Passive Electrotonic Structure and Dendritic Properties of Hippocampal Neurons

  • Dennis A. Turner
  • Philip A. Schwartzkroin


Most central nervous system (CNS) neurons possess a considerable spatial dispersion of structures specialized for postsynaptic reception. Variability in dendritic structure, as well as differing distributions of spines (Scheibel and Scheibel, 1968) and other synaptic specializations, confer unique capabilities on each cell type. Neurons in the hippocampus demonstrate a complexity of neuronal shape (Figure 1), and dispersion of spine synapses that are typical particularly of cortical tissue (Minkwitz, 1976; Wenzel et al., 1981). The various classes of hippocampal neurons also possess a distribution of nonsynaptic ionic conductances that can modify signal transfer from input sites to the summation or recording site (Jack et al., 1975; Rall, 1977), and thus complicate the interpretation of synaptic inputs. Such signal modification may occur according to both passive cable attenuation and nonlinear forms of distortion, neither of which are usually subject to intuition. Quantitative models of neurons have been developed both to enhance our ability to extrapolate from a recorded signal back to the original synaptic signal, and also to help us understand the signal’s importance and role in the process of neuronal integration. Complex processing and multiple interactions can be approached in a model in a way that cannot be done experimentally.


Hippocampal Neuron Dendritic Spine Synaptic Input Dendritic Tree Dentate Granule Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andersen, P., Silfvenius, H., Sundberg, F. H., and Sveen, O., 1980, A comparison of distal and proximal dendritic synapses on CA1 pyramids in guinea pig hippocampal slices in vitro, J. Physiol (London) 307:273–299.Google Scholar
  2. Barnes, C. A. and McNaughton, B. L., 1980, Physiological compensation for loss of afferent synapses in rat hippocampal granule cells during senescence, J. Physiol, (London) 309:473–485.Google Scholar
  3. Barrett, J. N. and Crill, W. E., 1974, Influence of dendritic location and membrane properties on the effectiveness of synapses on cat motoneurons, J. Physiol. (London) 239:325–345.Google Scholar
  4. Brown, T. H., Fricke, R. A., and Perkel, D. H., 1981, Passive electrical constants in three classes of hippocampal neurons, J. Neurophysiol. 46:812–827.PubMedGoogle Scholar
  5. Carlen, P. L. and Durand, D., 1981, Modelling the postsynaptic location and magnitude of tonic conductance changes resulting from neurotransmitters or drugs, Neuroscience 6:839–846.PubMedCrossRefGoogle Scholar
  6. Carnevale, N. T. and Johnston, D., 1982, Electrophysiological characterization of remote chemical synapses, J. Neurophysiol. 47:606–621.PubMedGoogle Scholar
  7. Crick, F., 1982, Do dendritic spines twitch? Trends Neurosci. 5:44–46.CrossRefGoogle Scholar
  8. Diamond, J., Gray, E. G., and Yasargil, G. M., 1971, The function of the dendritic spine: An hypothesis, in: Excitatory Synaptic Mechanisms (P. Andersen and K. Jansen, eds.), Universitetsforlaget, Oslo, pp. 213–222.Google Scholar
  9. Durand, D., Carlen, P. L., Gurevich, N., Ho, A., and Kunov, H., 1983, Electrotonic parameters of rat dentate granule cells measured using short current pulses and HRP staining, J. Neurophysiol, in press.Google Scholar
  10. Fifkova, E. and Van Harreveld, A., 1977, Long-lasting morphological changes in dendritic spines of dentate granular cells, following stimulation of the entorhinal area, J. Neurocytol. 6:211–230.PubMedCrossRefGoogle Scholar
  11. Gray, E. G., 1982, Rehabilitating the dendritic spine, Trends Neurosci. 5:5–6.CrossRefGoogle Scholar
  12. Iansek, R. and Redman, S. J., 1973, An analysis of the cable properties of spinal motoneurones using a brief intracellular current pulse, J. Physiol. (London) 234:613–636.Google Scholar
  13. Jack, J. J. B., Miller, S., Porter, R., and Redman, S. J., 1971, The time course of minimal excitatory postsynaptic potentials evoked in spinal motoneurones by group IA afferent fibers, J. Physiol. (London) 215:353–380.Google Scholar
  14. Jack, J. J. B., Noble, D., and Tsien, R. W., 1975, Electric Current Flow in Excitable Cells, Clarendon Press, Oxford.Google Scholar
  15. Jack, J. J. B., Redman, S. J., and Wong, K., 1981, The components of synaptic potentials evoked in cat spinal motoneurones by impulses in single group IA afférents, J. Physiol. (London) 321:65–96.Google Scholar
  16. Johnston, D., 1981, Passive cable properties of hippocampal CA3 pyramidal neurons, Cell. Mol. Neurobiol. 1:41–55.PubMedCrossRefGoogle Scholar
  17. Johnston, D. and Brown, T. H., 1983, Interpretation of voltage-clamp measurements in hippocampal neurons, J. Neurophysiol. 50:464–486.PubMedGoogle Scholar
  18. Knowles, W. D., and Schwartzkroin, P. A., 1981, Local circuit synaptic interactions in hippocampal brain slices, J. Neurosci. 1:318–322.PubMedGoogle Scholar
  19. Leung, L. S., 1982, Nonlinear feedback model of neuronal populations in the hippocampal CA1 region, J. Neurophysiol. 47:845–868.PubMedGoogle Scholar
  20. Lux, H. D. and Schubert, P., 1975, Some aspects of the electroanatomy of dendrites, in: Advances in Neurology, Vol. 12 (G. W. Kreutzberg, ed.), Raven Press, New York, pp. 29–44.Google Scholar
  21. MacVicar, B. A. and Dudek, F. E., 1980, Local synaptic circuits in rat hippocampus: Interactions between pyramidal cells, Brain Res. 184:220–223.PubMedCrossRefGoogle Scholar
  22. MacVicar, B. A. and Dudek, F. E., 1982, Electrotonic coupling between granule cells of the rat dentate gyrus: Physiological and anatomical evidence, J. Neurophysiol. 47:579–592.PubMedGoogle Scholar
  23. Mates, J. W. B. and Horowitz, J. M., 1976, Instability in a hippocampal neuronal network, Compt. Programs Biomed. 6:74–84.CrossRefGoogle Scholar
  24. McNaughton, B. L., Barnes, C. A., and Andersen, P., 1981, Synaptic efficacy and EPSP summation in granule cells of rat fascia dentata studied in vitro, J. Neurophysiol. 46:952–966.Google Scholar
  25. Minkwitz, H-G., 1976, Zur Entwicklung der Neuronenstruktur des Hippocampus während der prä und postnatalen Ontogenese der Albinoratte. III. Mitteilung: Morphometrische Erfassung der ontogenetischen Veränderungen in Dendritenstruktur und Spine Besatz an Pyramiden-Neuronen (CA1) des rlippocampus, J. Hirnforsch. 17:255–275.PubMedGoogle Scholar
  26. Norman, R. S., 1972, Cable theory for finite length dendritic cylinders with initial and boundary conditions, Biophys. J. 12:25–45.PubMedCrossRefGoogle Scholar
  27. Perkel, D. H. and Mulloney, B., 1978, Electrotonic properties of neurons: Steady-state compartmental model, J. Neurophysiol. 41:621–639.PubMedGoogle Scholar
  28. Perkel, D. H., Mulloney, B., and Budelli, R. W., 1981, Quantitative methods for predicting neuronal behavior, Neuroscience 6:823–837.PubMedCrossRefGoogle Scholar
  29. Rall, W., 1959, Branching dendritic trees and motoneuron membrane resistivity, Exp. Neurol 1:491–527.PubMedCrossRefGoogle Scholar
  30. Rall, W., 1967, Distinguishing theoretical synaptic potentials computed for different somadendritic distributions of synaptic input, J. Neurophysiol. 30:1138–1168.PubMedGoogle Scholar
  31. Rall, W., 1969, Time constants and electrotonic length of membrane cylinders and neurons, Biophys. J. 9:1483–1508.PubMedCrossRefGoogle Scholar
  32. Rall, W., 1974, Dendritic spines, synaptic potency and neuronal plasticity, in: Cellular Mechanisms Subserving Changes in Neuronal Activity (C.D. Woody, K. A. Brown, T. J. Crow Jr., and J. D. Knispel, eds.), Brain Information Service, Los Angeles, pp. 13–21.Google Scholar
  33. Rall, W., 1977, Core conductor theory and cable properties of neurons, in: Handbook of Physiology. Section I. The Nervous System, Volume 1 Cellular Biology of Neurons (E. R. Kandel, ed.), Williams & Wilkins, Bethesda, pp. 39–98.Google Scholar
  34. Rinzel, J. and Rall, W., 1974, Transient response in a dendritic neuron model for current injected at one branch, Biophys. J. 14:759–790.PubMedCrossRefGoogle Scholar
  35. Scheibel, M. E. and Scheibel, A. B., 1968, On the nature of dendritic spines—Report of a workshop, Comm. Behav. Biol. I(A):231–265.Google Scholar
  36. Schwartzkroin, P. A., 1975, Characteristics of CA1 neurons recorded intracellularly in the hippocampal ‘in vitro’ slice preparation, Brain Res. 85:423–436.PubMedCrossRefGoogle Scholar
  37. Schwartzkroin, P. A., 1977, Further characteristics of hippocampal CA1 cells in vitro, Brain Res. 128:53–68.PubMedCrossRefGoogle Scholar
  38. Schwartzkroin, P. A., 1981, To slice or not to slice, in: Electrophysiology of Isolated Mammalian CNS Preparations (G. A. Kerkut and H. V. Wheal, eds.), Academic Press, London, pp. 15–50.Google Scholar
  39. Swindale, N. V., 1981, Dendritic spines only connect, Trends Nuerosci. 4:240–241.CrossRefGoogle Scholar
  40. Traub, R. D. and Llinás, R., 1979, Hippocampal pyramidal cells: Significance of dendritic ionic conductances for neuronal function and epileptogenesis, J. Neurophysiol. 42:476–496.PubMedGoogle Scholar
  41. Traub, R. D. and Wong, R. K. S., 1981, Penicillin-induced epileptiform activity in the hippocampal slice: A model of synchronization of CA3 pyramidal cell bursting, Neuroscience 6:223–230.PubMedCrossRefGoogle Scholar
  42. Traub, R. D. and Wong, R. K. S., 1983, Synchronized burst discharge in the disinhibited hippocampal slice. II. Model of the cellular mechanism, J. Neurophysiol. 49:459–471.PubMedGoogle Scholar
  43. Turner D. A., 1982, Soma and dendritic spine transients in intracellularly-stained hippocampal neurons, Neurosci. Abstr. 8:945.Google Scholar
  44. Turner, D. A. and Schwartzkroin, P. A., 1980, Steady-state electrotonic analysis of intracellularly-stained hippocampal neurons, J. Neurophysiol. 44:184–199.PubMedGoogle Scholar
  45. Turner, D. A. and Schwartzkroin, P. A., 1983, Electrical characteristics of dendrites and dendritic spines in intracellularly-stained CA3 and dentate neurons, J. Neuroscience, in press.Google Scholar
  46. Wenzel, J., Stender, G., and Duwe, G., 1981, The development of the neuronal structure of the fascia dentata of the rat. Neurohistologic, morphometric, ultrastructural and experimental investigations, J. Hirnforsch. 22:629–683.PubMedGoogle Scholar
  47. Wong, R. K. S. and Prince, D. A., 1978, Participation of calcium spikes during intrinsic burst firing in hippocampal neurons, Brain Res. 159:385–390.PubMedCrossRefGoogle Scholar
  48. Wong, R. K. S. and Prince, D. A., 1979, Dendritic mechanisms underlying penicillin-induced epileptiform activity, Science 204:1228–1231.PubMedCrossRefGoogle Scholar
  49. Wong, R. K. S. and Traub, R. D., 1983, Synchronized burst discharge in the disinhibited hippocampal slice. I. Initiation in CA2-CA3 region, J. Neurophysiol. 49:442–458.PubMedGoogle Scholar
  50. Yamamoto, C., 1982, Quantal analysis of excitatory postsynaptic potentials induced in hippocampal neurons by activation of granule cells, Exp. Brain Res. 46:170–176.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Dennis A. Turner
    • 1
  • Philip A. Schwartzkroin
    • 2
  1. 1.Department of NeurosurgeryVA Medical CenterMinneapolisUSA
  2. 2.Department of Neurological SurgeryUniversity of WashingtonSeattleUSA

Personalised recommendations