Biophysics and Microphysiology of Synaptic Transmission in Hippocampus

  • Daniel Johnston
  • Thomas H. Brown


Most of what is known about the microphysiology and biophysics of synaptic transmission has derived from the study of just three preparations: the vertebrate and arthropod neuromuscular junctions and the squid giant synapse (Katz, 1969; Martin, 1977; Takeuchi, 1977). Although the general facts and laws gleaned from these three classical preparations probably apply also to cortical synapses, this inference remains an article of faith. Furthermore, there are structural and functional specializations in the cortex that cannot readily be addressed in the three classical preparations.


Hippocampal Neuron Synaptic Transmission Dendritic Spine Mossy Fiber Voltage Clamp 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amaral, D. G. and Dent, J. A., 1981, Development of the mossy fibers of the dentate gyrus. A light and electron microscopic study of the mossy fibers and their expansions, J. omp. Neurol 195:51–86.CrossRefGoogle Scholar
  2. Anderson, C. L. and Fifkova, E., 1982, Morphological changes in the dentate molecular ayer accompanying long-term potentiation, Soc. Neurosci. Abstr. 8:279.Google Scholar
  3. Araki, T. and Terzuolo, C. A., 1962, Membrane currents in spinal motoneurons associated ith the action potential and synaptic activity, J Neurophysiol. 25:772–789.PubMedGoogle Scholar
  4. Ayala, G. F., Dichter, M., Gumnit, R. J., Matsumoto, H., and Spencer, W. A., 1973, Genesis of epileptic interictal spikes. New knowledge of cortical feedback systems suggests a europhysiological explanation of brief paroxysms, Brain Res. 52:1–17.PubMedCrossRefGoogle Scholar
  5. Barrett, E. F. and Magleby, K. L., 1976, Physiology of the cholinergic transmission, in: Biology of Cholinergic Function, (A. M. Goldberg and I. Hanin, eds.), Raven Press, New ork, pp. 29–100.Google Scholar
  6. Barrett, J. N. and Crill, W. E., 1974, Influence of dendritic location and membrane proprties on the effectiveness of synapses on cat motoneurones, J. Physiol. (London) 39:325–345.Google Scholar
  7. Barrett, J. N. and Crill, W. E., 1980, Voltage clamp of cat motoneurone somata: Properties f the fast inward current, J. Physiol. (London) 304:231–249.Google Scholar
  8. Barrett, E. F., Barrett, J. N., and Crill, W. E., 1980, Voltage-sensitive outward currents in at motoneurones, J. Physiol. (London) 304:251–276.Google Scholar
  9. Barton, S. B. and Cohen, I. S. 1977, Are transmitter release statistics meaningful? Nature London) 268:267–268.CrossRefGoogle Scholar
  10. Baudry, M. and Lynch, G., 1980, Hypothesis regarding the cellular mechanism responsible or long-term synaptic potentiation in the hippocampus, Exp. Neurol. 68:202–204.PubMedCrossRefGoogle Scholar
  11. Benardo, L. S., Masukawa, L. M., and Prince, D. A., 1982, Electrophysiology of isolated ippocampal pyramidal dendrites, J. Neurosci. 2:1614–1622.PubMedGoogle Scholar
  12. Bennett, M. R. and Lavidis, N. A., 1979, The effect of calcium ions on the secretion of uanta evoked by an impulse at nerve terminal release sites, J. Gen. Physiol. 74:429–456.PubMedCrossRefGoogle Scholar
  13. Berard, D. R., Burgess, J. W., and Coss, R. G., 1981, Plasticity of dendritic spine formation: state-dependent stochastic process, Int. J. Neurosci. 13:93–98.PubMedCrossRefGoogle Scholar
  14. Blackstad, T. W. and Kjaerheim, A., 1961, Special axo-dendritic synapses in the hippocampal cortex: Electron and light microscopic studies on the layer of mossy fibers, J. omp. Neurol. 117:133–159.CrossRefGoogle Scholar
  15. Blackstad, T. W., Brink, K., Hem, J., and Jeune, B., 1970, Distribution of hippocampal ossy fibers in the rat. An experimental study with silver impregnation methods, J. omp. Neurol. 138:433–450.CrossRefGoogle Scholar
  16. Bliss, T. V. P., 1979, Synaptic plasticity in the hippocampus, Trends Neurosci. 2:42–45.CrossRefGoogle Scholar
  17. Bliss, T. V. P. and Dolphin, A. C., 1982, What is the mechanism of long-term potentiation n the hippocampus? Trends Neurosci. 5:289–290.CrossRefGoogle Scholar
  18. Bliss, T. V. P. and Gardner-Medwin, A. R., 1973, Long-lasting potentiation of synaptic ransmission in the dentate area of the unanaesthetized rabbit following stimulation of the perforant path, J. Physiol. (London) 232:357–374.Google Scholar
  19. Bliss, T. V. P. and Lomo, T., 1973, Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant ath, J. Physiol. (London) 232:331–356.Google Scholar
  20. Brown, T. H. and Barrionuevo, G. Associative long-term synaptic potentiation in hippocampal slices, submitted.Google Scholar
  21. Brown, T.H. and Johnston, D., 1980, Two classes of miniature synaptic potentials in CA3 ippocampal neurons, Soc. Neurosci. Abstr. 164:10.Google Scholar
  22. Brown, T.H. and Johnston, D., 1982, Electrotronic localization of hippocampal mossy fiber ynapses, Soc. Neurosci. Abstr. 8:380.Google Scholar
  23. Brown, T. H. and Johnston, D., 1983, Voltage-clamp analysis of mossy fiber synaptic input o hippocampal neurons, J. Neurophysiol. 50:487–507.PubMedGoogle Scholar
  24. Brown, T.H. and McAfee, D. A., 1982, Long-term synaptic potentiation in superior cervical anglion, Science 215:1411–1413.PubMedCrossRefGoogle Scholar
  25. Brown, T. H., Perkel, D. H., and Feldman, M. W., 1976, Evoked neurotransmitter release: Statistical effects of nonuniformity and nonstationarity, Proc. Natl. Acad. Sci. USA 73:2913–2917.PubMedCrossRefGoogle Scholar
  26. Brown, T. H., Wong, R. K. S., and Prince, D. A., 1979, Spontaneous miniature synaptic potentials in hippocampal neurons, Brain Res. 174:194–199.CrossRefGoogle Scholar
  27. Brown, T. H., Fricke, R. A., and Perkel, D. H., 1981, Passive electrical constants in three classes of hippocampal neurons, J. Neurophysiol. 46:812–827.PubMedGoogle Scholar
  28. Burgess, J. W. and Coss, R. G., 1980, Crowded jewel fish show changes in dendritic spine density and spine morphology, Neurosci. Lett. 17:277–281.PubMedCrossRefGoogle Scholar
  29. Burgess, J. W. and Coss, R. G., 1981, Short-term juvenile crowding arrests the developmental formation of dendritic spines on tectal interneurons in jewel fish, Dev. Psychobiol. 14:389–396.PubMedCrossRefGoogle Scholar
  30. Carnevale, N. T. and Johnston, D., 1982, Electrophysiological characterization of remote chemical synapses, J. Neurophysiol. 47:606–621.PubMedGoogle Scholar
  31. Chung, S-H., 1977, Synaptic memory in the hippocampus. Nature (London) 266:677–678.CrossRefGoogle Scholar
  32. Cornwall, M. C. and Thomas, M. V., 1981, Glass microelectrode tip capacitance: Its measurement and a method for its reduction, J. Neurosci. Meth. 3:225–232.CrossRefGoogle Scholar
  33. Coss, R. G. and Brandon, J. G., 1982, Rapid changes in dendritic spine morphology during the honeybee’s first orientation flight, in: The Biology of Social Insects, (M. D. Breed, C. D. Michener, and H. E. Evans, eds.), Westview Press, Boulder, Colorado, pp. 338–342.Google Scholar
  34. Coss, R. G. and Globus, A., 1978, Spine stems on tectal interneurons in jewel fish are shortened by social stimulation, Science 200:787–790.PubMedCrossRefGoogle Scholar
  35. Coss, R. G. and Globus, A., 1979, Social experience affects the development of dendritic spines and branches on tectal interneurons in the jewel fish, Dev. Psychobiol. 12:347–358.PubMedCrossRefGoogle Scholar
  36. Coss, R. G., Brandon, J. G., and Globus, A., 1980, Changes in morphology of dendritic spines on honeybee calycal interneurons associated with cumulative nursing and foraging experiences, Brain Res. 192:49–59.PubMedCrossRefGoogle Scholar
  37. Crick, F., 1982, Do dendritic spines twitch? Trends Neurosci. 5:44–46.CrossRefGoogle Scholar
  38. del Castillo, J. and Katz, B. 1954, Quantal components of the end-plate potential, J. Physiol. (London) 124:560–573.Google Scholar
  39. Desmond, N. L. and Levy, W. B., 1981, Ultrastructural and numerical alterations in dendritic spines as a consequence of long-term potentiation, Anat. Rec. 199:68.Google Scholar
  40. Diamond, J., Gray, E. G., and Yasargil, G. M., 1971, The function of the dendritic spine: An hypothesis, in: Excitatory Synaptic Mechanism (P. Andersen and K. Jansen eds.), Universitetsforlaget, Oslo, pp. 213–222.Google Scholar
  41. Dichter, M. and Spencer, W. A., 1969, Penicillin-induced interictal discharges from the cat hippocampus. I. Characteristics and topographical features, J. Neurophysiol. 32:649–662.PubMedGoogle Scholar
  42. Dingledine, R. and Gjerstad, L., 1980, Reduced inhibition during epileptiform activity in the in vitro hippocampal slice, J. Physiol. (London) 305:297–313.Google Scholar
  43. Eaton, D., 1980, How are the membrane properties of individual neurons related to information processing in neural circuits? in: Information Processing in the Nervous System (H. M. Pinsker and W. D. Willis, Jr., eds.), Raven Press, New York, pp. 39–57.Google Scholar
  44. Fifkova, E. and Anderson, C., 1981, Stimulation-induced changes in dimensions of stalks of dendritic spines in the dentate molecular layer, Exp. Neurol. 74:621–627.PubMedCrossRefGoogle Scholar
  45. Fifkova, E. and Delay, R. J., 1982, Cytoplasmic actin in dendritic spines as a possible mediator of synaptic plasticity, Soc. Neurosci. Abstr. 8:279.Google Scholar
  46. Fifkova, E. and Van Harreveld, A., 1977, Long-lasting morphological changes in dendritic spines of dentate granular cells, following stimulation of the entorhinal area, J. Neu-rocytol. 6:211–230.Google Scholar
  47. Frank, K., Fuortes, M. G. F., and Nelson, P. G., 1959, Voltage clamp of motoneuron soma, Science 130:38–39.PubMedCrossRefGoogle Scholar
  48. Gray, R., Kellaway, J., and Johnston, D., 1982, Electrical properties of acutely isolated hippocampal neurons, Physiologist 25:221.Google Scholar
  49. Gutnick, M. J., Connors, B. W., and Prince, D. A., 1982, Mechanisms of cortical epilep-togenesis in vitro, J. Neurophysiol. 48:1321–1335.PubMedGoogle Scholar
  50. Hagiwara, S. and Saito, N., 1959, Membrane potential change and membrane current in supramedullary nerve cell of puffer, J. Neurophysiol. 22:204–221.PubMedGoogle Scholar
  51. Hamlyn, L. H., 1961, Electron microscopy of mossy fibre endings in Ammon’s horn, Nature (London) 190:645–648.CrossRefGoogle Scholar
  52. Hamlyn, L. H., 1962, The fine structure of the mossy fibre endings in the hippocampus of the rabbit. J. Amt. 96:112–126.Google Scholar
  53. Hatt, H. and Smith, D. O., 1976, Nonuniform probabilities of quantal release at the crayfish neuromuscular junction, J. Physiol. (London) 259:395–404.Google Scholar
  54. Haug, F.-M. S., 1967, Electron microscopic localization of zinc in hippocampal mossy fiber synapses by a modified sulfide silver procedure, Histochemie 8:355–368.PubMedCrossRefGoogle Scholar
  55. Jack, J. J. B. and Redman, S. J., 1971, The propagation of transient potentials in some linear cable structures, J. Physiol. (London) 215:283–320.Google Scholar
  56. Jack, J. J. B., Noble, D., and Tsien, R. W., 1975, Electric Current Flow in Excitable Cells, Oxford University Press, London.Google Scholar
  57. Jack, J. J. B., Redman, S. J., and Wong, K., 1981, The components of synaptic potentials evoked in spinal motoneurones by impulses in a single group la afférents, J. Physiol. (London) 321:65–96.Google Scholar
  58. Johnston, D., 1981, Passive cable properties of hippocampal CA3 pyramidal neurons, Cell. Mol. Neurobiol. 1:41–55.PubMedCrossRefGoogle Scholar
  59. Johnston, D. and Brown, T. H., 1980, Miniature inhibitory and excitatory synaptic potentials in hippocampal neurons, Fed. Proc. 39:2071.Google Scholar
  60. Johnston, D. and Brown, T. H., 1981, Giant synaptic potential hypothesis for epileptiform activity, Science 211:294–297.PubMedCrossRefGoogle Scholar
  61. Johnston, D. and Brown, T. H., 1983a, Mechanism of neuronal burst generation, in: Elec-trophysiology of Epilepsy (P. A. Schwartzkroin and H. V. Wheal, eds.), Academic Press, New York, in press.Google Scholar
  62. Johnston, D. and Brown, T. H., 1983b, Interpretation of voltage-clamp measurements in hippocampal neurons, J. Neurophysiol. 50:464–486.PubMedGoogle Scholar
  63. Johnston, D., Hablitz, J. J., and Wilson, W. A., 1980, Voltage clamp discloses slow inward current in hippocampal burst-firing neurones, Nature (London) 286:391–393.CrossRefGoogle Scholar
  64. Katz, B., 1969, The Release of Neuronal Transmitter Substances, Charles A. Thomas, Springfield, Illinois.Google Scholar
  65. Krnjevic, K., 1980, Neurobiology. General principles related to epilepsy, in: Antiepileptic Drugs: Mechanisms of Action (G. H. Glaser, J. K. Penry, and D. M. Woodbury, eds.) Raven Press, New York, pp. 127–154.Google Scholar
  66. Lebeda, F. J., Hablitz, J. J., and Johnston, D., 1982, Antagonism of GABA-mediated responses by d-tubocurarine in hippocampal neurons, J. Neurophysiol. 48:622–632.PubMedGoogle Scholar
  67. Lebeda, F. J., Brown, T. H., and Johnston, D., Synaptic mechanisms underlying epileptiform discharges in hippocampal neurons, submitted.Google Scholar
  68. Lebovitz, R. M., Dichter, M., and Spencer, W. A., 1971, Recurrent excitation in the CA3 region of cat hippocampus, Int. J. Neurosci. 2:99–108.PubMedCrossRefGoogle Scholar
  69. Lee, K. S., Schottler, F., Oliver, M., and Lynch, G., 1980, Brief bursts of high-frequency stimulation produce two types of structural changes in rat hippocampus, J. Neurophysiol. 44:247–258.PubMedGoogle Scholar
  70. Levy, W. B. and Desmond, N., 1983, The rules of elemental synaptic plasticity, in: Synaptic Modification, Neuron Selectivity and Nervous System Organization (W. B. Levy, J. Anderson, and S. Lehmkuhle, eds.), Lawrence Erlbaum Association, Hillsdale, New Jersey, in press.Google Scholar
  71. Llinás, R. and Sugimori, M., 1980, Electrophysiological properties of in vitro Purkinje cell somata in mammalian cerebellar slices, J. Physiol. (London) 305:171–195.Google Scholar
  72. Lorente de No, R., 1934, Studies on the structure of the cerebral cortex. II. Continuation of the study of the ammonic system, J. Psychol. Neurol. 46:113–117.Google Scholar
  73. Mac Vicar, B. A. and Dudek, F. E., 1980, Local synaptic circuits in rat hippocampus: Interactions between pyramidal cells, Brain Res. 184:220–223.CrossRefGoogle Scholar
  74. Martin, A. R., 1976, The effect of membrane capacitance on nonlinear summation of synaptic potentials, J. Theor. Biol 59:179–187.PubMedCrossRefGoogle Scholar
  75. Martin, A. R., 1977, Junctional transmission. II. Presynaptic mechanisms, in: Handbook of Physiology, Section I: The Nervous System (J. M. Brookhart and V. B. Mountcastle, eds.), American Physiological Society, Bethesda, Maryland, pp. 329–355.Google Scholar
  76. Matsumoto, H. and Ajmone Marsan, C., 1964, Cortical cellular phenomena in experimental epilepsy: Interictal manifestation, Exp. Neurol. 9:286–304.PubMedCrossRefGoogle Scholar
  77. McLachlan, E. M., 1978, The statistics of transmitter release at chemical synapses, in: International Review of Physiology. Neurophysiology III, Volume 17, (R. Porter, ed.), University Park Press, Baltimore, pp. 49–117.Google Scholar
  78. McLachlan, E. M. and Martin, A. R., 1981, Non-linear summation of end-plate potentials in the frog and mouse, J. Physiol. (London) 311:307–324.Google Scholar
  79. McNaughton, B. L., Barnes, C. A., and Andersen, P., 1981, Synaptic efficacy and EPSP summation in granule cells of rat facia dentata studied in vitro, J. Neurophysiol. 46:952–966.PubMedGoogle Scholar
  80. Perkel, D. H. and Feldman, M. W., 1979, Neurotransmitter release statistics: Moment estimates for inhomogenous Bernoulli trials, J. Math. Biol. 7:31–40.PubMedCrossRefGoogle Scholar
  81. Prince, D. A., 1978, Neurophysiology of epilepsy, Annu. Rev. Neurosci. 1:395–415.PubMedCrossRefGoogle Scholar
  82. Rall, W., 1967, Distinguishing theoretical synaptic potentials computed for different soma-dendritic distributions of synaptic input, J. Neurophysiol. 30:1138–1168.PubMedGoogle Scholar
  83. Rall, W., 1974, Dendritic spines, synaptic potency and neuronal plasticity, in: Cellular Mechanisms Subserving Changes in Neuronal Activity (C. D. Woody, K. A. Brown, T. J. Crow Jr., and J. D. Knispel, eds.), Brain Information Service, Los Angeles, pp. 13–21.Google Scholar
  84. Rall, W., 1977, Core conductor theory and cable properties of neurons, in: Handbook of Physiology, Section I: The Nervous System (J. M. Brookhart and V. B. Mountcastle, eds.), American Physiological Society, Bethesda, Maryland, pp. 39–97.Google Scholar
  85. Rall, W., 1978, Dendritic spines and synaptic potency, in: Studies in Neurophysiology, presented to A. K. Mclntyre, R. Porter, ed., Cambridge University Press, pp. 203–209.Google Scholar
  86. Rall, W. and Rinzel, J., 1973, Branch input resistance and steady attenuation for input to one branch of a dendritic neuron model, Biophys. J. 13:648–688.PubMedCrossRefGoogle Scholar
  87. Rall, W., Burke, R. E., Smith, T. G., Nelson, P. C., and Frank, K., 1967, Dendritic location of synapses and possible mechanisms for the monosynaptic EPSP in motoneurons. J. Neurophysiol. 30:1169–1193.PubMedGoogle Scholar
  88. Redman, S. J., 1976, A quantitative approach to integrative function of dendrites, in: International Review of Physiology. Neurophysiology II, Volume 10, (R. Porter, ed.), University Park Press, Baltimore, pp. 1–35.Google Scholar
  89. Rinzel, J. and Rall, W., 1974, Transient response in a dendritic neuron model for current injected at one branch, Biophys. J. 14:759–790.PubMedCrossRefGoogle Scholar
  90. Scheibel, M. E. and Scheibel, A. B., 1968, On the nature of dendritic spines—Report on a workshop, Comm. Behav. Bio. I(A):231–265.Google Scholar
  91. Schwartzkroin, P. A. and Wyler, A. R., 1980, Mechanisms underlying epileptiform burst discharge, Ann. Neurol. 7:95–107.PubMedCrossRefGoogle Scholar
  92. Schwindt, P. C. and Crill, W. E., 1977, A persistent negative resistance in cat lumbar motoneurons, Brain Res. 120:173–178.PubMedCrossRefGoogle Scholar
  93. Schwindt, P. C. and Crill, W. E., 1980, Role of a persistent inward current in motoneuron bursting during spinal seizures, J. Neurophysiol. 43:1296–1318.PubMedGoogle Scholar
  94. Schwindt, P. C. and Crill, W. E., 1980, Properties of a persistent inward current in normal and TEA-injected motoneurons, J. Neurophysiol. 43:1700–1724.PubMedGoogle Scholar
  95. Schwindt, P. C. and Crill, W. E., 1980, The effects of barium on cat spinal motoneurons studied by voltage clamp, J. Neurophysiol. 44:827–846.PubMedGoogle Scholar
  96. Schwindt, P. C. and Crill, W. E., 1981, Differential effects of TEA and cations on outward ionic currents of cat motoneurons, J. Neurophysiol. 46:1–16.PubMedGoogle Scholar
  97. Segev, I. and Parnas, I., 1983, Synaptic integration mechanisms. Theoretical and experimental investigation of temporal postsynaptic interactions between excitatory and inhibitory inputs, Biophys J. 41:41–50.PubMedCrossRefGoogle Scholar
  98. Shepherd, G. M., 1979, The Synaptic Organization of the Brain, 2nd ed., Oxford University Press, New York.Google Scholar
  99. Stevens, C. F., 1976, A comment on Martin’s relation, Biophys. J. 16:891–895.PubMedCrossRefGoogle Scholar
  100. Swindale, N. V., 1981, Dendritic spines only connect, Trends Neurosci. 4:240–241.CrossRefGoogle Scholar
  101. Takeuchi, A., 1977, Junctional transmission. I. Postsynaptic mechanisms, in: Handbook of Physiology, Section I: The Nervous System, Volume 1, Part 1 (J. M. Brookhart and V. B. Mountcastle, eds.), American Physiological Society, Bethesda, Maryland, pp. 295 – 328.Google Scholar
  102. Traub, R. D. and Llinás, R., 1979, Hippocampal pyramidal cells: Significance of dendritic ionic conductances for neuronal function and epileptogenesis, J. Neurophysiol. 42:476–496.PubMedGoogle Scholar
  103. Traub, R. D. and Wong, R. K. S., 1982, Cellular mechanism of neuronal synchronization in epilepsy, Science 216:745–747.PubMedCrossRefGoogle Scholar
  104. Turner, D. A. and Schwartzkroin, P. A., Electrical characteristics of dendrites and dendritic spines in intracellularly-stained CA3 and dentate hippocampal neurons, submitted.Google Scholar
  105. Valverde, F. and Ruiz-Marcos, A., 1969, Dendritic spines in the visual cortex of the mouse: Introduction to a mathematical model, Exp. Brain Res. 8:269–283.PubMedCrossRefGoogle Scholar
  106. Van Harreveld, A. and Fifkova, E., 1975, Swelling of dendritic spines in the fascia dentata after stimulation of the perforant fibers as a mechanism of posttetanic potentiation, Exp. Neurol. 49:736–749.PubMedCrossRefGoogle Scholar
  107. Williams, J. D. and Bowen, J. M., 1974, Effects of quantal unit latency on statistics of Poisson and binomial neurotransmitter release mechanisms, J. Theor. Biol. 43:151–165.PubMedCrossRefGoogle Scholar
  108. Wilson, W. A. and Goldner, M. M., 1975, Voltage clamping with a single microelectrode, J. Neurobiol. 6:411–422.PubMedCrossRefGoogle Scholar
  109. Wong, R. K. S., Prince, D. A., and Basbaum, A. L, 1979, Intradendritic recordings in hippocampal neurons, Proc. Natl. Acad. Sci. USA 76:986–990.PubMedCrossRefGoogle Scholar
  110. Zucker, R. S., 1977, Synaptic plasticity at crayfish neuromuscular junctions, in: Identified Neurons and Behavior of Arthropods (G. Hoyle, ed.), Plenum Press, New York, pp. 49–65.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Daniel Johnston
    • 1
  • Thomas H. Brown
    • 2
  1. 1.Program in Neuroscience, Section of Neurophysiology, Department of NeurologyBaylor College of MedicineHoustonUSA
  2. 2.Department of Cellular Neurophysiology, Division of NeurosciencesCity of Hope Research InstituteDuarteUSA

Personalised recommendations