate early and late in prolonged seizures induced in rats by bicuculline, Brain 99:407–418.CrossRefGoogle Scholar
  76. Misgeld, U. and Frotscher, M., 1982, Dependence of the viability of neurons in hippocampal slices on oxygen supply, Brain Res. Bull. 8:95–100.PubMedCrossRefGoogle Scholar
  77. Morris, M. E., 1971, The action of carbon dioxide on synaptic transmission in the cuneate nucleus, J. Physiol. (London) 218:671–688.Google Scholar
  78. Mullins, L. J. and Requena, J., 1981, The “late” Ca channel in squid axons, J. Gen. Physiol. 78:683–700.PubMedCrossRefGoogle Scholar
  79. Nachsen, D. A. and Blaustein, M. P., 1979, Regulation of nerve terminal calcium selectivity by a weak acid site, Biophys. J. 26:329–334.CrossRefGoogle Scholar
  80. Nemoto, E. M., Shiu, G. K., Nemmer, J., and Bleyaert, A. L., 1982, Attenuation of free fatty acid liberation during global ischemia: A model for screening potential therapies for efficacy, J. Cereb. Blood Flow Metab. 2:475–480.PubMedCrossRefGoogle Scholar
  81. Norberg, K. and Siesjo, B. K., 1975, Cerebral metabolism in hypoxic hypoxia. I. pattern of activation of glycolysis, A re-evaluation, Brain Res. 86:31–44.PubMedCrossRefGoogle Scholar
  82. Norberg, K., Quistorff, B., and Siesjo, B. K., 1975, Effects of hypoxia of 10 to 45 seconds duration on energy metabolism in the cerebral cortex of unanesthetized and anesthetized rats, Acta Physiol. Scand. 95:301–310.PubMedCrossRefGoogle Scholar
  83. Nordstrom, C. H. and Rehncrona, S., 1977, Postischemie cerebral blood flow and oxygen utilization rate in rats anesthetized with nitrous oxide or phénobarbital, Acta Physiol. Scand. 101:230–240.PubMedCrossRefGoogle Scholar
  84. Nordstrom, C. H., Rehncrona, S., and Siesjo, B. K., 1978, Effects of phenobarbital in cerebral ischemia. II. Restitution of cerebral energy state, glycolytic metabolites, citric acid cycle intermediates and associated amino acids after incomplete ischemia, Stroke 9:335–343.PubMedCrossRefGoogle Scholar
  85. Okada, Y. and Saito, M, 1979, Inhibitory action of adenosine, 5-HT and GAB A on the post synaptic potential of slices from olfactory cortex and superior colliculus in correlation to the level of cyclic AMP, Brain Res. 160:368–371.PubMedCrossRefGoogle Scholar
  86. Philipson, K. D., Bersohn, M. M., and Nishimoto, A. Y., 1982, Effects of pH on Na-Ca exchange in canine cardiac sarcolemmal vesicles, Circ. Res. 50:224–229.Google Scholar
  87. Phillis, J. W., 1977, The role of cyclic nucleotides in the CNS, Can. J. Neurol. Sci. 4:153–182.Google Scholar
  88. Preissler, M. and Williams, J. A., 1981, Pancreatic acinar cell function: measurement of intracellular ions and pH and their relation to secretion, J. Physiol. (London) 321:437–448.Google Scholar
  89. Pull, I. and McIlwain, H., 1972, Adenine derivatives as neurohumoral agents in the brain. The quantities liberated on excitation on supervised cerebral tissues, Biochem. J. 130:975–981.PubMedGoogle Scholar
  90. Rafalowska, U., Erecinska, M., and Wilson, D. F., 1980, Energy metabolism in rat brain synaptosomes from nembutal-anesthetized and non-anesthetized animals, J. Neurochem. 34:1380–1386.PubMedCrossRefGoogle Scholar
  91. Reddington, M. and Shubert, P., 1979, Parallel investigations of the effects of adenosine on evoked potentials and cyclic AMP accumulation in hippocampus slices of the rat, Neurosci. Lett. 14:37–42.PubMedCrossRefGoogle Scholar
  92. Rees, S., Cragg, B. G., and Everitt, A. V., 1982, Comparison of extracellular space in the mature and agine rat brain using a new technique, J. Neurol. Sci. 53:347–357.PubMedCrossRefGoogle Scholar
  93. Robinson, J. D., 1967, Kinetic studies on a brain microsomal adenosine triphosphatase. Evidence suggesting a conformational change, Biochemistry 10:3250–3258.CrossRefGoogle Scholar
  94. Rolleston, F. S. and Newsholme, E. A., 1967, Control of glycolysis in cerebral cortex slices, Biochem. J. 104:524–533.PubMedGoogle Scholar
  95. Roos, A. and Boron, W. F., 1981, Intracellular pH, Physiol. Rev. 61:296–434.PubMedGoogle Scholar
  96. Rubio, R. Berne, R. M., and Bockman, E. L., 1975, Relationship between adenosine concentration and oxygen supply in rat brain, Am. J. Physiol. 228:1896–1902.PubMedGoogle Scholar
  97. Saks, V. A., 1980, Creatine kinase isozymes and the control of cardiac contraction, in: Heart Creatine Kinase: The Integration of Isozymes for Energy Distribution (W. E. Jacobus and J. S. Ingwall, eds.), Williams and Wilkins, Baltimore, pp. 109–124.Google Scholar
  98. Saks, V. A., Lipina, N. V., Sharov, V. G., and Chazov, E. I., 1977, The localization of the MM isozyme of creatine Phosphokinase on the surface membrane of myocardial cells and its functional coupling to ouabain-inhibited (Na-K) ATPase, Biochem. Biophys. Acta 465:550–558.PubMedCrossRefGoogle Scholar
  99. Saks, V. A., Rosenshtrauhk, L., Smirnov, V. and Chazov, E., 1978, Role of creatine kinase in cellular function and metabolism, Can. J. Physiol. Pharmacol. 56:691–706.PubMedCrossRefGoogle Scholar
  100. Salford, L. G., Plum, F., and Siesjo, B. K., 1973, Graded hypoxia-oligemia in rat brain. I. Biochemical alterations and their implications, Arch. Neurol. 29:227–233.PubMedCrossRefGoogle Scholar
  101. Schmahl, F. W., Betz, E. Dettinger, E., and Hohorst, H., 1966, Energiestoffwechs der grosshirnrinde und elektroencephalogram bei Sauerstoffmangel, Pflug. Arch. Gesamte Physiol. 292:46–59.CrossRefGoogle Scholar
  102. Schwartzkroin, P. A., 1981, To slice or not to slice, in: Electro-physiology of Isolated Mammalian CNS Preparations (G. A. Kerkut and H. V. Wheal, eds.) Academic Press, New York, pp. 15–50.Google Scholar
  103. Seeman, P., 1980, Brain dopamine receptors, Pharmacol Rev. 32:229–313.PubMedGoogle Scholar
  104. Seraydarian, M. W., 1980, The correlation of creatine phosphate with muscle function, in Heart Creatine Kinase (W. E. Jacobus and J. S. Ingwall, eds.) Williams and Wilkins, Baltimore, pp. 82–91.Google Scholar
  105. Seraydarian, M. W., Artaza, L., and Abbot, B. C., 1974, Creatine and the control of energy metabolism in cardiac and skeletal muscle cells in culture, J. Mol Cell Cardiol 6:405–413.PubMedCrossRefGoogle Scholar
  106. Seraydarian, M. W. and Artaza, L., 1976, Regulation of energy metabolism by creatine in cardiac and skeletal muscle cells in culture, J. Mol Cell Cardiol 8:669–678.CrossRefGoogle Scholar
  107. Siemkowicz, E. and Hansen, A. J., 1981, Brain extracellular ion composition and EEG activity following 10 minutes ischemia in normo and hyperglycemic rats, Stroke 12:236–240.PubMedCrossRefGoogle Scholar
  108. Siesjo, B. K., 1978, Brain Energy Metabolism, Wiley, New York.Google Scholar
  109. Siesjo, B. K., 1981, Cell damage in the brain: A speculative synthesis, J. Cereb. Blood Flow Metab. 1:155–185.PubMedCrossRefGoogle Scholar
  110. Siesjo, B. K. and Nilsson, L., 1971, The influence of arterial hypoxemia upon labile phosphates and upon extracellular and intracellular lactate and pyruvate concentrations in the rat brain, Scand. J. Clin. Invest. 27:83–96.PubMedCrossRefGoogle Scholar
  111. Siesjo, B. K., Folbergova, J., and MacMillan, V., 1972, The effect of hypercapnia upon intracellular pH in the brain evaluated by the bicarbonate-carbonic acid method and from the creatine Phosphokinase equilibrium, J. Neurochem. 19:2483–2495.PubMedCrossRefGoogle Scholar
  112. Skrede, K. K. and Westgaard, R. H., 1971, The transverse hippocampal slice: A well defined cortical structure maintained in vitro, Brain Res. 35:589–593.CrossRefGoogle Scholar
  113. Snyder, J. V., Nemoto, E. M., Carroll, R. G., and Safar, P., 1975, Global ischemia in dogs: Intracranial pressures, brain blood flow and metabolism, Stroke 6:21–27.PubMedCrossRefGoogle Scholar
  114. Sokoloff, L., 1971, Neurophysiology and neurochemistry of coma, Exp. Biol. Med. 4:15–23.PubMedGoogle Scholar
  115. Sokoloff, L., 1981, Localization of functional activity in the central nervous system by measurement of glucose utilization with radioactive deoxyglucose, J. Cereb. Blood Flow Metab. 1:7–36.PubMedCrossRefGoogle Scholar
  116. Steen, P. A., Michenfelder, J. D., and Milde, J. H., 1979, Incomplete versus complete ischemia: Improved outcome with a minimal blood flow, Ann. Neurol. 6:389–398.PubMedCrossRefGoogle Scholar
  117. Steiner, A. L., Ferrendelli, J. A., and Kipnis, D. M., 1972, Radioimmunoassay for cyclic nucleotides. Effect of ischemia, changes during development and regional distribution of adenosine 3’-5’monophosphate and guanosine 3’-5’monophosphate in mouse brain, J. Biol. Chem. 247:1121–1124.PubMedGoogle Scholar
  118. Tang, W. and Sun, G. Y., 1982, Factors affecting the free fatty acids in rat brain cortex, Neurochem. Int. 4:269–273.PubMedCrossRefGoogle Scholar
  119. Thomas, J., 1956, The composition of isolated cerebral tissues: Creatine, Biochem. J. 64:335–339.PubMedGoogle Scholar
  120. Thomas, J., 1957, The composition of isolated cerebral tissues: Purines, Biochem. J. 66:655–658.PubMedGoogle Scholar
  121. Urbanics, R., Leniger-Follert, E., and Lubbers, D. W., 1978, Extracellular K and H activities in the brain cortex during and after a short period of ischemia and arterial hypoxemia, Adv. Exp. Biol. Med. 94:611–618.CrossRefGoogle Scholar
  122. Veech, R. L., Lawson, J. W. R., Cornell, N. W., and Krebs, H. A., 1979, Cytosolic phosphorylation potential, J. Biol. Chem. 254:6538–6547.PubMedGoogle Scholar
  123. Vincent, A. and Blair, J. McD., 1970, The coupling of the adenylate kinase and creatine kinase equilibria. Calculation of substrate and feedback signal levels in muscle, FEBS Lett. 7:239–244.PubMedCrossRefGoogle Scholar
  124. Vincenzi, F. F., 1971, A calcium pump in red cell membranes, in: Cellular Mechanisms for Calcium Transfer and Homeostasis (G. N. Nicholls and R. H. Wasserman, eds.), Academic Press, New York, pp. 135–146.Google Scholar
  125. Warburg, O., 1923, Versuche anüberebendem Carcinomgewebe (Methoden), Biochem. Z. 142:317–350.Google Scholar
  126. Whittam, R., 1962, The dependence of the respiration of brain cortex on active cation transport, Biochem. J. 82:205–212.PubMedGoogle Scholar
  127. Whittingham, T. S. and Lipton, P., 1981, Cerebral synaptic transmission during anoxia is protected by creatine, J. Neurochem. 37:1618–1621.PubMedCrossRefGoogle Scholar
  128. Whittingham, T. S., Lust, W. D., Arai, H., Wheaton, A. O., and Passonneau, J. V., 1981, Changes in the energy profile and electrical response of hippocampal slices during decapitation ischemia and recovery in vitro, Abstr. Soc. Neurosci. 7:458.Google Scholar
  129. Wilkening, D. and Makman, M. H., 1977, Activation of glycogen Phosphorylase in rat caudate nucleus slices by 1-isopropylnorepinephrine and dibutyrylcyclic AMP, J. Neurochem. 28:1001–1007.PubMedCrossRefGoogle Scholar
  130. Wu, P. H., Phillis, J. W., and Thierry, D. L., 1982, Adenosine receptor agonists inhibit Kevoked Ca uptake by rat brain cortical synaptosomes, J. Neurochem. 39:700–708.PubMedCrossRefGoogle Scholar
  131. Wu, T. F. L. and Davis, E. J., 1981, Regulation of glycolytic flux in energetically controlled cell free system, Arch. Biochem. Biophys. 209:85–99.PubMedCrossRefGoogle Scholar
  132. Yamamoto, C. and Kurokawa, M., 1970, Synaptic potentials recorded in brain slices and their modification by changes in the level of tissue ATP, Exp. Brain Res. 10:159–170.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Peter Lipton
    • 1
  • Tim S. Whittingham
    • 2
  1. 1.Department of PhysiologyUniversity of WisconsinMadisonUSA
  2. 2.Laboratory of Neurochemistry, National Institute of Neurological and Communicative Disorders and StrokeNational Institutes of HealthBethesdaUSA

Personalised recommendations