Skip to main content

Biophysics and Microphysiology of Synaptic Transmission in Hippocampus

  • Chapter
Brain Slices

Abstract

Most of what is known about the microphysiology and biophysics of synaptic transmission has derived from the study of just three preparations: the vertebrate and arthropod neuromuscular junctions and the squid giant synapse (Katz, 1969; Martin, 1977; Takeuchi, 1977). Although the general facts and laws gleaned from these three classical preparations probably apply also to cortical synapses, this inference remains an article of faith. Furthermore, there are structural and functional specializations in the cortex that cannot readily be addressed in the three classical preparations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amaral, D. G. and Dent, J. A., 1981, Development of the mossy fibers of the dentate gyrus. A light and electron microscopic study of the mossy fibers and their expansions, J. omp. Neurol 195:51–86.

    Article  CAS  Google Scholar 

  • Anderson, C. L. and Fifkova, E., 1982, Morphological changes in the dentate molecular ayer accompanying long-term potentiation, Soc. Neurosci. Abstr. 8:279.

    Google Scholar 

  • Araki, T. and Terzuolo, C. A., 1962, Membrane currents in spinal motoneurons associated ith the action potential and synaptic activity, J Neurophysiol. 25:772–789.

    PubMed  CAS  Google Scholar 

  • Ayala, G. F., Dichter, M., Gumnit, R. J., Matsumoto, H., and Spencer, W. A., 1973, Genesis of epileptic interictal spikes. New knowledge of cortical feedback systems suggests a europhysiological explanation of brief paroxysms, Brain Res. 52:1–17.

    Article  PubMed  CAS  Google Scholar 

  • Barrett, E. F. and Magleby, K. L., 1976, Physiology of the cholinergic transmission, in: Biology of Cholinergic Function, (A. M. Goldberg and I. Hanin, eds.), Raven Press, New ork, pp. 29–100.

    Google Scholar 

  • Barrett, J. N. and Crill, W. E., 1974, Influence of dendritic location and membrane proprties on the effectiveness of synapses on cat motoneurones, J. Physiol. (London) 39:325–345.

    Google Scholar 

  • Barrett, J. N. and Crill, W. E., 1980, Voltage clamp of cat motoneurone somata: Properties f the fast inward current, J. Physiol. (London) 304:231–249.

    CAS  Google Scholar 

  • Barrett, E. F., Barrett, J. N., and Crill, W. E., 1980, Voltage-sensitive outward currents in at motoneurones, J. Physiol. (London) 304:251–276.

    CAS  Google Scholar 

  • Barton, S. B. and Cohen, I. S. 1977, Are transmitter release statistics meaningful? Nature London) 268:267–268.

    Article  CAS  Google Scholar 

  • Baudry, M. and Lynch, G., 1980, Hypothesis regarding the cellular mechanism responsible or long-term synaptic potentiation in the hippocampus, Exp. Neurol. 68:202–204.

    Article  PubMed  CAS  Google Scholar 

  • Benardo, L. S., Masukawa, L. M., and Prince, D. A., 1982, Electrophysiology of isolated ippocampal pyramidal dendrites, J. Neurosci. 2:1614–1622.

    PubMed  CAS  Google Scholar 

  • Bennett, M. R. and Lavidis, N. A., 1979, The effect of calcium ions on the secretion of uanta evoked by an impulse at nerve terminal release sites, J. Gen. Physiol. 74:429–456.

    Article  PubMed  CAS  Google Scholar 

  • Berard, D. R., Burgess, J. W., and Coss, R. G., 1981, Plasticity of dendritic spine formation: state-dependent stochastic process, Int. J. Neurosci. 13:93–98.

    Article  PubMed  CAS  Google Scholar 

  • Blackstad, T. W. and Kjaerheim, A., 1961, Special axo-dendritic synapses in the hippocampal cortex: Electron and light microscopic studies on the layer of mossy fibers, J. omp. Neurol. 117:133–159.

    Article  CAS  Google Scholar 

  • Blackstad, T. W., Brink, K., Hem, J., and Jeune, B., 1970, Distribution of hippocampal ossy fibers in the rat. An experimental study with silver impregnation methods, J. omp. Neurol. 138:433–450.

    Article  CAS  Google Scholar 

  • Bliss, T. V. P., 1979, Synaptic plasticity in the hippocampus, Trends Neurosci. 2:42–45.

    Article  Google Scholar 

  • Bliss, T. V. P. and Dolphin, A. C., 1982, What is the mechanism of long-term potentiation n the hippocampus? Trends Neurosci. 5:289–290.

    Article  Google Scholar 

  • Bliss, T. V. P. and Gardner-Medwin, A. R., 1973, Long-lasting potentiation of synaptic ransmission in the dentate area of the unanaesthetized rabbit following stimulation of the perforant path, J. Physiol. (London) 232:357–374.

    CAS  Google Scholar 

  • Bliss, T. V. P. and Lomo, T., 1973, Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant ath, J. Physiol. (London) 232:331–356.

    CAS  Google Scholar 

  • Brown, T. H. and Barrionuevo, G. Associative long-term synaptic potentiation in hippocampal slices, submitted.

    Google Scholar 

  • Brown, T.H. and Johnston, D., 1980, Two classes of miniature synaptic potentials in CA3 ippocampal neurons, Soc. Neurosci. Abstr. 164:10.

    Google Scholar 

  • Brown, T.H. and Johnston, D., 1982, Electrotronic localization of hippocampal mossy fiber ynapses, Soc. Neurosci. Abstr. 8:380.

    Google Scholar 

  • Brown, T. H. and Johnston, D., 1983, Voltage-clamp analysis of mossy fiber synaptic input o hippocampal neurons, J. Neurophysiol. 50:487–507.

    PubMed  CAS  Google Scholar 

  • Brown, T.H. and McAfee, D. A., 1982, Long-term synaptic potentiation in superior cervical anglion, Science 215:1411–1413.

    Article  PubMed  CAS  Google Scholar 

  • Brown, T. H., Perkel, D. H., and Feldman, M. W., 1976, Evoked neurotransmitter release: Statistical effects of nonuniformity and nonstationarity, Proc. Natl. Acad. Sci. USA 73:2913–2917.

    Article  PubMed  CAS  Google Scholar 

  • Brown, T. H., Wong, R. K. S., and Prince, D. A., 1979, Spontaneous miniature synaptic potentials in hippocampal neurons, Brain Res. 174:194–199.

    Article  Google Scholar 

  • Brown, T. H., Fricke, R. A., and Perkel, D. H., 1981, Passive electrical constants in three classes of hippocampal neurons, J. Neurophysiol. 46:812–827.

    PubMed  CAS  Google Scholar 

  • Burgess, J. W. and Coss, R. G., 1980, Crowded jewel fish show changes in dendritic spine density and spine morphology, Neurosci. Lett. 17:277–281.

    Article  PubMed  CAS  Google Scholar 

  • Burgess, J. W. and Coss, R. G., 1981, Short-term juvenile crowding arrests the developmental formation of dendritic spines on tectal interneurons in jewel fish, Dev. Psychobiol. 14:389–396.

    Article  PubMed  CAS  Google Scholar 

  • Carnevale, N. T. and Johnston, D., 1982, Electrophysiological characterization of remote chemical synapses, J. Neurophysiol. 47:606–621.

    PubMed  CAS  Google Scholar 

  • Chung, S-H., 1977, Synaptic memory in the hippocampus. Nature (London) 266:677–678.

    Article  Google Scholar 

  • Cornwall, M. C. and Thomas, M. V., 1981, Glass microelectrode tip capacitance: Its measurement and a method for its reduction, J. Neurosci. Meth. 3:225–232.

    Article  CAS  Google Scholar 

  • Coss, R. G. and Brandon, J. G., 1982, Rapid changes in dendritic spine morphology during the honeybee’s first orientation flight, in: The Biology of Social Insects, (M. D. Breed, C. D. Michener, and H. E. Evans, eds.), Westview Press, Boulder, Colorado, pp. 338–342.

    Google Scholar 

  • Coss, R. G. and Globus, A., 1978, Spine stems on tectal interneurons in jewel fish are shortened by social stimulation, Science 200:787–790.

    Article  PubMed  CAS  Google Scholar 

  • Coss, R. G. and Globus, A., 1979, Social experience affects the development of dendritic spines and branches on tectal interneurons in the jewel fish, Dev. Psychobiol. 12:347–358.

    Article  PubMed  CAS  Google Scholar 

  • Coss, R. G., Brandon, J. G., and Globus, A., 1980, Changes in morphology of dendritic spines on honeybee calycal interneurons associated with cumulative nursing and foraging experiences, Brain Res. 192:49–59.

    Article  PubMed  CAS  Google Scholar 

  • Crick, F., 1982, Do dendritic spines twitch? Trends Neurosci. 5:44–46.

    Article  Google Scholar 

  • del Castillo, J. and Katz, B. 1954, Quantal components of the end-plate potential, J. Physiol. (London) 124:560–573.

    Google Scholar 

  • Desmond, N. L. and Levy, W. B., 1981, Ultrastructural and numerical alterations in dendritic spines as a consequence of long-term potentiation, Anat. Rec. 199:68.

    Google Scholar 

  • Diamond, J., Gray, E. G., and Yasargil, G. M., 1971, The function of the dendritic spine: An hypothesis, in: Excitatory Synaptic Mechanism (P. Andersen and K. Jansen eds.), Universitetsforlaget, Oslo, pp. 213–222.

    Google Scholar 

  • Dichter, M. and Spencer, W. A., 1969, Penicillin-induced interictal discharges from the cat hippocampus. I. Characteristics and topographical features, J. Neurophysiol. 32:649–662.

    PubMed  CAS  Google Scholar 

  • Dingledine, R. and Gjerstad, L., 1980, Reduced inhibition during epileptiform activity in the in vitro hippocampal slice, J. Physiol. (London) 305:297–313.

    CAS  Google Scholar 

  • Eaton, D., 1980, How are the membrane properties of individual neurons related to information processing in neural circuits? in: Information Processing in the Nervous System (H. M. Pinsker and W. D. Willis, Jr., eds.), Raven Press, New York, pp. 39–57.

    Google Scholar 

  • Fifkova, E. and Anderson, C., 1981, Stimulation-induced changes in dimensions of stalks of dendritic spines in the dentate molecular layer, Exp. Neurol. 74:621–627.

    Article  PubMed  CAS  Google Scholar 

  • Fifkova, E. and Delay, R. J., 1982, Cytoplasmic actin in dendritic spines as a possible mediator of synaptic plasticity, Soc. Neurosci. Abstr. 8:279.

    Google Scholar 

  • Fifkova, E. and Van Harreveld, A., 1977, Long-lasting morphological changes in dendritic spines of dentate granular cells, following stimulation of the entorhinal area, J. Neu-rocytol. 6:211–230.

    CAS  Google Scholar 

  • Frank, K., Fuortes, M. G. F., and Nelson, P. G., 1959, Voltage clamp of motoneuron soma, Science 130:38–39.

    Article  PubMed  CAS  Google Scholar 

  • Gray, R., Kellaway, J., and Johnston, D., 1982, Electrical properties of acutely isolated hippocampal neurons, Physiologist 25:221.

    Google Scholar 

  • Gutnick, M. J., Connors, B. W., and Prince, D. A., 1982, Mechanisms of cortical epilep-togenesis in vitro, J. Neurophysiol. 48:1321–1335.

    PubMed  CAS  Google Scholar 

  • Hagiwara, S. and Saito, N., 1959, Membrane potential change and membrane current in supramedullary nerve cell of puffer, J. Neurophysiol. 22:204–221.

    PubMed  CAS  Google Scholar 

  • Hamlyn, L. H., 1961, Electron microscopy of mossy fibre endings in Ammon’s horn, Nature (London) 190:645–648.

    Article  CAS  Google Scholar 

  • Hamlyn, L. H., 1962, The fine structure of the mossy fibre endings in the hippocampus of the rabbit. J. Amt. 96:112–126.

    CAS  Google Scholar 

  • Hatt, H. and Smith, D. O., 1976, Nonuniform probabilities of quantal release at the crayfish neuromuscular junction, J. Physiol. (London) 259:395–404.

    CAS  Google Scholar 

  • Haug, F.-M. S., 1967, Electron microscopic localization of zinc in hippocampal mossy fiber synapses by a modified sulfide silver procedure, Histochemie 8:355–368.

    Article  PubMed  CAS  Google Scholar 

  • Jack, J. J. B. and Redman, S. J., 1971, The propagation of transient potentials in some linear cable structures, J. Physiol. (London) 215:283–320.

    CAS  Google Scholar 

  • Jack, J. J. B., Noble, D., and Tsien, R. W., 1975, Electric Current Flow in Excitable Cells, Oxford University Press, London.

    Google Scholar 

  • Jack, J. J. B., Redman, S. J., and Wong, K., 1981, The components of synaptic potentials evoked in spinal motoneurones by impulses in a single group la afférents, J. Physiol. (London) 321:65–96.

    CAS  Google Scholar 

  • Johnston, D., 1981, Passive cable properties of hippocampal CA3 pyramidal neurons, Cell. Mol. Neurobiol. 1:41–55.

    Article  PubMed  CAS  Google Scholar 

  • Johnston, D. and Brown, T. H., 1980, Miniature inhibitory and excitatory synaptic potentials in hippocampal neurons, Fed. Proc. 39:2071.

    Google Scholar 

  • Johnston, D. and Brown, T. H., 1981, Giant synaptic potential hypothesis for epileptiform activity, Science 211:294–297.

    Article  PubMed  CAS  Google Scholar 

  • Johnston, D. and Brown, T. H., 1983a, Mechanism of neuronal burst generation, in: Elec-trophysiology of Epilepsy (P. A. Schwartzkroin and H. V. Wheal, eds.), Academic Press, New York, in press.

    Google Scholar 

  • Johnston, D. and Brown, T. H., 1983b, Interpretation of voltage-clamp measurements in hippocampal neurons, J. Neurophysiol. 50:464–486.

    PubMed  CAS  Google Scholar 

  • Johnston, D., Hablitz, J. J., and Wilson, W. A., 1980, Voltage clamp discloses slow inward current in hippocampal burst-firing neurones, Nature (London) 286:391–393.

    Article  CAS  Google Scholar 

  • Katz, B., 1969, The Release of Neuronal Transmitter Substances, Charles A. Thomas, Springfield, Illinois.

    Google Scholar 

  • Krnjevic, K., 1980, Neurobiology. General principles related to epilepsy, in: Antiepileptic Drugs: Mechanisms of Action (G. H. Glaser, J. K. Penry, and D. M. Woodbury, eds.) Raven Press, New York, pp. 127–154.

    Google Scholar 

  • Lebeda, F. J., Hablitz, J. J., and Johnston, D., 1982, Antagonism of GABA-mediated responses by d-tubocurarine in hippocampal neurons, J. Neurophysiol. 48:622–632.

    PubMed  CAS  Google Scholar 

  • Lebeda, F. J., Brown, T. H., and Johnston, D., Synaptic mechanisms underlying epileptiform discharges in hippocampal neurons, submitted.

    Google Scholar 

  • Lebovitz, R. M., Dichter, M., and Spencer, W. A., 1971, Recurrent excitation in the CA3 region of cat hippocampus, Int. J. Neurosci. 2:99–108.

    Article  PubMed  CAS  Google Scholar 

  • Lee, K. S., Schottler, F., Oliver, M., and Lynch, G., 1980, Brief bursts of high-frequency stimulation produce two types of structural changes in rat hippocampus, J. Neurophysiol. 44:247–258.

    PubMed  CAS  Google Scholar 

  • Levy, W. B. and Desmond, N., 1983, The rules of elemental synaptic plasticity, in: Synaptic Modification, Neuron Selectivity and Nervous System Organization (W. B. Levy, J. Anderson, and S. Lehmkuhle, eds.), Lawrence Erlbaum Association, Hillsdale, New Jersey, in press.

    Google Scholar 

  • Llinás, R. and Sugimori, M., 1980, Electrophysiological properties of in vitro Purkinje cell somata in mammalian cerebellar slices, J. Physiol. (London) 305:171–195.

    Google Scholar 

  • Lorente de No, R., 1934, Studies on the structure of the cerebral cortex. II. Continuation of the study of the ammonic system, J. Psychol. Neurol. 46:113–117.

    Google Scholar 

  • Mac Vicar, B. A. and Dudek, F. E., 1980, Local synaptic circuits in rat hippocampus: Interactions between pyramidal cells, Brain Res. 184:220–223.

    Article  Google Scholar 

  • Martin, A. R., 1976, The effect of membrane capacitance on nonlinear summation of synaptic potentials, J. Theor. Biol 59:179–187.

    Article  PubMed  CAS  Google Scholar 

  • Martin, A. R., 1977, Junctional transmission. II. Presynaptic mechanisms, in: Handbook of Physiology, Section I: The Nervous System (J. M. Brookhart and V. B. Mountcastle, eds.), American Physiological Society, Bethesda, Maryland, pp. 329–355.

    Google Scholar 

  • Matsumoto, H. and Ajmone Marsan, C., 1964, Cortical cellular phenomena in experimental epilepsy: Interictal manifestation, Exp. Neurol. 9:286–304.

    Article  PubMed  CAS  Google Scholar 

  • McLachlan, E. M., 1978, The statistics of transmitter release at chemical synapses, in: International Review of Physiology. Neurophysiology III, Volume 17, (R. Porter, ed.), University Park Press, Baltimore, pp. 49–117.

    Google Scholar 

  • McLachlan, E. M. and Martin, A. R., 1981, Non-linear summation of end-plate potentials in the frog and mouse, J. Physiol. (London) 311:307–324.

    CAS  Google Scholar 

  • McNaughton, B. L., Barnes, C. A., and Andersen, P., 1981, Synaptic efficacy and EPSP summation in granule cells of rat facia dentata studied in vitro, J. Neurophysiol. 46:952–966.

    PubMed  CAS  Google Scholar 

  • Perkel, D. H. and Feldman, M. W., 1979, Neurotransmitter release statistics: Moment estimates for inhomogenous Bernoulli trials, J. Math. Biol. 7:31–40.

    Article  PubMed  CAS  Google Scholar 

  • Prince, D. A., 1978, Neurophysiology of epilepsy, Annu. Rev. Neurosci. 1:395–415.

    Article  PubMed  CAS  Google Scholar 

  • Rall, W., 1967, Distinguishing theoretical synaptic potentials computed for different soma-dendritic distributions of synaptic input, J. Neurophysiol. 30:1138–1168.

    PubMed  CAS  Google Scholar 

  • Rall, W., 1974, Dendritic spines, synaptic potency and neuronal plasticity, in: Cellular Mechanisms Subserving Changes in Neuronal Activity (C. D. Woody, K. A. Brown, T. J. Crow Jr., and J. D. Knispel, eds.), Brain Information Service, Los Angeles, pp. 13–21.

    Google Scholar 

  • Rall, W., 1977, Core conductor theory and cable properties of neurons, in: Handbook of Physiology, Section I: The Nervous System (J. M. Brookhart and V. B. Mountcastle, eds.), American Physiological Society, Bethesda, Maryland, pp. 39–97.

    Google Scholar 

  • Rall, W., 1978, Dendritic spines and synaptic potency, in: Studies in Neurophysiology, presented to A. K. Mclntyre, R. Porter, ed., Cambridge University Press, pp. 203–209.

    Google Scholar 

  • Rall, W. and Rinzel, J., 1973, Branch input resistance and steady attenuation for input to one branch of a dendritic neuron model, Biophys. J. 13:648–688.

    Article  PubMed  CAS  Google Scholar 

  • Rall, W., Burke, R. E., Smith, T. G., Nelson, P. C., and Frank, K., 1967, Dendritic location of synapses and possible mechanisms for the monosynaptic EPSP in motoneurons. J. Neurophysiol. 30:1169–1193.

    PubMed  CAS  Google Scholar 

  • Redman, S. J., 1976, A quantitative approach to integrative function of dendrites, in: International Review of Physiology. Neurophysiology II, Volume 10, (R. Porter, ed.), University Park Press, Baltimore, pp. 1–35.

    Google Scholar 

  • Rinzel, J. and Rall, W., 1974, Transient response in a dendritic neuron model for current injected at one branch, Biophys. J. 14:759–790.

    Article  PubMed  CAS  Google Scholar 

  • Scheibel, M. E. and Scheibel, A. B., 1968, On the nature of dendritic spines—Report on a workshop, Comm. Behav. Bio. I(A):231–265.

    Google Scholar 

  • Schwartzkroin, P. A. and Wyler, A. R., 1980, Mechanisms underlying epileptiform burst discharge, Ann. Neurol. 7:95–107.

    Article  PubMed  CAS  Google Scholar 

  • Schwindt, P. C. and Crill, W. E., 1977, A persistent negative resistance in cat lumbar motoneurons, Brain Res. 120:173–178.

    Article  PubMed  CAS  Google Scholar 

  • Schwindt, P. C. and Crill, W. E., 1980, Role of a persistent inward current in motoneuron bursting during spinal seizures, J. Neurophysiol. 43:1296–1318.

    PubMed  CAS  Google Scholar 

  • Schwindt, P. C. and Crill, W. E., 1980, Properties of a persistent inward current in normal and TEA-injected motoneurons, J. Neurophysiol. 43:1700–1724.

    PubMed  CAS  Google Scholar 

  • Schwindt, P. C. and Crill, W. E., 1980, The effects of barium on cat spinal motoneurons studied by voltage clamp, J. Neurophysiol. 44:827–846.

    PubMed  CAS  Google Scholar 

  • Schwindt, P. C. and Crill, W. E., 1981, Differential effects of TEA and cations on outward ionic currents of cat motoneurons, J. Neurophysiol. 46:1–16.

    PubMed  CAS  Google Scholar 

  • Segev, I. and Parnas, I., 1983, Synaptic integration mechanisms. Theoretical and experimental investigation of temporal postsynaptic interactions between excitatory and inhibitory inputs, Biophys J. 41:41–50.

    Article  PubMed  CAS  Google Scholar 

  • Shepherd, G. M., 1979, The Synaptic Organization of the Brain, 2nd ed., Oxford University Press, New York.

    Google Scholar 

  • Stevens, C. F., 1976, A comment on Martin’s relation, Biophys. J. 16:891–895.

    Article  PubMed  CAS  Google Scholar 

  • Swindale, N. V., 1981, Dendritic spines only connect, Trends Neurosci. 4:240–241.

    Article  Google Scholar 

  • Takeuchi, A., 1977, Junctional transmission. I. Postsynaptic mechanisms, in: Handbook of Physiology, Section I: The Nervous System, Volume 1, Part 1 (J. M. Brookhart and V. B. Mountcastle, eds.), American Physiological Society, Bethesda, Maryland, pp. 295 – 328.

    Google Scholar 

  • Traub, R. D. and Llinás, R., 1979, Hippocampal pyramidal cells: Significance of dendritic ionic conductances for neuronal function and epileptogenesis, J. Neurophysiol. 42:476–496.

    PubMed  CAS  Google Scholar 

  • Traub, R. D. and Wong, R. K. S., 1982, Cellular mechanism of neuronal synchronization in epilepsy, Science 216:745–747.

    Article  PubMed  CAS  Google Scholar 

  • Turner, D. A. and Schwartzkroin, P. A., Electrical characteristics of dendrites and dendritic spines in intracellularly-stained CA3 and dentate hippocampal neurons, submitted.

    Google Scholar 

  • Valverde, F. and Ruiz-Marcos, A., 1969, Dendritic spines in the visual cortex of the mouse: Introduction to a mathematical model, Exp. Brain Res. 8:269–283.

    Article  PubMed  CAS  Google Scholar 

  • Van Harreveld, A. and Fifkova, E., 1975, Swelling of dendritic spines in the fascia dentata after stimulation of the perforant fibers as a mechanism of posttetanic potentiation, Exp. Neurol. 49:736–749.

    Article  PubMed  Google Scholar 

  • Williams, J. D. and Bowen, J. M., 1974, Effects of quantal unit latency on statistics of Poisson and binomial neurotransmitter release mechanisms, J. Theor. Biol. 43:151–165.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, W. A. and Goldner, M. M., 1975, Voltage clamping with a single microelectrode, J. Neurobiol. 6:411–422.

    Article  PubMed  CAS  Google Scholar 

  • Wong, R. K. S., Prince, D. A., and Basbaum, A. L, 1979, Intradendritic recordings in hippocampal neurons, Proc. Natl. Acad. Sci. USA 76:986–990.

    Article  PubMed  CAS  Google Scholar 

  • Zucker, R. S., 1977, Synaptic plasticity at crayfish neuromuscular junctions, in: Identified Neurons and Behavior of Arthropods (G. Hoyle, ed.), Plenum Press, New York, pp. 49–65.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Johnston, D., Brown, T.H. (1984). Biophysics and Microphysiology of Synaptic Transmission in Hippocampus. In: Dingledine, R. (eds) Brain Slices. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4583-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4583-1_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4585-5

  • Online ISBN: 978-1-4684-4583-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics